
Code profiling on Graham 

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 2/39

Outline

● Introduction
● Simple profiling
● Profiling serial, MPI and OpenMP codes with MAP
● CUDA profiling
● Questions?



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 3/39

Introduction



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 4/39

What is profiling?

● Profiling is the task of timing a code.
● It used used primarily as a part of the iterative process of 

improving the efficiency (reducing the wallclock runtime) of the 
code.

● It is often done using simple means (like inserting time 
measurement lines in your code), but for serious profiling work 
one has to use dedicated profiling tools.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 5/39

Simple profiling



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 6/39

Timing the whole code

● On SHARCNET clusters, one can use the Linux shell command 
“time” to time the whole code.

$  time  ./your_code   , or
$  time  mpirun -np 32 ./your_mpi_code

● This has to be done on an empty node, to improve the accuracy of 
timing.

● A node can be reserved with salloc command (gives interactive 
access to compute resources for up to 3 hours), e.g.

$  salloc --time=0-03:00 -c 32 -A def-account --mem=120000M
(for serial and multi-threaded codes), and

$  salloc --time=0-03:00 -n 32 -A def-account --mem-per-cpu=4000M
(for MPI codes).



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 7/39

Timing the whole code (cont.)

● On Graham, cpu cores take non-negligible time to spin up from 
the idle state (1200 MHz) to the maximum speed under full load 
(2600 MHz).

● As a result, one has to time the code multiple times in a loop, 
choosing the best timing, e.g.:
$ for ((i=0; i<10; i++)); do { time -p ./code ; } |& grep real ; done |sort -k 2 -gr

● This is obviously not ideal. A much better way is to place timers 
inside your code, to time specific parts of the code.

● This again should be ideally done in an internal (code) loop, to 
eliminate the cpu spin-up effect.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 8/39

Timers inside your code

● gettimeofday: high precision (10μs) cpu-based timer (just 
google for the function timeval_subtract).

  #include <sys/time.h>
  ... 
  struct timeval  tdr0, tdr1, tdr;
  double delta_t;
  gettimeofday (&tdr0, NULL);

    < The code to time >

  gettimeofday (&tdr1, NULL);
  tdr = tdr0;
  timeval_subtract (&delta_t, &tdr1, &tdr);
  printf ("Time: %e\n", delta_t);



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 9/39

Timers inside your code (cont.)

● OpenMP code: omp_get_wtime() can be used to time (in seconds) both entire 
parallel regions, or individual threads inside a parallel region.

● This can also be used to time non-OpenMP codes (as it is more convenient 
than gettimeofday), just don't forget to add the “#include <omp.h>” line, and 
compile the code with “-qopenmp” (icc) or “-fopenmp” (gcc) switches.

  #include <omp.h>
  ...
  double t1 = omp_get_wtime();

     < The code to time >

  double t2 = omp_get_wtime();
  printf ("Time: %e\n", t2-t1);



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 10/39

Timers inside your code (cont.)

● MPI code: MPI_Wtime() can be used the same way as 
omp_get_wtime() on the previous slide:

  #include <mpi.h>
  ...
  double t1 = MPI_Wtime();

     < The code to time >

  double t2 = MPI_Wtime();
  printf ("Time: %e\n", t2-t1);



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 11/39

Timers inside your code (cont.)

● CUDA code: to time a specific CUDA kernel, the best approach 
is to use CUDA events:

  cudaEvent_t start, stop;
  float time;
  cudaEventCreate (&start);
  cudaEventCreate (&stop);
  cudaEventRecord (start, 0);
  kernel_to_time <<<grid, threads>>> ();
  cudaEventRecord (stop, 0);
  cudaEventSynchronize (stop);
  cudaEventElapsedTime (&time, start, stop);
  cudaEventDestroy (start);
  cudaEventDestroy (stop);



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 12/39

Timers inside your code (cont.)

● For timing CUDA code consisting of multiple kernels, and/or 
concurrent GPU and CPU computations, and/or concurrent 
GPU operations (using streams), one has to use cpu-based 
timers (like gettimeofday or omp_get_wtime).



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 13/39

Profiling serial, MPI and OpenMP codes with MAP



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 14/39

Overview

● Parallel profiler MAP (along with the parallel debugger DDT) are now a 
part of the software package Forge.

● The original company behind MAP was Allinea. In 2016 it was acquired 
by the CPU maker ARM.

● SHARCNET has been using (and paying for) Allinea/ARM products 
since 2006.

● Though the debugger DDT was a success from the beginning, the 
Allinea's first attempt at parallel profiling (OPT) was a failure.

● The replacement MAP (came about in 2013; originally only for 
serial/MPI codes) used a much better approach to parallel profiling, and 
is now widely used in HPC community.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 15/39

Overview (cont.)

● On Graham, profiler MAP is provided via module “ddt-cpu” (or 
aliases “allinea-cpu” and “arm-forge-cpu”).

● The Graham's license is for up to 512 concurrent cpu cores 
across all users (for both MAP and DDT).

● Niagara cluster (operated by SciNet) has a smaller license (up 
to 128 cpu cores). Neither MAP nor DDT are available on 
Cedar.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 16/39

How to use MAP

● MAP (and DDT) are GUI applications, so one has to enable X11 
forwarding in the SSH connection to be able to use them.
– One has to add “-Y” switch to the usual ssh command:

           $  ssh  -Y  user@graham.computecanada.ca
– Windows users: use free software MobaXterm, which comes with both SSH 

client and X window server (required for X11 forwarding).
– Mac users: install free app XQuartz (has X windows server).
– Linux users: everything you need is already installed on your box.

● As an alternative, one could use VNC connection to graham (google for 
“VNC compute canada” for details). 
– It has a better performance, but takes longer to set up.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 17/39

How to use MAP (cont.)

● When using the X11 forwarding method, you need to add 
“--x11” switch to your salloc command, e.g.

$  salloc --x11 --time=0-03:00 -c 32 -A def-account --mem=120000M
● After allocating the node(s) with salloc, load the module:

$  module  load  ddt-cpu/7.1
● The code to be profiled has to be compiled with “-g” switch which 

adds symbolic information to the binary. You should use all your 
usual optimization flags (e.g. -O2).

● Run the code under MAP like this:
$  map  ./your_code <optional code arguments>



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 18/39

Some details

● Use the 7.1 version for now, as the newer one has some issues.
● Request one more cpu core than your code needs with salloc, as 

MAP uses one cpu core at 100% inside salloc session (it is likely a 
bug; we'll try to fix it). 

● If you need more resources than available with salloc (>3h runtime, or 
hundreds of cpu cores), submit the MAP session as a job, e.g.

module load ddt-cpu/7.1
map  --profile  -n 16  ./code

● The profiling results (*.map files) can be analyzed offline with MAP:
$ map  results.map



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 19/39



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 20/39

Default
interface



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 21/39

Zooming
in



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 22/39

MPI
preset



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 23/39

Serial code profiling

● Example: a typical efficiency issue is when a loop in the code 
reads elements of the vector/array not in the order the data is 
stored in the memory. This makes CPU-memory caching 
inefficient.

● For C/C++ codes, data is stored in a row-major order, so it is the 
last index in multidimensional arrays which should correspond to 
the inner-most loop:

for (int i=0; i<N; i++)
    for (int j=0; j<N; j++)
           A[i][j] = 0.0;



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 24/39

Serial code
profiling
(CPU
instructions
preset).

Bad memory
access case.

The problem



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 25/39

Serial code
profiling
(CPU
instructions
preset).

Good memory
access case.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 26/39

Profiling MPI codes

● Dynamic workload balancing (DWB) is frequently used by MPI 
programs.

● We use it when the length of time spent on computing different 
parts of a large workload by different MPI ranks is hard or 
impossible to predict ahead of time.

● Well written DWB code should have a way to adjust the size of 
the workload quantum. (In other words – number of chunks.)



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 27/39

Dynamic workload balancing example

● Example code: 
– dynamic_workload_balancing.c: using “nanosleep” function to 

emulate different processing time for different elements of a large 
input array

– On 15 graham cpu cores, I got the following wall clock times:

N_chunks / N_CPUs Wall clock time (s)

1 28.8

10 16.7

100 16.2

1000 16.1

200,000 20.6

Severe workload
imbalance

Optimal performance

Latency becomes
important



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 28/39

MPI
profiling,
dynamic 
workload
balancing 
example.

Chunks are
too small = 
latency
dominated.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 29/39

MPI
profiling,
dynamic 
workload
balancing 
example.

Chunks are
too large = 
severe 
workload
imbalance.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 30/39

MPI
profiling,
dynamic 
workload
balancing 
example.

Chunks 
have just
the right 
size.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 31/39

OpenMP profiling

● In OpenMP, critical regions have a significant overhead and 
should be used sparingly.

● In particular, if used inside a loop for reduction, there should be  
a pre-selection statement, outside of the critical region:

if (x > x_max)   //  Pre-selects only plausible candidates
   #pragma omp critical
      if (x > x_max)   // Very infrequently threads would enter the critical
          x_max = x;   //  region, for the definitive “if” clause application



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 32/39

OpenMP
profiling,
dynamic 
critical
region's
impact.

No pre-
selection = 
huge 
performance 
hit.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 33/39

OpenMP
profiling,
dynamic 
critical
region's
impact.

Pre-
selection = 
good
performance.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 34/39

CUDA profiling

● Recently MAP became capable of CUDA (GPGPU) code 
profiling.

● Unfortunately, SHARCNET's license doesn't cover this feature.
● But we do have Nvidia provided visual profilers for CUDA 

programs – nvvp and nsight.
● Unfortunately, they don't provide line-by-line kernel analysis (the 

way MAP does). But they provide plenty of detailed info on 
kernel performance.

● nvvp and nsight are bundled with cuda modules.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 35/39

CUDA profiling (cont.)

● No code re-compilation is needed for nvvp profiling.
● Using nvvp interactively (on graham and cedar):

$  salloc --x11 --time=0-03:00 --ntasks=1 --gres=gpu:1 
-A def-account --mem-per-cpu=4G
$  module  load  cuda/10
$  nvcc  -O2  your_code.c  -o your_code
$  nvvp  ./your_code

● The app will provide a step-by-step profiling setup. You choose 
which kernels to profile, and what specific details you need.

● The app will often provide useful descriptive suggestions regarding 
which parts of your code have efficiency issues.



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 36/39

CUDA profiling (cont.)

● Non-coalesced access of the device memory is a significant 
efficiency issue in GPU programming (similar to the row-major 
memory access requirement on CPUs).

                              Good (coalesced) access pattern:



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 37/39

Sign of non-coalesced
memory access



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 38/39

Good memory access
pattern



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 39/39

Questions?

● You can always contact me directly 
(syam@sharcnet.ca) or send an email to help@sharcnet.ca .

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

