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Introduction
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What is profiling?

● Profiling is the task of timing a code.
● It used used primarily as a part of the iterative process of 

improving the efficiency (reducing the wallclock runtime) of the 
code.

● It is often done using simple means (like inserting time 
measurement lines in your code), but for serious profiling work 
one has to use dedicated profiling tools.
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Simple profiling
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Timing the whole code

● On SHARCNET clusters, one can use the Linux shell command 
“time” to time the whole code.

$  time  ./your_code   , or
$  time  mpirun -np 32 ./your_mpi_code

● This has to be done on an empty node, to improve the accuracy of 
timing.

● A node can be reserved with salloc command (gives interactive 
access to compute resources for up to 3 hours), e.g.

$  salloc --time=0-03:00 -c 32 -A def-account --mem=120000M
(for serial and multi-threaded codes), and

$  salloc --time=0-03:00 -n 32 -A def-account --mem-per-cpu=4000M
(for MPI codes).
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Timing the whole code (cont.)

● On Graham, cpu cores take non-negligible time to spin up from 
the idle state (1200 MHz) to the maximum speed under full load 
(2600 MHz).

● As a result, one has to time the code multiple times in a loop, 
choosing the best timing, e.g.:
$ for ((i=0; i<10; i++)); do { time -p ./code ; } |& grep real ; done |sort -k 2 -gr

● This is obviously not ideal. A much better way is to place timers 
inside your code, to time specific parts of the code.

● This again should be ideally done in an internal (code) loop, to 
eliminate the cpu spin-up effect.
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Timers inside your code

● gettimeofday: high precision (10μs) cpu-based timer (just 
google for the function timeval_subtract).

  #include <sys/time.h>
  ... 
  struct timeval  tdr0, tdr1, tdr;
  double delta_t;
  gettimeofday (&tdr0, NULL);

    < The code to time >

  gettimeofday (&tdr1, NULL);
  tdr = tdr0;
  timeval_subtract (&delta_t, &tdr1, &tdr);
  printf ("Time: %e\n", delta_t);
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Timers inside your code (cont.)

● OpenMP code: omp_get_wtime() can be used to time (in seconds) both entire 
parallel regions, or individual threads inside a parallel region.

● This can also be used to time non-OpenMP codes (as it is more convenient 
than gettimeofday), just don't forget to add the “#include <omp.h>” line, and 
compile the code with “-qopenmp” (icc) or “-fopenmp” (gcc) switches.

  #include <omp.h>
  ...
  double t1 = omp_get_wtime();

     < The code to time >

  double t2 = omp_get_wtime();
  printf ("Time: %e\n", t2-t1);
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Timers inside your code (cont.)

● MPI code: MPI_Wtime() can be used the same way as 
omp_get_wtime() on the previous slide:

  #include <mpi.h>
  ...
  double t1 = MPI_Wtime();

     < The code to time >

  double t2 = MPI_Wtime();
  printf ("Time: %e\n", t2-t1);
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Timers inside your code (cont.)

● CUDA code: to time a specific CUDA kernel, the best approach 
is to use CUDA events:

  cudaEvent_t start, stop;
  float time;
  cudaEventCreate (&start);
  cudaEventCreate (&stop);
  cudaEventRecord (start, 0);
  kernel_to_time <<<grid, threads>>> ();
  cudaEventRecord (stop, 0);
  cudaEventSynchronize (stop);
  cudaEventElapsedTime (&time, start, stop);
  cudaEventDestroy (start);
  cudaEventDestroy (stop);
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Timers inside your code (cont.)

● For timing CUDA code consisting of multiple kernels, and/or 
concurrent GPU and CPU computations, and/or concurrent 
GPU operations (using streams), one has to use cpu-based 
timers (like gettimeofday or omp_get_wtime).
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Profiling serial, MPI and OpenMP codes with MAP
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Overview

● Parallel profiler MAP (along with the parallel debugger DDT) are now a 
part of the software package Forge.

● The original company behind MAP was Allinea. In 2016 it was acquired 
by the CPU maker ARM.

● SHARCNET has been using (and paying for) Allinea/ARM products 
since 2006.

● Though the debugger DDT was a success from the beginning, the 
Allinea's first attempt at parallel profiling (OPT) was a failure.

● The replacement MAP (came about in 2013; originally only for 
serial/MPI codes) used a much better approach to parallel profiling, and 
is now widely used in HPC community.
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Overview (cont.)

● On Graham, profiler MAP is provided via module “ddt-cpu” (or 
aliases “allinea-cpu” and “arm-forge-cpu”).

● The Graham's license is for up to 512 concurrent cpu cores 
across all users (for both MAP and DDT).

● Niagara cluster (operated by SciNet) has a smaller license (up 
to 128 cpu cores). Neither MAP nor DDT are available on 
Cedar.
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How to use MAP

● MAP (and DDT) are GUI applications, so one has to enable X11 
forwarding in the SSH connection to be able to use them.
– One has to add “-Y” switch to the usual ssh command:

           $  ssh  -Y  user@graham.computecanada.ca
– Windows users: use free software MobaXterm, which comes with both SSH 

client and X window server (required for X11 forwarding).
– Mac users: install free app XQuartz (has X windows server).
– Linux users: everything you need is already installed on your box.

● As an alternative, one could use VNC connection to graham (google for 
“VNC compute canada” for details). 
– It has a better performance, but takes longer to set up.
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How to use MAP (cont.)

● When using the X11 forwarding method, you need to add 
“--x11” switch to your salloc command, e.g.

$  salloc --x11 --time=0-03:00 -c 32 -A def-account --mem=120000M
● After allocating the node(s) with salloc, load the module:

$  module  load  ddt-cpu/7.1
● The code to be profiled has to be compiled with “-g” switch which 

adds symbolic information to the binary. You should use all your 
usual optimization flags (e.g. -O2).

● Run the code under MAP like this:
$  map  ./your_code <optional code arguments>
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Some details

● Use the 7.1 version for now, as the newer one has some issues.
● Request one more cpu core than your code needs with salloc, as 

MAP uses one cpu core at 100% inside salloc session (it is likely a 
bug; we'll try to fix it). 

● If you need more resources than available with salloc (>3h runtime, or 
hundreds of cpu cores), submit the MAP session as a job, e.g.

module load ddt-cpu/7.1
map  --profile  -n 16  ./code

● The profiling results (*.map files) can be analyzed offline with MAP:
$ map  results.map
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Default
interface
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Zooming
in
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MPI
preset



December 19, 2018 “Code profiling on Graham”
Sergey Mashchenko, SHARCNET 23/39

Serial code profiling

● Example: a typical efficiency issue is when a loop in the code 
reads elements of the vector/array not in the order the data is 
stored in the memory. This makes CPU-memory caching 
inefficient.

● For C/C++ codes, data is stored in a row-major order, so it is the 
last index in multidimensional arrays which should correspond to 
the inner-most loop:

for (int i=0; i<N; i++)
    for (int j=0; j<N; j++)
           A[i][j] = 0.0;
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Serial code
profiling
(CPU
instructions
preset).

Bad memory
access case.

The problem
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Serial code
profiling
(CPU
instructions
preset).

Good memory
access case.
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Profiling MPI codes

● Dynamic workload balancing (DWB) is frequently used by MPI 
programs.

● We use it when the length of time spent on computing different 
parts of a large workload by different MPI ranks is hard or 
impossible to predict ahead of time.

● Well written DWB code should have a way to adjust the size of 
the workload quantum. (In other words – number of chunks.)
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Dynamic workload balancing example

● Example code: 
– dynamic_workload_balancing.c: using “nanosleep” function to 

emulate different processing time for different elements of a large 
input array

– On 15 graham cpu cores, I got the following wall clock times:

N_chunks / N_CPUs Wall clock time (s)

1 28.8

10 16.7

100 16.2

1000 16.1

200,000 20.6

Severe workload
imbalance

Optimal performance

Latency becomes
important
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MPI
profiling,
dynamic 
workload
balancing 
example.

Chunks are
too small = 
latency
dominated.
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MPI
profiling,
dynamic 
workload
balancing 
example.

Chunks are
too large = 
severe 
workload
imbalance.
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MPI
profiling,
dynamic 
workload
balancing 
example.

Chunks 
have just
the right 
size.
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OpenMP profiling

● In OpenMP, critical regions have a significant overhead and 
should be used sparingly.

● In particular, if used inside a loop for reduction, there should be  
a pre-selection statement, outside of the critical region:

if (x > x_max)   //  Pre-selects only plausible candidates
   #pragma omp critical
      if (x > x_max)   // Very infrequently threads would enter the critical
          x_max = x;   //  region, for the definitive “if” clause application
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OpenMP
profiling,
dynamic 
critical
region's
impact.

No pre-
selection = 
huge 
performance 
hit.
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OpenMP
profiling,
dynamic 
critical
region's
impact.

Pre-
selection = 
good
performance.
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CUDA profiling

● Recently MAP became capable of CUDA (GPGPU) code 
profiling.

● Unfortunately, SHARCNET's license doesn't cover this feature.
● But we do have Nvidia provided visual profilers for CUDA 

programs – nvvp and nsight.
● Unfortunately, they don't provide line-by-line kernel analysis (the 

way MAP does). But they provide plenty of detailed info on 
kernel performance.

● nvvp and nsight are bundled with cuda modules.
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CUDA profiling (cont.)

● No code re-compilation is needed for nvvp profiling.
● Using nvvp interactively (on graham and cedar):

$  salloc --x11 --time=0-03:00 --ntasks=1 --gres=gpu:1 
-A def-account --mem-per-cpu=4G
$  module  load  cuda/10
$  nvcc  -O2  your_code.c  -o your_code
$  nvvp  ./your_code

● The app will provide a step-by-step profiling setup. You choose 
which kernels to profile, and what specific details you need.

● The app will often provide useful descriptive suggestions regarding 
which parts of your code have efficiency issues.
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CUDA profiling (cont.)

● Non-coalesced access of the device memory is a significant 
efficiency issue in GPU programming (similar to the row-major 
memory access requirement on CPUs).

                              Good (coalesced) access pattern:
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Sign of non-coalesced
memory access
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Good memory access
pattern
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Questions?

● You can always contact me directly 
(syam@sharcnet.ca) or send an email to help@sharcnet.ca .

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca
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