Grammar of Graphics (ggplot2)

Tyson Whitehead

November 17, 2021

A Grammar of Graphics

What is a graphic? How can we succinctly describe a graphic? And how can we create the graphic that we have described?

Grammar the principles or rules of an art, science, or technique

A good grammar will

- allow us to gain insight into the composition of complicated graphics,
- reveal unexpected connections between seemingly different graphics,
- provide a strong foundation for understanding a diverse range of graphics
- guide us on what a well-formed or correct graphic looks like

Grammar of Graphics (Work)

Well thought out and studied framework with a solid academic background.

```
1983 Semiology of Graphics (Bertin)
2005 The Grammer of Graphics (Wilkinson, Anand, and Grossman)
2010 A Layered Grammar of Graphics (Wickham)
```

The Layered Grammar of Graphics

```
> ggplot(data = <DATA>) +
    <GEOM FUNCTION>(
      mapping = aes(<MAPPINGS>),
      stat = \langle STAT \rangle,
      position = <POSITION>
    ) + ... +
    <COORDINATE_FUNCTION> +
    <FACET FUNCTION> +
    <SCALE_FUNCTION> + ... +
    <GUIDE_FUNCTION> + ... +
    <THEME_FUNCTION> + ...
```

The Layered Grammar of Graphics (Components)

- DATA underlying data set providing the observations
- STAT statistical transformation (stat) of the information to be displayed
- ► GEOM_FUNCTION geometric object (geom) to represent information
- MAPPINGS how values to be display map to the levels of an aesthetic
- COORDINATE_FUNCTION coordinate system to place the geom into
- POSITION position adjustments in the coordinate system
- ► FACET_FUNCTION split the plot into subplots
- SCALE_FUNCTION how data values are translated to visual properties
- GUIDE_FUNCTION help readers interpret the plot
- ► THEME_FUNCTION controls the display of non-date items

The Layered Grammar of Graphics (Implementations)

Implementations

```
R ggplot2 (https://ggplot2.tidyverse.org)
Python plotnine (https://plotnine.readthedocs.io)
```

Excellent R books (good for Python too)

- ▶ ggplot2: Elegant Graphics for Data Analysis (ggplot2-book.org)
- R for Data Science (r4ds.had.co.nz)

Creating a Plot (1/2)

Sample data is a subset of the fuel economy data the US Environmental Protection Agency (EPA) provides on cars from 1999 and 2008.

```
> mpg
# A tibble: 234 x 11
 manufacturer model displ year cyl trans drv
 <chr>
         <chr> <dbl> <int> <int> <chr> <chr>
1 audi
          a4 1.8 1999 4 auto... f
         a4 1.8 1999 4 manu... f
2 audi
3 audi
         a4 2 2008 4 manu... f
         a4 2 2008 4 auto... f
4 audi
     a4 2.8 1999 6 auto... f
5 audi
# ... with 229 more rows, and 4 more variables:
   cty <int>, hwy <int>, fl <chr>, class <chr>
```

Creating a Plot (2/2)

Figure 1: First ggplot showing highway mpg vs engine displacement.

Aesthetic Mappings (1/2)

Figure 2: Using additional aesthetics to convey more information.

Aesthetic Mappings (2/2)

Figure 3: Formulas for aesthetics and setting defaults.

Faceting

Figure 4: Facets for comparing subsets of the data.

Geometric Objects

Figure 5: Adding additional geometry objects.

Statistical Transformations

Figure 6: Number of vehicles for each class broken out by drivetrain.

Position Adjustments (1/2)

Figure 7: Side-by-side variant of the number of vehicles bar chart.

Position Adjustments (2/2)

Figure 8: Jittering reveals a concentration of overlapping points.

Coordinate Systems

Figure 9: A wild rose, which isn't generally recommended despite looking sophisticated.

Scales and Labels (1/4)

Figure 10: The ColorBrewer schemes are a good choice for discrete data.

Scales and Labels (2/4)

Figure 11: Using a log scale also expands out the lower end of miles-per-gallon.

Scales and Labels (3/4)

Figure 12: Legends can be customized (or removed) with guides.

Scales and Labels (4/4)

Figure 13: Labels are easily specified via the a variety of convenience functions.

Themes

Figure 14: Themes make it easy to tweak non-data apperances.

Creativity

Figure 15: Creative applications of the grammar can produce almost any graph.