Advanced Message Passing in MPI

Using MPI Datatypes with Opaque C+ + Types

Paul Preney, OCT, M.Sc., B.Ed., B.Sc.

preney@sharcnet.ca

School of Computer Science
University of Windsor
Windsor, Ontario, Canada

Copyright © 2014 Paul Preney. All Rights Reserved.

September 17, 2014

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney


mailto:preney@sharcnet.ca

When one is using arrays of fundamental types such as doubles, using
MPI is reasonably straight-forward. When one needs to use MPI to
transmit complicated data structures, pointers, and other opaque types
whose internals may be not known by the programmer, using MPI
becomes significantly more difficult. The MPI standard has facilities to
dynamically define new message types in order to pass such between
nodes using MPI_patatype along with a number of functions to register
and deregister such types. This talk will introduce how to properly use
MPI_Datatype to transmit non-trivial, custom opaque data structures
between MPI nodes using C+ +. Since using such MPI calls is rather
low-level, the talk will also introduce how to exploit the features of
C+ + to more easily accomplish the same at a higher-level.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Presentation Overview

© A Review of MPI

9 Understanding and Using MPI_Datatype

e Handling Variable-Length and Opaque Types
e Handling STL Containers

© Closing Advice and Comments

@ Questions & Thank You

@ References

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Table of Contents

@ A Review of MPI
@ What is MPI?
@ History of MPI Features
@ MPI Derived Datatypes
@ MPI Send
@ MPI_Recv

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



What is MPI?

Message-Passing Interface:
@ is a de facto standard dating back to 1994. [3]
@ is used to write portable code for parallel computers within a
distributed memory context.

@ has language bindings for Fortran and C.

o NOTE: The C+ + language bindings were removed in MPI v3.0.
[6, §16.2, p.596]

@ enables compute nodes to efficiently pass messages to one
another.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



History of MPI Features

Briefly these are the features associated with each version of the MPI
standard:
o vl.x [4]
e Supports two-way communications: point-to-point, broadcast,
reduce, scatter, gather, etc.

o Supports “Derived Datatypes” which enable nodes to define at
run-time the the structure of messages sent and/or received.

e v2.x [5]

o Added one-sided communications (put, get, and accumulate) and
synchronization methods.

o Added the ability to spawn new processes at run-time.

o Added parallel I/0 support.

@ v3.0 [6]
e Added Fortran 2008 bindings.
o Added new one-sided communication operations.
o Extended support for non-blocking collectives.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI Derived Datatypes

The focus of this talk is on using MPI Derived Datatypes with
message-passing operations. [4, §3.12] [5, §4] [6, §4]

Without loss of generality the only operations we will be concerned
with are MPI_send() and MPI_Recv(). [4, §3]

@ Know that all communications operations in MPI also have an
MPI_Datatype argument.

Also without loss of generality, all of the MPI code in this talk will
assume the sender is node 0 and the receiver is node 1.

@ You are free and encouraged to use more nodes in your programs!

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI Send

MPI_send(buf, count, type, dest, tag, conm) is a blocking send operation
whose arguments are defined as follows: [6, §3]

Argument In/Out Description
buf IN starting address of send buffer
count IN number of elements in send buffer
type IN MPI_patatype of each send buffer element
dest IN node rank id to send the buffer to
tag IN message tag
comm IN communicator

When called, MPI_send transmits count elements in buf all of type type
to node dest with the label tag.

The buffer is assumed to have been sent after the call returns.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI_Recv

MPI_Recv(buf, count, type, src, tag, comm, status) is a blocking receive
operation whose arguments are defined as follows: [6, §3]

Argument In/Out Description

buf OouT starting address of receive buffer

count IN number of elements in receive buffer
type IN MPI_patatype of each buffer element
src IN node rank id to receive the buffer from
tag IN message tag

comm IN communicator

status ouT status object

When called, mPI_Rrecv receives up to count elements in buf all of type
type from node src with the label tag.

Up to count buffer elements can be stored.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Table of Contents

9 Understanding and Using MPI_Datatype
@ MPI Datatype
@ Registering New MPI_Datatypes
@ MPI_Type_commit and MPI_Type_free
@ MPI Type_create_struct

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI_Datatype

MPI uses instances of a special type called mMPI_batatype to represent
the types of messages being sent or received.

The MPI standard defines a set of predefined mp1_batatypes that map to
C's fundamental types as well as Fortran types. Some of these
mappings for C are: [6, §3.2]

MPI_Datatype Name C Type

MPI_C_BOOL _Bool

MPI_CHAR char (treated as text)
MPI_UNSIGNED_CHAR unsigned char (treated as an integer)
MPI_SIGNED_CHAR signed char (treated as an integer)
MPI_INT signed int

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_DOUBLE_COMPLEX double _Complex

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering New MPI_Datatypes

One can register new MPI_batatypes using any of the functions
described in [4, §3.12], [5, §4], and [6, §4]. Of these, these are the
most important in this presentation:

Function Purpose Memory Organization
MPI_Type_commit registers type n/a
MPI_Type_free deregisters type n/a
MPI_Type_create_struct makes new type like a C struct

Use: First register the new mpI_batatype, then commit it so it can be
used, and when done, deregister it to free its associated resources.

A NET"

Paul Preney

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types



e_commit and MPI_

MPI_Type_commit (type) registers type so that it can be used with MPI
communications functions.

MPI_Type_free(type) deregisters type when it no longer needs to be used
with MPI communications functions.

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI_Type_create_struct

MPI_Type_create_struct(count,blocklens,displacements, types, newtype)
constructs a new MPI_batatype instance whose memory representation
is a sequence of blocks where:

@ each block has a corresponding length provided in the array

blocklens,

@ each block has a corresponding displacement from the startng
address of the buffer provided in the array displacements,

@ each block has a corresponding Mp1_patatype provided in the
array types,

The new MPI_batatype is stored in newtype.

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI_Type_create_struct (con't)

1 struct simple { int i; double d[3]; } v;

constexpr std::size_t num_members = 2;
int lengths[num_members] = { 1, 3 };
MPI_Aint offsets[num_members] = {
offsetof(simple, i), offsetof(simple, d) };
MPI_Datatype types[num_members] = { MPI_INT, MPI_DOUBLE };
MPI_Datatype simple_type;
MPI_Type_struct(num_members, lengths, offsets, types,
10 simple_type);
11 MPI_Type_commit(simple_type);
12

© ® N o U A W N

13 // In sender on node 0...

14 MPI_Send(&v, 1, simple_type, 1, 06, MPI_COMM_WORLD);

15

16 // In receiver on node 1...

17 MPI_Status s;

18 MPI_Recv(&v, 1, simple_type, 0, 0, MPI_COMM_WORLD, &s);

1//1 NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Table of Contents

e Handling Variable-Length and Opaque Types
A Problem!

Unsure About Standard Layout?

Handling Variable-Length Objects
Handling std::string

Handling std::vector

Registering Standard Layout Types

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



A Problem!

Many types are opaque in terms of their memory layouts.
@ Do you really know the exact memory layout of a given struct,
class, Or union?

o If not then you cannot pass the address-of a struct, class, O union
variable to an MPI C call that assumes a specific memory layout!

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



A Problem! (con'

Many types don't have “standard layout”.

e Standard layout is required to meaningfully pass struct, class,
and union variables to other languages by relying on its memory

layout.

@ A type is not in standard layout if:

it has non-static members that are not in standard layout,
it has one or more virtual functions,

it has virtual base classes,

it has non-standard layout base classes,

it has more than one type of access control (e.g., public,
protected, private) for data members, and,

some other conditions.

The term standard layout is defined in the C+ + standard. [2, §9].

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



MPI calls require knowledge of variables' memory layouts.

@ These calls are incompatible with non-standard layout types.

MPI calls do not support variable-length objects except for arrays.

@ So how can one easily send and receive variables with types like

std::string, std::vector<std::string>, etc.?

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Unsure About Standard Layout?

This C+ +11 code can be used determine if a type has standard layout:

1 // With g++ use -std=c++11 option.
#include <iostream>
#include <type_traits>

2
3
4
5 struct A { int i; double d[3]; };

6 struct B { public: int i; private: double d[3]; };
7

8

9

int main()

{
10 std::cout
11 << "A:," << std::is_standard_layout<A>::value << '\n' // 1
12 << "B:y" << std::is_standard_layout<B>::value << '\n' // 0
13
14 3}

1’/1 NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling Variable-Length Objects

Only using the MPI functions previously discussed, there is a simple
way to handle variable-length objects:

@ Create a struct with an integer member representing the length
that precedes the variable-length object.

This allows one now to easily send/receive those objects:

@ First send/receive the length.
© If receiving ensure there is sufficient space to hold the object.

© Finally send/receive the string data.

Let's consider std::string...

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling std::string

Conceptually this is the type needed to be registered with MPI to
handle std: :string:

1 // For conceptual purposes only...
2 struct mpi_sendrecv

3 {

4 unsigned length_;

5 char str_[length_]J;

6 };

However this is not needed since MPI already can handle an array of

char!

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling std::string (con't)

To send a std::string, this is all that is needed:

1 void send(

2 std::string const& str,

3 int dest, int tag, MPI_Comm comm

4)

5

6 unsigned len = str.size();

7 MPI_Send(&len, 1, MPI_UNSIGNED, dest, tag, comm);

g if (len !'= 0)

9 MPI_Send(str.data(), len, MPI_CHAR, dest, tag, comm);
10 }

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling std::string (con't)

Receiving a std::string is trickier since std: :string has no member
function that returns a non-const char array.

Instead use a std: :vector<char> as a receiving area and then copy that
into the std::string:

1 void recv(std::string& str, int src, int tag, MPI_Comm comm)
2 {

unsigned len;

MPI_Status s;

MPI_Recv(&len, 1, MPI_UNSIGNED, src, tag, comm, &Ss);

if (len '= 0) {
std::vector<char> tmp(len);
MPI_Recv(tmp.data(), len, MPI_CHAR, src, tag, comm, &S);
10 str.assign(tmp.begin(), tmp.end());
11} else
12 str.clear();

© ® N o U A~ W

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling std::vector

If what is stored in std: :vector is a fundamental type, then the code is
almost identical to std::string. The send code is:

1 void send(

2 std::vector<int> const& vec,
3 int dest, int tag, MPI_Comm comm

4)

5 {

6 unsigned len = vec.size();

7 MPI_Send(&len, 1, MPI_UNSIGNED, dest, tag, comm);

g if (len != 0)

9 MPI_Send(vec.data(), len, MPI_INT, dest, tag, comm);

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling std::vector (con't)

and the receive code is:

1 void recv(std::vector<int>& vec, int src, int tag, MPI_Comm comm)
2 {

unsigned len;

MPI_Status s;

MPI_Recv(&len, 1, MPI_UNSIGNED, src, tag, comm, &S);

if (len '= 0) {

vec.resize(len);

MPI_Recv(vec.data(), len, MPI_INT, src, tag, comm, &S);
10 } else
11 vec.clear();

12}

3
4
5
6
7
8
9

However when what is stored is not a fundamental type, one may want
the type to be registered.

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering Standard Layout Types

Just as one can create new types in C and C+ + using struct, class, Or
union, MPI permits the definition of new derived datatypes [6, §4] for
messages.

Suppose one needs to handle messages in the form of this fixed-length
standard layout structure:

1 struct example
2 {

3 int x;

4 int y;

5 double vec[3];
6 };

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering Standard Layout Types (con't)

The example structure can be registered as follows:

1 #include <cstddef> // For offsetof macro

2

3 MPI_Datatype register_mpi_type(example consté&) {
4 constexpr std::size_t num_members = 3;

int lengths[num_members] = { 1, 1, 3 };

MPI_Aint offsets[num_members] = { offsetof(example, x),
offsetof(example, y), offsetof(example, vec) };

MPI_Datatype types[num_members] = { MPI_INT, MPI_INT,

10 MPI_DOUBLE };

11

12 MPI_Datatype type;

13 MPI_Type_struct(num_members, lengths, offsets, types, &type);

14 MPI_Type_commit(&type);

15 return type;

© ® N o u

1//1 NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering Standard Layout T

Thus given a deregistration function:

1 void deregister_mpi_type(MPI_Datatype type)

{
MPI_Type_free(&type);

}

~owoN

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types

Paul Preney



Registering Standard Layout Types (con't)

One can now easily write a send function:

1 void send(
example consté& e,
int dest, int tag, MPI_Comm comm

)

{
MPI_Datatype type = register_mpi_type(e);
MPI_Send(&e, 1, type, dest, tag, comm);
deregister_mpi_type(type);

}

© ® N o U A W N

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering Standard Layout Types (con't)

and a receive function:

1 void recv(

2 example const& e,

3 int src, int tag, MPI_Comm comm

4)

5

6 MPI_Status s;

7 MPI_Datatype type = register_mpi_type(e);
8 MPI_Recv(&e, 1, type, src, tag, comm, &s);
9 deregister_mpi_type(type);

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering Standard Layout Types (con't)

Which allows one to easily handle sending std: :vector<example>s:

1 void send(

2 std::vector<example> const& ve,
3 int dest, int tag, MPI_Comm comm

4)

5 {

6 unsigned len = ve.size();

7 MPI_Send(&len, 1, MPI_UNSIGNED, dest, tag, comm);

9 if (len '=0) {

10 MPI_Datatype type = register_mpi_type(&ve[0]);
11 MPI_Send(ve.data(), len, type, dest, tag, comm);
12 deregister_mpi_type(type);

13}

1//1 NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Registering Standard Layout Types (con't)

and receiving std: :vector<example>S:

1 void recv(

2 std::vector<example> consté& ve,

3 int src, int tag, MPI_Comm comm

4)

5

6 unsigned len; MPI_Status s;

7 MPI_Recv(&len, 1, MPI_UNSIGNED, src, tag, comm, &s);
8

9 if (len !=0) {

10 ve.resize(len);

11 MPI_Datatype type = register_mpi_type(&ve[0]);

12 MPI_Recv(ve.data(), len, type, src, tag, comm, &s);

13 deregister_mpi_type(type);
14 } else
15 ve.clear();

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Table of Contents

e Handling STL Containers
@ Switching Containers
@ Receiving std::list <example >
@ Sending std::list <example >
@ Handling Opaque Types

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Switching Containers

There were reasons an explicit length was sent and received in the
previous examples:

o It allows all variable-length, homogeneous container types to have the
identical send-receive message structure.

@ Since their message structures are identical, the send and receive
data container types don't have to match: they only need to contain
the same type.

Suppose one sends a std: :vector<example>.

Now consider how one might receive it into a std: :list<example>...

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Receiving std::list <example >

One method to send a std: : list<example> is:

1 void recv(

2 std::list<example> consté& le,

3 int src, int tag, MPI_Comm comm

4)

5 {

6 // Receive everything into a vector...
7 std::vector<example> tmp;

8 recv(tmp, src, tag, comm);

9

10 // And assign it to the list...
11 le.assign(tmp.begin(), tmp.end());

12 }

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Receiving std::list <example > (con't)

Here's another (exception unsafe wrt MPI comm.) method:

1 void recv(
2 std::list<example> const& le,
int src, int tag, MPI_Comm comm

{

3
4)
5

6 unsigned len; MPI_Status s;

7 MPI_Recv(&len, 1, MPI_UNSIGNED, src, tag, comm, &Ss);

9 if (len '=0) {

10 example tmp;

11 for (unsigned i=0; i != len; ++i) {
12 recv(tmp, src, tag, comm);

13 le.push_back(tmp);

14 3

15 } else

16 le.clear();

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Sending std::list <example >

Similarly here's an method to send a std

r:list<example>:

1 void send(

2 std::list<example> const& le,

3 int dest, int tag, MPI_Comm comm
4

)
5 {
6 unsigned len = le.size();
7 MPI_Send(&len, 1, MPI_UNSIGNED, dest, tag, comm);
8
9 for (
10 std::list<example>::const_iterator i=le.begin(),
11 iEnd=le.begin();
12 i != iEnd;
13 ++i
14 )
15 send(*i, dest, tag, comm);
16 }

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types

Paul Preney



Sending std::list <example > (con't)

And an alternate method:

1 void send(

2

{

3
4)
5
6

7

std::list<example> const& le,
int dest, int tag, MPI_Comm comm

// Copy everything into a vector...
std::vector<example> tmp(le.begin(), le.end());

// and send 1it...
send(tmp, dest, tag, comm);

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types

Paul Preney



Sending std::list <example > (con't)

Q. Does MPI allows one to send something as a single send operation
and receive it component-by-component using multiple receive
operations?

A. Yes! The received parts must match the definition of the whole
send.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Sending std::list <example > (con't)

Q. Does MPI allows one to send something component-by-component
using multiple send operations and to receive it as a single receive
operation?

A. Yes! The sent parts must match the definition of the whole receive.
NOTE: This is effectively what allows the std::1ist<example> functions

sending/receiving element-by-element to be able to interoperate with
the earlier std: :vector<example> functions!

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Handling Opaque Types

An opaque type is a type where the memory layout is not known.
All that can be done is either:
@ define and register a suitable struct to send/receive such, or,
@ send/receive all object state component-wise.

Examples include the earlier codes handling std: :string, std: :vector,
and std::list.

@ Thinking the layout is X is not the same as the documentation for
such saying it is!

@ Even with std::array you must call .data() to access (the
documented part) of its internal layout.

@ std::string, std::array, and std: :vector are all “special” in the
sense the C+ + standard defines the layout with in terms of what
.data() returns.

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Table of Contents

© Closing Advice and Comments
@ Closing Advice
@ Closing Comments

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Closing A

Advice:

@ It is better to have slower correct code than fast incorrect code.
o Always remember in C+ + exceptions can be thrown.

o Where appropriate use the RAII (Resource Acquisition is
Initialization) design pattern to ensure resources are cleaned up if
an exception occurs. [7, §5.2, 813.3] [8, §19.5]

@ Design your code to be exception-safe with respect to non-atomic
MPI communications.
e You don't want a node waiting for data that will never be sent
because an exception occurred!
o Write higher-level, possibly overloaded functions to make it
easier to handle all types —not just opaque ones!

e e.g., send() and recv() in this presentation.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Closing Comments

If you are writing code using MPI_batatype it is worth downloading and
reading the appropriate sections in the appropriate MPI standard. [4,
§3.12] [5, 841 [6, 8§41

Boost's MPI library provides a high-level interface to MP1_batatype. [1]

@ Boost.MPI internally uses MPI's mPI_pAck to send and receive data.

How to use mp1_rAck was not discussed in this presentation.

@ If you are curious about this, read the appropriate MPI standard's
section on “Derived Datatypes”. [4, §3.12] [5, §4] [6, §41]

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



Questions & Thank You

Questions.

Thank you for attending this presentation!

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney



References

[1] Boost.org, ed. Boost MPI. 2014-09-13. URL: http:
//www.boost.org/doc/1libs/1 56_0/doc/html/mpi.html.

[2] ISO/IEC. Information technology — Programming languages — C+ +.
ISO/IEC 14882-2011, IDT. Geneva, Switzerland, 2012.

[3] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Version 1.0. 1994-05-05. URL:
http://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Version 1.3. 2008-05-30. URL:
http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-
1.3-2008-05-30.pdf.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney


http://www.boost.org/doc/libs/1_56_0/doc/html/mpi.html
http://www.boost.org/doc/libs/1_56_0/doc/html/mpi.html
http://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps
http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf

References (con't)

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Version 2.2. 2009-09-04. URL: http://www.mpi-
forum.org/docs/mpi-2.2/mpi22-report.pdf.

[6] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Version 3.0. 2012-09-21. URL: http://www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf.

[71 B. Stroustrup. The C+ + Programming Language. 4th ed. Upper
Saddle River, NJ: Addison-Wesley, 2013, p. 1346.

[8] B. Stroustrup. Programming: Principles and Practice Using C+ +.
2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2014, p. 1274.

A NET"

Advanced Message Passing in MPI: Using MPI Datatypes with Opaque C+ + Types Paul Preney


http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

	Advanced Message Passing in MPI
	Title Page
	Abstract
	Presentation Overview

	Presentation
	A Review of MPI
	What is MPI?
	History of MPI Features
	MPI Derived Datatypes
	MPI_Send
	MPI_Recv

	Understanding and Using MPI_Datatype
	MPI_Datatype
	Registering New MPI_Datatypes
	MPI_Type_commit and MPI_Type_free
	MPI_Type_create_struct

	Handling Variable-Length and Opaque Types
	A Problem!
	Unsure About Standard Layout?
	Handling Variable-Length Objects
	Handling std::string
	Handling std::vector
	Registering Standard Layout Types

	Handling STL Containers
	Switching Containers
	Receiving std::list<example>
	Sending std::list<example>
	Handling Opaque Types

	Closing Advice and Comments
	Closing Advice
	Closing Comments

	Questions & Thank You
	References


