Code profiling on Graham

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)

Outline

 Introduction

« Simple profiling

 Profiling serial, MPI and OpenMP codes with MAP
« CUDA profiling

e Questions?

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 2/39

Introduction

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 3/39

What is profiling?

« Profiling Is the task of timing a code.

« It used used primarily as a part of the iterative process of
Improving the efficiency (reducing the wallclock runtime) of the

code.

« It is often done using simple means (like inserting time
measurement lines in your code), but for serious profiling work
one has to use dedicated profiling tools.

“Code profiling on Graham”
Diecemiber 12, 2015 Sergey Mashchenko, SHARCNET 4/39

Simple profiling

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 5/39

Timing the whole code

e On SHARCNET clusters, one can use the Linux shell command
“time” to time the whole code.

$ time ./your _code , or
$ time mpirun -np 32 ./your_mpi_code

« This has to be done on an empty node, to improve the accuracy of
timing.

« A node can be reserved with salloc command (gives interactive
access to compute resources for up to 3 hours), e.qg.

$ salloc --time=0-03:00 -c 32 -A def-account --mem=120000M
(for serial and multi-threaded codes), and

$ salloc --time=0-03:00 -n 32 -A def-account --mem-per-cpu=4000M
(for MPI codes).

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 6/39

Timing the whole code (cont.)

« On Graham, cpu cores take non-negligible time to spin up from
the idle state (1200 MHz) to the maximum speed under full load
(2600 MHz).

« As aresult, one has to time the code multiple times in a loop,
choosing the best timing, e.g.:

$ for ((i=0; i<10; i++)); do { time -p ./code ; } |& grep real ; done |sort -k 2 -gr

 This Is obviously not ideal. A much better way Is to place timers
Inside your code, to time specific parts of the code.

e This again should be ideally done in an internal (code) loop, to
eliminate the cpu spin-up effect.

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET gt

e gettimeofday: high precision (10us) cpu-based timer (just
google for the function timeval_subtract).

December 19, 2018

Timers inside your code

#include <sys/time.h>

é%%uct timeval tdro, tdrl, tdr;
double delta t;
gettimeofday (&tdre, NULL);

< The code to time >

gettimeofday (&tdrl, NULL);
tdr = tdro;

timeval subtract (&delta t, &tdrl, &tdr);

printf ("Time: %e\n", delta_t);

“Code profiling on Graham”
Sergey Mashchenko, SHARCNET

8/39

Timers inside your code (cont.)

« OpenMP code: omp_get_wtime() can be used to time (in seconds) both entire
parallel regions, or individual threads inside a parallel region.

#include <omp.h>
double t1 = omp_get wtime();
< The code to time >

double t2 = omp_get wtime();
printf ("Time: %e\n", t2-t1);

« This can also be used to time non-OpenMP codes (as it is more convenient
than gettimeofday), just don't forget to add the “#include <omp.h>" line, and
complle the code with “-qopenmp” (icc) or “-fopenmp” (gcc) switches.

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET S

Timers inside your code (cont.)

« MPI code: MPI_Wtime() can be used the same way as
omp_get_wtime() on the previous slide:

#include <mpi.h>
double t1 = MPI_Wtime();
< The code to time >

double t2 = MPI_Wtime();
printf ("Time: %e\n", t2-t1);

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET e

Timers inside your code (cont.)

« CUDA code: to time a specific CUDA kernel, the best approach
IS to use CUDA events:

cudakEvent_t start, stop;

float time;

cudakEventCreate (&start);
cudakEventCreate (&stop);
cudaEventRecord (start, 0);
kernel to time <<<grid, threads>>> ();
cudaEventRecord (stop, 0);
cudaEventSynchronize (stop);
cudaEventElapsedTime (&time, start, stop);
cudaEventDestroy (start);
cudaEventDestroy (stop);

“Code profiling on Graham”
IDigceimlorer L5, ADLE Sergey Mashchenko, SHARCNET LS

Timers inside your code (cont.)

e For timing CUDA code consisting of multiple kernels, and/or
concurrent GPU and CPU computations, and/or concurrent
GPU operations (using streams), one has to use cpu-based

timers (like gettimeofday or omp_get_wtime).

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET =

Profiling serial, MPl and OpenMP codes with MAP

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 13/39

Overview

« Parallel profiler MAP (along with the parallel debugger DDT) are now a
part of the software package Forge.

« The original company behind MAP was Allinea. In 2016 it was acquired
by the CPU maker ARM.

« SHARCNET has been using (and paying for) Allinea/ARM products
since 2006.

« Though the debugger DDT was a success from the beginning, the
Allinea's first attempt at parallel profiling (OPT) was a failure.

« The replacement MAP (came about in 2013; originally only for
serial/MPI codes) used a much better approach to parallel profiling, and
IS now widely used in HPC community.

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 14/39

Overview (cont.)

e On Graham, profiler MAP is provided via module “ddt-cpu” (or
aliases “allinea-cpu” and “arm-forge-cpu”).

« The Graham's license is for up to 512 concurrent cpu cores
across all users (for both MAP and DDT).

 Niagara cluster (operated by SciNet) has a smaller license (up
to %{28 cpu cores). Neither MAP nor DDT are available on
Cedar.

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 15/39

How to use MAP

« MAP (and DDT) are GUI applications, so one has to enable X11
forwarding in the SSH connection to be able to use them.

One has to add “-Y” switch to the usual ssh command:
$ ssh -Y user@graham.computecanada.ca

Windows users: use free software MobaXterm, which comes with both SSH
client and X window server (required for X11 forwarding).

Mac users: install free app XQuartz (has X windows server).
Linux users: everything you need is already installed on your box.

« As an alternative, one could use VNC connection to graham (google for
“WYNC compute canada” for details).

It has a better performance, but takes longer to set up.

December 19, 2018 “Code profiling on Graham” 16/39

Sergey Mashchenko, SHARCNET

How to use MAP (cont.)

« When using the X11 forwarding method, you need to add
“--x11” switch to your salloc command, e.qg.

$ salloc --x11 --time=0-03:00 -c 32 -A def-account --mem=120000M
 After allocating the node(s) with salloc, load the module:
$ module load ddt-cpu/7.1

« The code to be profiled has to be compiled with “-g” switch which
adds symbolic information to the binary. You should use all your
usual optimization flags (e.g. -02).

e Run the code under MAP like this:
$ map ./your code <optional code arguments>

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 17/39

Some detalls

« Use the 7.1 version for now, as the newer one has some issues.

« Request one more cpu core than your code needs with salloc, as
MAP uses one cpu core at 100% Inside salloc session (it is likely a
bug; we'll try to fix it).

« If you need more resources than available with salloc (>3h runtime, or
hundreds of cpu cores), submit the MAP session as a job, e.g.

module load ddt-cpu/7.1
map --profile -n 16 ./code

« The profiling results (*.map files) can be analyzed offline with MAP:
$ map results.map

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 18/39

Application: /project/6000898/Profiling/a.out Details

Application: | /project/6000898/Profiling/a.out -] 8|
Arguments: | M
r stdin file: | -] &l
Working Directory: | - ﬂ
Duration: Sampling entire program Details
r CUDA Kernel analysis Details
¥ MPI: 15 processes, Open MPI Details

Number of Processes: |15 Eli
™ Processes per Node |1 Eli

Implementation: Open MPI Change...

mpirun arguments | --oversubscribe| j
™ Profile selected ranks: |D-‘_4 100% Select All
r OpenMP Details
r Submit to Queue Configure... | Parameters...

Environment Variables: none Details

Help ‘ Ogtions| Run Cancel

(19 13 »
December 19, 2018 Code profiling on Graham 19/39

Sergey Mashchenko, SHARCNET

File Edit View Metrics Window Help
Profiled: a.out on 15 processes, 1 node, 30 cores (2 per process) Sampled from: Wed Dec 12 2018 11:15:11 (UTC-05) for 52.8s Hide Metrics...

e ﬁ

CPU floating-point o

18.1 %

Memory usage

89.5 MB
[
11:15:11-11:16:04 (52.839s): Main thread compute 99.0 %, MPI 1.0 % Zoom #1 =
t tsp_mpi2.cB I Time spent on line 225 & x
205 // We always start from the same (0-th) city: ~| | Breakdown of the 5.4%
EE‘? perm[0] = 0; spent on this line:
207 . . .
208 // Cycle for Monte Carlo steps: Executing instructions 10
0.5% . D0%E for (k=0; k<N MC_ local; k++) Calling other functions
210 { Time in instructions ex
211 // Generating a random permutation: K .
210 Scalar floating-point
213 // Initially we have an ordered list: Vectorfloat\ng point
214 for (l1=1; 1<N_CITIES; 1++) Scalar integer
1.4% 215 perm[l] = 1; Vector integer
216 Memory access 10
217 // Then we reshuffle it randomly, starting with 1=1: Branch
218 d = 0.0; : -
3 7% 219 o for (1=1; 1<N_CITIES-1; 1++) AP 2 A
220 {
221 // This generates a random integer in the range [l ... N_CITIES-1]:
49.2% i k 222 11 = 1 + rand r(&seed) % (N_CITIES-1);
223
224 // Swapping the 1 and 11 cities:
4% 225 ltemp = perm[1];]
% 226 perm[l] = perm[1l1];
7% 227 perm[1ll] = ltemp;
228
229 // At this point, cities in perm[1l-1] and perm[l] have already been reshuffled, sc we
230 // can compute their contribution to the total distance: =

Input/Qutput | Project Files Main Thread Stacks I Functions}

Main Thread Stacks 7 %
Total core time ‘MPI |Function(s) on line Source |Position =
= & a.out [program]
=/ main { tsp mpi2.c:146
49.2% musnsnenmsei [N -[ENENE 1 $ (N CITIES-1); i
28. 8% wsmisdassim it d = d + dist[perm[1-1]] [perm[1]]; tsp_mpi2.c:231
5.4% . i ltemp = perm[1]; tsp_mpi2.c:225
4.7%__ _] perm[1l] = ltemp; tsp_mpi2.c:227
3.7% for (1=1; 1<N_CITIES-1; 1++) tsp_mpi2.c:219
1.6%. o L if (d < d_min_loc) tsp_mpi2.c:240 =
Showing data from 15,000 samples taken over 15 processes (1000 per process) Allinea Forge 7.1|# Main Thread View

“Code profiling on Graham”
DiseEmmlaer 1) AU Sergey Mashchenko, SHARCNET

Default
interface

20/39

File Edit View Metrics Window Hel

p

Profiled: a.out on 15 processes, 1 node, 30 cores (2 per process) Sampled from: Wed Dec 12 2018 11:15:11 (UTC-05) for 52.8s

Hide Metrics...

CPU floating-point e
7.2%

e ﬁ

B s

Memory usage
91.2 MB

L]
11:16:03-11:16:04 (0.952s, 1.8% of total): Main thread compute 43.3 %, MPI 56.7 %

Zoom “I = ©

t tsp_mpi2.c@ I
205 // We always start from the same (0-th) city:
206 perm[0] = 0;
207
208 // Cycle for Monte Carlo steps:
209 = for (k=0; k<N_MC_local; k++)
210 {
211 // Generating a random permutation:
212
213 // Initially we have an ordered list:
214 or (1=1; 1<N_CITIES; 1++)
0.4% o 215 perm[l] = 1;
216
217 // Then we reshuffle it randemly, starting with 1=1:
218 d = 0.0;
0.4% _ 219 B for (1=1; 1<N_CITIES-1; 1++)
220 {
221 // This generates a random integer 1in the range [1 . N_CITIES-1]:
19 6% e = _ 222 11 = 1 + rand_r(&seed) % (N_CITIES-1);
223
224 // swapping the 1 and 11 cities:
3. 7% _ o 225 ltemp = perm[1];
226 perm[l] = perm[l1l];
3.7%__ 227 perm[11] = ltemp;
228
229 // At this point, cities in perm[l-1] and perm[l] have already been reshuffled, sc we
230 // can compute their contributien te the total distance:

-

Time spent on line 225 #x

Breakdown of the 3.7%
spent on this line:

Executing instructions 10
Calling other functions

Time in instructions exi

Scalar floating-point
Vector floating point
Scalar integer

Vector integer

Memory access 10
Branch

Other instructions

Input/Output | Project Files ~Main Thread Stacks | Functions |

Main Thread Stacks

F X

Total core time ‘MPI

‘ Position

56.7% R 56.7%
19.6% Mo w — _ _ _ [N

11.1% e

37%_
3.7% __ _ -
22% _ __

|Function(s} on line Source
a.out [program]
=4 main {
MPI_Allreduce MPI_Allreduce (&result_loc, &result_glob, 1, MPI_FLOAT_INT, MPI_MINLOC,

tsp_mpi2.c:146
tsp_mpi2.c:267

Grand r 11 = 1 + rand_r(&seed) % (N_CITIES-1);
d =d + dist[perm[1-1]][perm([1]];
perm[1ll] = ltemp;

ltemp = perm[1l];
1if (d < d_min_loc)

Showing data from 270 samples taken over 15 processes (18 per process)

December 19, 2018

“Code profiling on Graham”
Sergey Mashchenko, SHARCNET

tsp_mpi2.c:231
tsp_mpi2.c:227
tsp_mpi2.c:225
tsp_mpi2.c:240 ~|

Allinea Forge 7.1|# Main Thread View

Zooming
in

21/39

File Edit View Metrics Window Help
Profiled: a.out on 15 processes, 1 node, 30 cores (2 per process) Sampled from: Wed Dec 12 2018 11:15:11 (UTC-05) for 52.8s Hide Metrics...

e ﬁ

MPI call duration ————]

100 ms

MPI sent —

5.11 B/s =

MPI received P

MPI

—== " preset

MPI calls

0.64 calls/s

MPI point-to-point

0 calls/s

o
. 2.45
MPI collectives

0.64 calls/s —
o ——
MPI point-to-point bytes ’
0B/s
F——

o

MPI collectives hytes

10.2 Bfs
o ——
11:16:02-11:16:04 (1.480s, 2.8% of total): Main thread compute 63.6 %, MP| 36.4 % Zoom *} = @
t tsp_mpi2.c@ I Time spent on line 225 #x
205 // We always start from the same (0-th) city: +| | Breakdown of the 4.0 =
206 perm[0] = 0; spent on this line:
207 1 o . o
208 // Cycle for Monte Carlec steps: (E:XT‘(.:UtmgAnS:'_NCtépns
0.2% B 209 = for (k=0; k<N_MC_local; k++) Jj i) e s
4 3 Time in instructions e
Input/Output | Project Files Main Thread Stacks | Functions |
Main Thread Stacks & x
Total core time |MPI |Function(s) on line Source |Position =
= & a.out [program]
=4 main { tsp_mpi2.c:146
36.4% N 35.4% MPI Allreduce MPI_Allreduce (&result_loc, &result_glob, 1, MPI_FLOAT_INT, MPI_MINLOC, MPI_C.. tsp mpi2.c:267
32.1% pliitee . . [- [EENG 11 = 1 + rand r(&seed) 3 (N _CITIES-1); i
17.4% motme memm _ _ d = d + dist[perm[1-1]] [perm[1]]; tsp_mpi2.c:231
4.0%. . __ ltemp = perm[l]; tsp_mpi2.c:225 El
Showing data from 420 samples taken over 15 processes (28 per process) Allinea Forge 7.1/# Main Thread View

“Code profiling on Graham”
DiseEmmlaer 1) AU Sergey Mashchenko, SHARCNET

22/39

Serial code profiling

« Example: a typical efficiency issue is when a loop in the code
reads elements of the vector/array not in the order the data is
stored in the memory. This makes CPU-memory caching
Inefficient.

« For C/C++ codes, data Is stored in a row-major order, so it is the
last index in multidimensional arrays which should correspond to
the inner-most loop:

o _ _ Row-major order
for (int iI=0; I<N; i++) - 4

a Ao |
= AL N g GGy 3
for (int j=0; J<N; J++)
AJi][j] = 0.0; Aor—doo—tp
| Ggf—dgo—ty3
December 19, 2018 “Code profiling on Graham” 23/39

Sergey Mashchenko, SHARCNET

File Edit View Metrics Window Help
Profiled: a.out on 1 process, 1 node Sampled from: Wed Dec 12 2018 11:58:47 (UTC-05) for 32.2s Hide Metrics...

e _

CPU floating-point .
0%
0
100
CPU integer - -

U int e e e e oo e ... Serial code
CPU memory access wg _;7 . 7 1777 e . 51 77 - ;,;;; B *7 o ,:5; i: i L~ 7_;7*_ -7 _;:ﬁ;; ::7;::;71;7;__7 (pé?:.)nLIjng
PUfpvector ' — —— ’ ’ instructions

o D preset).

CPU integer vector
0 %

CPU branch e Bad memory
% e =~~~ .~ . = .~ __ ... -_ accesscase.

0 - — e — — o s s— — s e — s — iy —
11:58:47-11:59:20 (32.221s): Main thread compute 100.0 % Zoom “1 =
¢ bad_cache_use.c@ I Time spent on line 21 &%
13 - | Breakdown of the 67.~

Executing instructions !
;i) J Calling other functions :

_4 ‘fit‘biieiul“ T 0.0; The problem spent on this line:

SRR [(T T Time in instructions e

6 for (int j=0; j<N; j++)
20 { Scalar floating-point
&7. 3= I - A[31[i] = (double)rand r (&seed); Vector floating point
%%) y Scalar integer
o1 ~| | Vector integer
- Marmnan: arrace |
Input/Output | Project Files Main Thread Stacks | Functions
Main Thread Stacks & X
Total core time ‘Function{s) on line Source |Position |
=/ main { bad_cache_use.c:12
67.3% I - A[j1[i] = (double)rand_r (&seed); bad cache use.c:21
32.6% |IHIENEEEEN for (int 3=0; J<N; j++) bad_cache_use.c:19
0.1% | =1 other
Showing data from 1,000 samples taken over 1 process (1000 per process) Allinea Forge 7.1|#¢ Main Thread View

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 24739

File Edit View Metrics Window Help
Profiled: a.out on 1 process, 1 node Sampled from: Wed Dec 12 2018 12:02:45 (UTC-05) for 7.9s

Hide Metrics...

e _

100

CPU floating-point
0%

0
100

CPU integer
33.0%

Serial code

CPU memory access :
135 %

profiling
(CPU

CPU fp vector
0%

instructions

CPU integer vector
0%

preset).

CPU branch
0%

Good memory
access case.

12:02:45-12:02:53 (7.933s): Main thread compute 100.0 % Zoom * =
t good_cache_use.c@ \ Time spent on line 21 #x
2| | Breakdown of the 10¢—
= fQ'—’ (1nt 1=0; 1<N; 1++) time spent on this lin(
= for (int j=0; J<N; J++) Executing instructions
Calling other functions !
N0 A = Rt A IOl Time in instructions e
} Scalar floating-point
FE f (ime am0; sews iem Vector floating point
e o AT e Scalar integer
27 & for (int 4=0: <N: d++) x| | Vector integer r
MamaAarn: arrace
Input/Output | Project Files Main Thread Stacks | Functions
Main Thread Stacks & X
Total core time ‘Function{s} on line Source ‘Position ‘

=/ main

= I
53.4% I} 111 T
a0 [T AT

Ali][3] (double) rand_r (&seed);
rand_r (no debug info)

<unknown> <unknown> (nec debug info)

Showing data from 399 samples taken over 1 process (399 per process)

“Code profiling on Graham”

December 19, 2018 Sergey Mashchenko, SHARCNET

good_cache_use.c:12
good_cache use.c:21

Allinea Forge 7.1|# Main Thread View

25/39

Profiling MPI codes

« Dynamic workload balancing (DWB) is frequently used by MPI
programs.

« We use it when the length of time spent on computing different
parts of a large workload by different MPI ranks is hard or
Impossible to predict ahead of time.

« Well written DWB code should have a way to adjust the size of
the workload quantum. (In other words — number of chunks.)

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 26/39

Dynamic workload balancing example

« Example code:

dynamic_workload_balancing.c: using “nanosleep” function to

emulate different processing time for different elements of a large
iInput array

On 15 graham cpu cores, | got the following wall clock times:

N_chunks / N_CPUs Wall clock time (s)

1 28.8 } Severe workload
imbalance

10 16.7

100 16.2
Optimal performance

1000 16.1

200,000 20.6 } Latency becomes
important

December 19, 2018 “Code profiling on Graham”

Sergey Mashchenko, SHARCNET

27/39

File Edit View Metrics Window Help

Profiled: a.out on 15 processes, 1 node, 15 cores (1 per process) Sampled from: Wed Dec 12 2018 12:30:22 (UTC-05) for 19.0s Hide Metrics...
Main thread activity
100
CPU floating-point
0%
, _
121
Memory usage
90.7 MB
L]
12:30:22-12:30:41 (19.026s): Main thread compute 0.1 %, MPI 44.4 %, Sleeping % Zoom * =
t dynamic_workload_balancing.c @ I Time spent on line 36 & x
// Then it receives the current chunk of workload (array B): =
1.85% . MPI Recv(B, K, MPI DOUBLE, root, tagl, MPI COMM WCRLD, &status);
// Last chunk can have smaller size, so we need toc get the actual size here:
0 1% MPI_Get_count (&status, MPI_DOUBLE, &kl);
// The computing part:
for (k=0; k<kl; k++)
55.6% B1[k] = computeZ(B[k]);
count++;
Nel += ki1;
}
printf ("Rank %d processed %d chunks (%d elements)\n", rank, count, Nel);
}
R e et O e s o o L R A e s
0. 1% | MPI_Finalize();
}
Ll -
Input/Output | Project Files Main Thread Stacks | Functions |
Main Thread Stacks & x
Total core time ‘MPI |Function(s) on line Source Position =
...ic_workload balancing.c:36
55.6% = compute2 Bl[k] = compute2(B[k]); ...ic_workload_balancing.c:124
33.0% e 33.0% MPI_Recv MPI_Recv (&3, 1, MPI_INT, root, tag3, MPI_COMM_WORLD, &status); ...ic_workload_balancing.c:113
1.8% 1.8% MPI_Send MPI_Send(&], 1, MPI_INT, root, tag0, MPI_COMM_WORLD) ; ...ic_workload_balancing.c:108
1.8%__ _.1.8% MPI_Recv MPI_Recv(&31, 1, MPTI_TINT, MPI _ANY SOURCE, tagl, MPT_COMM WORLD, &status); ...ic_workload_balancing.c:62
. L7% MPI_Send MPI_Send(&A[]], k1, MPI_DOUBLE, source, tagl, MPI_COMM _WORLD); ...ic_workload_balancing.c:84
 1.6% MPI_Send MPI_Send (&3, 1, MPI_INT, source, tag3, MPI_COMM WORLD); ..ic_workload_balancing.c:74 ~|

Showing 7da;7from 71757,7000 samples taken over 15 processes (1000 per process)

December 19, 2018

A\Iire.a Forge 7.1|¢ Main Thread View
“Code profiling on Graham”
Sergey Mashchenko, SHARCNET

MPI
profiling,
dynamic
workload
balancing
example.

Chunks are
too small =
latency

dominated.

28/39

File Edit View Metrics Window Help
Profiled: a.out on 15 processes, 1 node, 15 cores (1 per process) Sampled from: Wed Dec 12 2018 12:23:30 (UTC-05) for 16.8s Hide Metrics...

Main thread activity -

CPU floating-point e

) 0% r , 1 MPI .
oy esgs profiling,
dynamic

workload

o
12:23:30-12:23:47 (16.767s): Main thread compute 0.2 %, MPI 38.9 %, Sleeping % Zoom *! =

* dynamic_workload_balancing.c @ I Time spent on line 36 & x -
// Then it receives the current chunk of workload (array B): = balanCIng
0. 1% MPI_Recv (B, K, MPI_DQUELE, root, tagl, MPI_COMM WORLD, &status);
// Last chunk can have smaller size, sc we need to get the actual size here: example'
MPI_Get_count (&status, MPI_DOUBLE, &kl1);
// The computing part: Chunks are
0.1% for (k=0; k<kl; k++) -
BL[k] = compute2 (B[k]); too large =
count++; Severe
, e e workload
printf ("Rank %d processed %d chunks (%d elements)\n", rank, count, Nel); Imbalance'
}
I o T s e T T e S o L e a st SN S RN
2212 et MPI Finalize();
}

Input/Output | Project Files Main Thread Stacks | Functions |
Main Thread Stacks
Total core time |MPI |Function(s) on line Source

5 x

Position

...ic_workload_balancing.c:36

61.1% ®compute2 Bl[k] = compute2(B[k]); ...ic_workload_balancing.c:124
32.1% el 32.1% MPI_Finalize MPI_Finalize(); ...ic_workload_balancing.c:135
6.7% 6.7% MPI_Recv MPI_Recv(&jl, 1, MPI_INT, MPI_ANY SOURCE, tag0l, MPI_COMM_WORLD, &status); ...ic_workload_balancing.c:62
0.1%, . .. #6 others
Showing data from 12,600 samples taken over 15 processes (840 per process) Allinea Forge 7.1/# Main Thread View

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 29/39

File Edit View Metrics Window Help

Profiled: a.out on 15 processes, 1 node, 15 cores (1 per process) Sampled from: Wed Dec 12 2018 12:27:11 (UTC-05) for 11.1s Hide Metrics...
Main thread activity
i n PRI kel LB " " i " Al ke " i PO L i A " AR il i P i ek i i PEET "
CPU floating-point o
0% -
, i
124
Memory usage —
91.1 M8
L]
12:27:11-12:27:23 (11.127s): Main thread compute 0.2 %, MPI 7.4 %, Sleeping % Zoom *I =
t dynamic_workload_balancing.cB I Time spent on line 124 & x
// Then it receives the current chunk of workload (array B): 2| | Breakdown of the 0.2%
0.1% MPI_Recv (B, K, MPI_DOUBLE, root, tagl, MPI_COMM WORLD, &status); spent on this line:
// Last chunk can have smaller size, so we need to get the actual size here: Executing instructions 1
MPI_Get_count (&status, MPI_DOUBLE, &kl1); Calling other functions &
Time in instructions ex:
// The computing part: Scalar floatin :
g-point
for (k=0; k<kl; k++) Vector floating point
92 6% [Bl[k] = compute2(B[k]); Scalar integer
Vector integer
count++; Memory access* 10
Nel += k1; Branch
s Other instructions
* 40.0% memory access
printf ("Rank %d processed %d chunks (%d elements)\n", rank, count, Nel); instructions, 60.0% implici

1

B e A et Mt st 2

MPI_Finalize();

memory accesses in other
instructions, also counted
categories

Input/Output } Project Files Main Thread Stacks I Functionsl

Main Thread Stacks & X
Total core time ‘MPI |Function(s) on line Source Position
=& a.out [program]
=/ main { ...ic_workload_balancing.c:36
92.6% = compute2(B[k]); ...ic_workload balancing.c:124
6.6% 6.6% MPI_Recv MPI_Recv(&3jl, 1, MPI_INT, MPI_ANY SOURCE, tag0, MPI_COMM_WORLD, &status); ...ic_workload_balancing.c:62
0.8% e 6 others

Showing data from 14,235 samples taken over 15 processes (949 per process)

December 19. 2018 “Code profiling on Graham”

Sergey Mashchenko, SHARCNET

Allinea Forge 7.1|# Main Thread View

MPI
profiling,
dynamic
workload
balancing
example.

Chunks
have just
the right
size.

30/39

OpenMP profiling

« In OpenMP, critical regions have a significant overhead and
should be used sparingly.

« In particular, if used inside a loop for reduction, there should be
a pre-selection statement, outside of the critical region:

If (x >x_max) // Pre-selects only plausible candidates
#pragma omp critical
If (x >x_max) // Very infrequently threads would enter the critical
X_max = Xx; // region, for the definitive “if’ clause application

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET Sligt

File Edit View Metrics Window Help
Profiled: a.out on 1 process, 1 node, 15 cores (15 per process) Sampled from: Wed Dec 12 2018 14:34:18 (UTC-05) for 37.7s

Application activity

CPU floating-point .

0%

Memory usage e

30.4 MB

o
14:34:18-14:34:55 (37.729s): Main thread compute 0.0 %, OpenMP 0.9 %, OpenMP overhead 99.0 % Zoom *! =5 ©

Hide Metrics...

* openmp_critical.c @ \ Time spent on line 28 & x
13 = int main (int argc,char **argv) +| | Breakdown of the 7.2%
1{1 { spent on this line:
12 int r_max = 0; Executing instructions 1
17 = #pragma omp parallel Calling other functions 9
lg 1 Time in instructions ex
19 unsigned int seed = omp_get_thread_num() + 111; . .
20 Scalar floating-point
21 #pragma omp for schedule(guidsd) Vector float\ng point
22 © for (leng long int k=0; k<N; k++) Scalar integer
<0.1% 23 { Vector integer
<0.1% 24 int r = rand_r (&seed); Memory access* 1a
258 // if (r > r_max) Branch
28 1 X . Other instructions
27 #pragma cmp critical
EEREY 0 T EE if (r > r max) * 96.3% memory access
29 r_max = r; instructions, 3.7% implicit
30 } accesses in other instructit
?% , _| | counted in their categories
33
34 }
35 =
Input/Output | Project Files OpenMP Stacks \ OpenMP Regions } Functions}
OpenMP Stacks & X
Total core time Overhead ‘Function(s) on line |Source

=& a.out [program]
- # [OpenMP worker threads]
= ! [partial traces]
2 main [OpenMP regi
w__kmpc_critical_with_hint
=4 others
=% main [OpenMP region 0]
=main [OpenMP region 0]
Showing data from 1,000 samples taken over 1 process (1000 per process)

December 19, 2018

| Position }i'

x) openmp critical.c:28

<unknown> [multiple frames]

90.1% I
0.8%. __ _

(ne debug infe)

IR -2.3_2_ kmpc_loc_pack.43
if (r > r_max)

(no debug info)

openmp_critical.c:28 |
Allinea Forge 7.1|% OpenMP View

“Code profiling on Graham”
Sergey Mashchenko, SHARCNET

OpenMP
profiling,
dynamic
critical
region's
impact.

No pre-

selection =

huge
erformance
It.

32/39

File Edit View Metrics Window Help

Profiled: a.out on 1 process, 1 node, 15 cores (15 per process) Sampled from: Wed Dec 12 2018 14:37:43 (UTC-05) for 4.6s

Application activity

CPU floating-point .

0%

Memory usage

21.9 MB

o
14:37:43-14:37:47 (4.585s): Main thread compute 0.1 %, OpenMP 99.3 %, Uncatego

rized 0.6 % Zoom *! = ©

Hide Metrics...

* openmp_critical.c @ \ Time spent on line 24 & x
16 int r_max = 0; +| | Breakdown of the 87.9¢
17 & ¢pragma omp parallel spent on this line:
18 { L .
19 unsigned int seed = omp_get_thread num() + 111; ExeFuungln5hUCUPn5
20 Calling other functions 10
21 #pragma omp for schedule(guided)
22 H for (leong long int k=0; k<N; k++)
S 8%, .23 {
87 9% IESENsRain, 21] int r = rand_r (&seed);
25 = 1f (r > r_max)
26 {
27 #pragma cmp critical
5. 55 . ~ T - if (r > r_max)

29 r_max = r;
30 }
31
32 }
33
34 }
35
36 printf("r_max=%d\n", r_max); ||
37
38 return 0; ~

Input/Output | Project Files OpenMP Stacks \ OpenMP Regions } Functions}

OpenMP Stacks & X

Total core time Overhead ‘Function(s) on line |Source |Position =

=& a.out [program]
=4 main { openmp_critical.c:14
=% main [OpenMP region 0] #pragma omp parallel openmp_critical.c:17

int r = rand_r

81.9% M
6.0% | <unknown>
5.8% ..
5.5%

Showing data from 154 samples taken over 1 process (154 per process)

December 19, 2018

openmp critical.c:24

rand_r (no debug info)
<unknown>» (no debug info)

{ openmp_critical.c:23
if (r > r_max) openmp_critical.c:28 |
Allinea Forge 7.1 % OpenMP View

“Code profiling on Graham”
Sergey Mashchenko, SHARCNET

OpenMP
profiling,
dynamic
critical
region's
impact.

Pre-
selection =
good
performance.

33/39

CUDA profiling

« Recently MAP became capable of CUDA (GPGPU) code
profiling.

« Unfortunately, SHARCNET's license doesn't cover this feature.

« But we do have Nvidia provided visual profilers for CUDA
programs — nvvp and nsight.

« Unfortunately, they don't provide line-by-line kernel analysis (the
way MAP does). But they provide plenty of detailed info on
kernel performance.

e nvvp and nsight are bundled with cuda modules.

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET St

CUDA profiling (cont.)

« NoO code re-compilation is needed for nvvp profiling.

« Using nvvp interactively (on graham and cedar):

$ salloc --x11 --time=0-03:00 --ntasks=1 --gres=gpu:1
-A def-account --mem-per-cpu=4G

$ module load cuda/10

$ nvcc -O2 your code.c -0 your code

$ nvvp ./your_code

« The app will provide a step-by-step profiling setup. You choose
which kernels to profile, and what specific details you need.

« The app will often provide useful descriptive suggestions regarding
which parts of your code have efficiency issues.

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET Sist

CUDA profiling (cont.)

« Non-coalesced access of the device memory is a significant
efficiency issue in GPU programming (similar to the row-major
memory access requirement on CPUs).

Good (coalesced) access pattern:

Address _ 128 256

ThreadID o 31

“Code profiling on Graham”
Digesil s L2, 2018 Sergey Mashchenko, SHARCNET St

File View Window Bun Help

ey & - [RQ&AEF

FIEZLZIA-

§ *NewSession1 & = g
Fs 0.05s 0ls 0.15s 02s 0.25s 03s 0.35s 0.4s 0.45s 0.5s 0.55s 0.6s 0.7s 0.75
. \ A n n n ! h ’ n \ h f :
=] Process "bad" (20994)
|=| Thread 389721344
- Runtime API cudalaunc
- Driver API
- Profiling Overhead
=1 [0] Tesla P100-PCIE-12GB
[= Context 1 (CUDA)
= Compute coalescelvoid)
L 5F 100.0% coalesc... coalescelvoid)
[=] Streams
- Default coalesce(void)
Si f non-coalesced
[Analysis 52 T4 GPU Details (Summary) T4 CPU Details 5 OpenACC Details E Console T Settings =l Properties 2 = A
=B T [i} Export PDF Report Resuit — coalesce(void)
& Low Global Memory Store Efficiency [kernels accounting for 100% of compute have low efficiency (12.5% avg) |] - [l
. . . . X Block Size [256,1,1]
Global store efficiency indicates how well the application's global stores are using device memory bandwidth. The efficiency is the number :
of bytes stored divided by the number of bytes that were transferred to device memory to perform those stores. Because device Registers/Thread 9
memory transfers bytes in blocks, the alignment and access pattern of a given store determines how many blocks must be transferred Shared Memory/Block 0B
The results on the right show your application's and thus determines the efficiency of that store. Low efficiency indicates that ene or more global memory stores have a poor access
kernels ordered by potential for performance pattern or alignment, Select this result to highlight kernels with low global store efficiency. More. ., Launch Type
improvement, Starting with the kernels with the [
highest ranking, you should select an entry from i Kernel Optimization Priorities clency
ET:CREI;Z%?J::; E:g;?a;s;n:ésgglﬁl‘fég The following kernels are ordered by optimization importance based on execution time and achieved occupancy. Optimization of higher ranked Global Load Efficiency
! kernels (those that appear first in the list) is more likely to improve perfermance compared to lower ranked kernels. Global Store Efficiency 12 5%
iy, Perform Kernel Analysis | Rank | Description Shared Efficiency
Select a kernel from the table at right or from the timeline to 100 [1 kernel instances] coalesce(void) ‘Warp Execution Efficiency 100%
enable kernel analysis, This analysis requires detailed profiing
data, so your application will be run ence to collect that data for Mot-Predicated-Off Warp Execution Efficiency 97.4%
the kemel f it is not already available.
¥ Occupancy
[, Perform Additional Analysis Achieved 91.9%
e llect additional information te help identify kernel
oo o= s it bl ety e Theoretica| 100%
oy e Lk o b e = shared Memory Configuration -
= Shared Memory Executed 0B =l
=l & (0|

Eile View Window Bun Help

W=y & - [@2

© *NewSessionl &

0s

0.05s
i

28/ FrRIEEZ21A-

0.15s 0.25s 0.35s
| i i

0.45s 0.55s
i i

[=l Process "good" (24144)
|=| Thread 1340064840
L Runtime API
L Driver API
- Profiling Overhead
[=| [0] Tesla P100-PCIE-12GB
[=] Context 1 (CUDA)
[=| Compute
L 5F 100.0% coalesc...
[=] Streams
- Default

[Analysis 23 GPU Details (Summary)

i Export PDF Report

The results on the right show your application's
kernels ordered by potential for performance
improvement. Starting with the kernels with the
highest ranking, you should select an entry from
the table and then perform kernel analysis to
discover additional optimization opportunities.

[y, Perform Kernel Analysis

CPU Details

Select a kernel from the table at right or from the timeline to
enable kernel analysis. This analysis raquires detailed profiing
data, 5o your application will be run once to collect that data for
the kernel f it is not already available.

L}, Perform Additional Analysis

“ou can callect additional information to help identify kernels

with potertial performance problems, After running this analysis,

select any of the new results at right te highlight the individual
kernels for which the analysis appiies.

OpenACC Details E Console Settings W, = 0O

Result

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved occupancy. Optimization of higher ranked
kernels (those that appear first in the list) is more likely to improve performance compared to lower ranked kernels.

Rank | Description

100 [1 kernel instances] coalescelvoid)

Good memory access
pattern

= Properties 2 = A

coalesce(void)

-

-

Duration 5.10178 ms (5,101,7i[+]
Stream Default

Grid Size [1562500,1.1]

Block Size [256.1,1]
Registers/Thread 10

Shared Memory/Block 0B

Launch Type Normal

Efficiency

Global Load Efficiency
Global Store Effi
Shared Efficiency
Warp Exscution Efficiency

Not-Predicated-Off Warp Execution Efficiency 97.4% —
Occupancy

Achieved

[253%

[«

Questions?

« You can always contact me directly
(syam@sharcnet.ca) or send an email to help@sharcnet.ca .

“Code profiling on Graham”
December 19, 2018 Sergey Mashchenko, SHARCNET 39/39

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

