Which GPU should I use?

Pawel Pomorski SHARCNET/Compute Ontario/Alliance

Current GPUs in Alliance systems

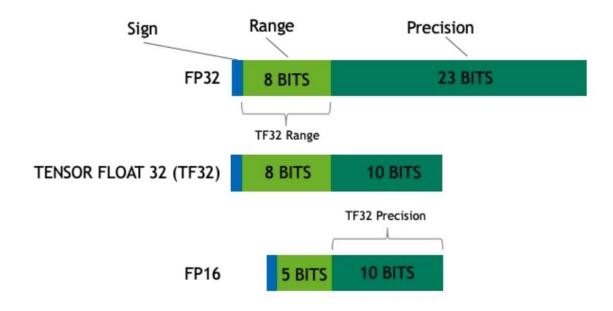
GPU cards available

- **P100** Pascal (2016)
- V100 Volta (2017)
- **T4** Turing (2018)
- **A100** Ampere (2020)

Alliance main clusters

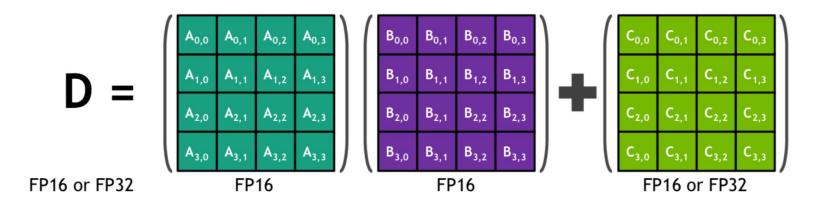
- Graham 320 P100 , 144 T4, 72 V100, 8 A100
- Cedar 584 **P100**, 768 **V100**
- Beluga 688 V100
- Narval 636 **A100**

Other Alliance clusters


- Mist 216 **V100** (IBM Power9 CPUs)
- Rouge 160 MI-50 (AMD)

NVIDIA GPU performance trends (TFLOPS)

GPU	FP64	FP64 TC	FP32	TF32 TC	FP16/32 TC	INT8 TC
P100	4.7	-	9.3	-	-	-
V100	7.8	-	15.7	-	125	-
T4	0.25	-	8.1	-	65	130
A100	9.7	19.5	19.5	156 312 sp	312 624 sp	624 1048 sp


FP64 - 64 bit floating point, TC - Tensor Core , sp - with sparsity

Reduce precision to gain higher performance

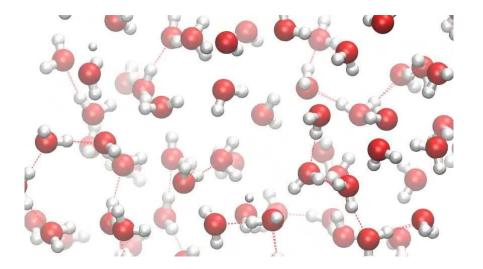
Tensor cores

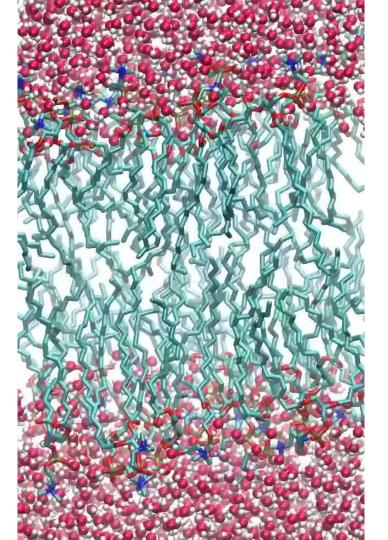
- Units dedicated to matrix multiplication
- First appeared on Volta doing FP32/FP16 multiply
- Turin and Ampere implement more operations

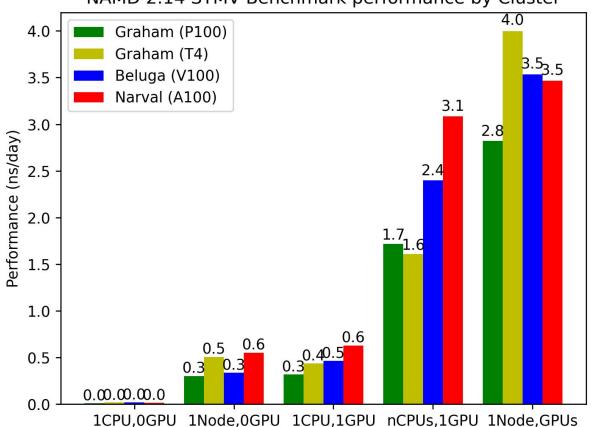
D = AB + C

Upcoming GPU hardware in 2023

- NVIDIA
 - Hopper H100 GPU (up to 700 W, available Q3 2022)
 - Grace CPU (ARM)
- AMD:
 - CDNA2 architecture GPUs MI250, MI250X (November, 2021)
 - MI300 in development, performance 2x of MI250, heterogeneous CPU+GPU
- Intel:
 - Ponte Vecchio GPU expected in 2022, will be in DOE Aurora exascale system
 - Laptop gaming GPU released March 30 Intel Arc 3, will be followed by Arc 5 and Arc 7.

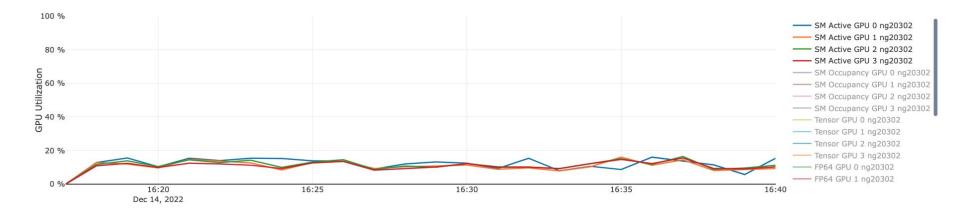

Future systems: NVIDIA versus AMD


GPU	FP64	FP64 TC/MC	FP32	FP32 MC	TF32 TC	FP16 TC/MC	FP8 TC	INT8 TC/MC
MI200	45.3	90.5	45.3	90.5	-	362.1	-	362.1
MI250x	47.9	95.7	47.9	95.7	-	383	-	383
A100	9.7	19.5	19.5	-	156 312 sp	312 624 sp	-	624 1048 sp
H100 SXM	30	60	60	-	500 1000 sp	1000 2000 sp	2000 4000 sp	2000 4000 sp


FP64 - 64 bit floating point, TC - Tensor Core, MC - Matrix Core, sp - with sparsity

NAMD

- Standard Molecular Dynamics (MD code)
 - Well-accelerated on GPUs, also uses CPUs
 - MD relies single precision (FP32)
 - Using more parallel resources efficiently requires larger system (more atoms)



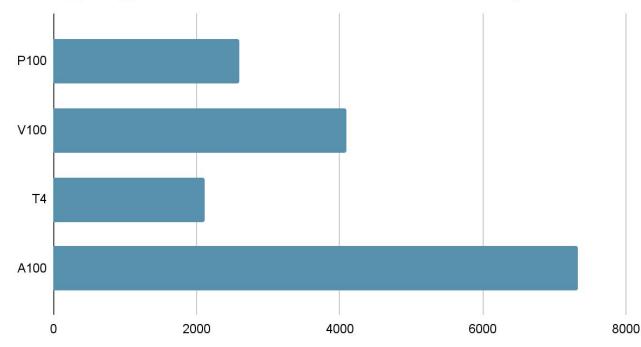
NAMD 2.14 STMV Benchmark performance by Cluster

Why narval does not gain performance with 4 GPUs?

Plot from https://portail.narval.calculquebec.ca

NAMD 3.0alpha

In this version work moved to the GPU, so can run efficiently with just 1 CPU core per GPU. Enabled with:


CUDASOAintegrate on

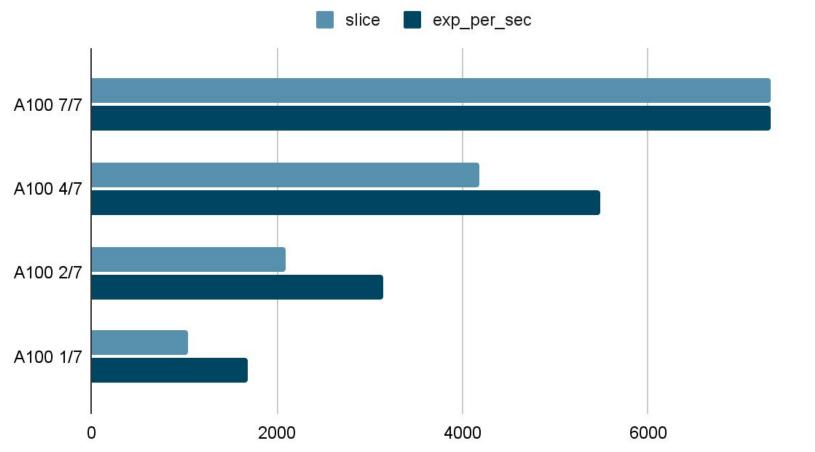
1 GPU with 1 core - 7.6 ns/day (compared to 3.1 ns/day for NAMD 2.14)

4 GPU with 4 core - 26 ns/day (compared to 3.5 ns/day for NAMD 2.14)

Tensorflow performance

keras_cifar_benchmark.Resnet56KerasBenchmarkSynth

MIG - subdividing Nvidia GPUs


GPUs have O(64) actual cores (called SM, EU, etc)

MIG allows isolation of SM+MC combinations: up to 7 pieces

MIG configuration can be changed whenever the whole GPU is idle

Some talk about subdivision from AMD or Intel

MIG performance

8000