OpenMP 4.0/4.5: New Features and Protocols

Jemmy Hu

SHARCNET HPC Consultant
University of Waterloo

May 10, 2017

General Interest Seminar

Outline

OpenMP overview

OpenMP: An API for Writing Multithreaded Applications

§ A set of compiler directives and library routines for
parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs
In Fortran, C and C++

§ Ease of Use: Provide capability to incrementally parallelize a serial
program, unlike message-passing libraries which typically require an all or
nothing approach

§ Standardizes established SMP practice + vectorization and
heterogeneous device programming

OpenMP: Fork-Join Model

* OpenMP uses the fork-join model of parallel execution:

£

{ parallel region } { parallel region }

—

master
thread

FORK: the master thread then creates a team of parallel threads
The statements in the program that are enclosed by the parallel region construct
are then executed in parallel among the various team threads

JOIN: When the team threads complete the statements in the parallel region
construct, they synchronize and terminate, leaving only the master thread

OpenMP: Contents

e OpenMP’s constructs fall into 5 categories:
¢Parallel Regions
¢Worksharing
¢Data Environment
¢Synchronization
¢Runtime functions/environment variables

e OpenMP is basically the same between
Fortran and C/C++

Types of Work-Sharing Constructs:

DO / for - shares iterations of a SECTIONS - breaks work into SINGLE -

loop across the team. separate, discrete sections. serializes a
Represents a type of "data Each section is executed by a section of
parallelism". thread. Can be used to code
implement a type of "functional
parallelism".
l master thread l master thread l master thread
FORK | FORK FORK
JOIN JOIN JOIN
l masiter thread l masiter thread l master thread

A motivating example

Sequential code for(i=0;I1<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{
int id, i, Nthrds, istart, iend;

OpenMP parallel id = omp_get thread num();

Nthrds = omp_get num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

for(i=istart;l<iend;i++) { a[i] = a[i] + bli];}

region

OpenMP parallel #pragma omp parallel

region and a #pragma omp for schedule(static)
work-sharing for- for(i=0;I<N;i++) { a[i] = a[i] + b[i];}
construct

Example: Calculating &

* Numerical integration

f[l} =z

1+ x°2 %i

* Discretization:
A=1/N: step = 1/NBIN
x; = (i+0.5)A (i =0,...,N-1)
N-1 4

2

f=ﬁls+.xi

AT

f(x)=4/(1+x?)

#include <stdio.h>
#define NBIN 100000
void main() {
int 1; double step,xX,sum=0.0,pi;

step = 1.0/NBIN;
for (i=0; i<NBIN; i++) { D ‘I 2
X = (1i+0.5)*step;
sum += 4.0/(1.0+x*x);} -
pi = sum*step; Step

printf(“PI = %f\n",pi);

OpenMP: Pi with a loop and a reduction

#include <omp.h>
static long num_steps = 100000; double step;

void main ()

{

Create a team of threads ...
without a parallel construct, you'll
never have more than one thread

int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
#pragma omp parallel

{

Break up loop iterations

double x;
#pragma omp for reduction(+:sum) «<— and assign them to
for (I=0;i< num_steps; i++){ threads ... setting up a
X = (i+0.5)*step: reduction into sum.
sum = sum + 4.0/(1.0+x*Xx);
}

}

pi = step * sum;

Example: sections

program compute

write(*,*) "start"
ISomp parallel

select case (omp_get_thread _num())

case (0)
doi=1,NX
ri = real(i)
x(1) = atan(ri)/ri
end do
case (1)
doj=1, NY
rj = real(j)
y(j) = cos(rj)/rj
end do
case (2)
dok=1,NZ
rk = real(k)
z(k) = log10(rk)/rk
end do
end select

ISomp end parallel
write(*,*) "end"
end program

program compute

write(*,*) "start"
ISomp parallel
ISomp sections
ISomp section
doi=1,NX
ri = real(i)
X(i) = atan(ri)/ri
end do
ISomp section
doj=1,NY
rj = real(j)
y(i) = cos(rj)/rj
end do
ISomp section
dok=1,NZ
rk = real(k)
z(k) = log10(rk)/rk
end do
I$Somp end sections
ISomp end parallel
write(*,*) "end"
end program

Not all programs have simple loops OpenMP
can parallelize

 Consider a program to traverse a linked list:

p=head,;

while (p) {
processwork(p);

P = p->next;

}

* OpenMP can only parallelize loops 1n a basic standard form with
loop counts known at runtime

Example: Fibonacci numbers

int fib (int n)
{
Int X,y;
if (n < 2) return n;

*Fn =Fn-1 + Fn-2
* Inefficient O(n2) recursive
Implementation!

x = fib(n-1);
y = fib (n-2);
return (x+y);

}

Int main()

{
int NW = 1000;
fib(NW);

}

What are tasks? I

» Tasks are independent units of work I

» Tasks are composed of: _

— data to compute with

* Threads are assigned to perform the work of each task.
— The thread that encounters the task construct
may execute the task immediately.
— The threads may defer execution until later

Task constructs in OpenMP

* The task construct was added to support irregular programs:
— While loops or loops whose iteration limits are not known at
compiler time.
— Recursive algorithms
— divide and conquer problems.

* The task construct has expanded over the years with new features to
support irregular problems with tasks in each new release of OpenMP

#pragma omp task
- Creates a new task, Task added to task queue
- Available thread picks next task from queue to execute

#pragma omp taskwait
- Acts like barrier
- Waits until all child tasks have finished

The task construct (OpenMP 4.5)

#pragma omp task [clause][,]clause]...] Generates an
structured-block explicit task

where clause is one of the following:

Task consists of
iIf([task :]scalar-expression) Code to execute

untied Data environment
default(shared | none)

private(list)
firstprivate(list)

shared(list) #pragma omp taskgroup
final(scalar-expression)
mergeable #pragma omp taskloop

depend(dependence-type : list)

priority(priority-value) #pragma omp taskyield

Parallel Fibonacci

int fib (int n)
{

int X,y;
If (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);
#pragma omp task shared(y)
y = fib (n-2);

#pragma omp taskwait
return (x+y);

}

int main()
{ int NW = 1000;
#pragma omp parallel
{
#pragma omp master
fib(NW);

* Binary tree of tasks

* Traversed using a recursive
function

* A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)
* X,y are local, and so by default

they are private to current task
— must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

Linked lists with tasks

#pragma omp parallel

{
#pragma omp single
{ —head: Creates a task with its
p=head, own copy of “p”
while (p) { o ____— |initialized to the value
#pragma omp task firstprivate(p) of “p” when the task is
processwork(p); defined
p = p->next;
}
}

}

Vectorization?

Vectorization is an on-node, in-core way of exploiting data
level parallelism in programs by applying the same
operation to multiple data items in parallel.

* Requires transforming a program so that a

DOI=1,N single instruction can launch many operations
Z(1) = X(1) + Y (1) on different data
ENDDO

* Applies most commonly to array operations
In loops

What Is Required for Vectorization?
 Vector Hardware: vector registers and vector functional units

e Code transformation

DOI=1,N,4
DOI=1, N Compiler Z(1) = X(I) + Y(I)
Z(1) = X(1) + Y(I) . Z(1+1) = X(1+1) + Y(I+1)
ENDDO Z(1+2) = X(1+2) + Y(1+2)
Z(1+3) = X(1+3) + Y(I+3)
ENDDO

VLOAD X(I), X(1+1), X(1+2), X(1+3)
VLOAD Y(1), Y(I+1), Y(1+2), Y(1+3)
VADD Z(I, ..., 1+3) X+Y(l, ..., 1+3)

VSTORE Z(1), Z(1+1), Z(1+2), Z(1+3)

SIMD loop construct in OpenMP

« SIMD=single instruction applies the same operation to multiple data
concurrently

* vectorization = processing multiple elements of an array
at the same time.

* OpenMP can enable vectorization of both serial as well as
parallelized loops

* OpenMP uses SIMD constructs.

#progma omp simd [clause [[,] clause], ...]
for-loops

Example

void sprod(float *a, float *b, int n)

{

float sum=0.0;

#pragma omp simd reduction(+:sum)
for (int k=0; k<n; k++)
sum += a[k] * b[k];
return sum;

l vectorize

NESNEEEEESEEEEE S

- Vectorize a loop nest is to cut loop into chunks that fit a SIMD
vector register
- No parallelization of the loop body

SIMD Worksharing Construct

#progma omp for simd [clause [[,] clause], ...]

for-loops

void sprod(float *a, float *b, int n){

float sum=0.0;

#pragma omp for simd reduction(+:sum)
for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

Thread O

Thread 1

Thread 2

- Distribute a loop’s iteration
across a thread team

- Subdivide loop chunks to fit a
SIMD vector register

| parallelize

| vectorize

Example: loops

#include <stdio.h>
#define N 10000
iInt main()
{
long long d1=0;
double a[N], b[N], c[N], d2=0.0;

for (int i=0;i<N;i++)
d1+=*(N+1-i);

for (int i=0; i<N;i++) {
ali]=i:
b[i]=N+1-i;

}

for (int i=0; i<N; i++)
d2+=a[i]*bl[i];

printf("resultl = %ld\nresult2 = %.2If\n", d1, d2);
}

OpenMP SIMD Loop Example

#include <stdio.h>
#include <omp.h>

#define N 10000
int main()

{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;I<N;i++)
d1+=*(N+1-i);
#pragma omp simd
for (int i=0; i<N;i++) {
ali]=i;
b[i]=N+1-i;
}
#pragma omp parallel for simd reduction(+:d2)
for (int i=0; I<N; i++)
d2+=a[i]*bl[i];
printf("resultl = %ld\nresult2 = %.2I\\n", d1, d2);

Device Support in OpenMP

Effort to support a wide variety of compute devices/accelerators
GPU, Xeon Phi

target constructs

» Creates a device data environment for the extent of the region
"1 when a target data construct is encountered, a new device data environment
Is created, and the encountering task executes the target data region

"1 when an if clause is present and the if-expression evaluates to false,
the device is the host

The syntax of the target construct is as follows:

#pragma omp target [clausef[,] clause],...] new-line
structured-block

where clause is one of the following:
device(integer-expression)

mapl([map-type :] list)
if(scalar-expression)

More Directives and Functions for Devices

omp target data: Creates a device data environment and execute the construct on the
same device. The target construct specifies that the region is executed by a device and the
encountering task waits for the device to complete the target region

omp target update: Makes the corresponding list items in the device data
environment consistent with their original list items

omp distribute: distributes a loop over the teams in the league

omp declare target: marks function(s) that can be called on the device

Omp teams: Creates a league of thread teams where the master thread of each team
executes the region, associated with num_teams and num_threads clause

omp get team num()
omp get team size()
omp get num devices()

Execution and Data Model

» Host-centric: the execution of an OpenMP program starts on the host device
and it may offload target rgions to target devices
1 In principle, a target region also begins as a single thread of execution: when a

target construct is encountered, the target region is executed by the implicit device

thread and the encountering thread/task [on the host] waits at the construct

until the execution of theregion completes

(1 If a target device is not present, or not supported, or not available, the target region is executed
by the host device

1 If a construct creates a data environment, the data environment is created at the time the
construct is encountered

» When an OpenMP program begins, each device has an initial device data
environment

| Directives accepting data-mapping attribute clauses determine how an original

variable is mapped to a corresponding variable in a device data environment
[1 original: the variable on the host
[1 corresponding: the variable on the device
[1 the corresponding variable in the device data environment may share storage with
the original variable (danger of data races)

Example: Execution and Data Model

» Environment Variable OMP_DEFAULT DEVICE=<int>: sets the
device number to use in target constructs

double B[N] = ...; // some initialization
#fpragma omp target device (0) map (tofrom:B)
fpragma omp parallel for
for (1=0; 1i<N; 1++)

B[i] += sin(B[1i]);

» map variable B to device, then execute parallel region on
device, works probably pretty well on Intel Xeon Phi

double B[N] = ...; // some initialization
fpragma omp target device (0) map (tofrom:B)
fpragma omp teams num teams (num blocks) num threads (bsize)
#fpragma omp distribute
for (1i=0; 1i<N; i+= num blocks)

#fpragma omp parallel for

for (b = 1; b < i+num blocks; b++)

B[b] += sin(B[b]);

» same as above, but code probably better optimized for NVIDIA GPGPUs

=w Home - OpenMP X
% |

< c ! ® www.openmp.org
152 Apps [3) Suggested Sites Imported From IE

Wi M [N SN\ (e 16

OpenVi

Enabling HPC since 1997

@

The OpenMP AP/ specification for parallel programming
‘ S fication for parallel programming

Specifications Community v Resources v News & Events v About v

IWOMP 2017

13th International Workshop on OpenMP
Wang Center, Stony Brook Univ, NY, USA
September 21-22, 2017

Latest News

@OpenMP_ARB

Celebrating 20 Years of OpenMP OpenMP TR5 - Memory
& OpenMP ARB

Brookhaven National Laboratory
Management Support - Posted e

Joins the OpenMP Effort

References

1. OpenMP specifications for C/C++ and Fortran, http://www.openmp.org/

2. OpenMP tutorials:
http://www.nersc.qgov/assets/Uploads/SC16-omp.pdf

https://wiki.scinet.utoronto.ca/wiki/imaqges/9/9b/Ds-openmp.pdf

SIMD Vectorization with OpenMP, Michael Klemm

OpenMP for Accelerators - RWTH Aachen

https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev OpenMP4.5-
tutorial-jan17.pdf

http://www.openmp.org/
http://www.nersc.gov/assets/Uploads/SC16-omp.pdf
https://wiki.scinet.utoronto.ca/wiki/images/9/9b/Ds-openmp.pdf
https://doc.itc.rwth-aachen.de/download/attachments/28344675/SIMD Vectorization with OpenMP.PDF?version=1&modificationDate=1480523704000&api=v2
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwje7--fqMXTAhUl94MKHQx2BHYQFggoMAA&url=https%3A%2F%2Fdoc.itc.rwth-aachen.de%2Fdownload%2Fattachments%2F3474945%2FOMP4-OpenMP_for_Accelerators.pdf&usg=AFQjCNHxV96xL0ZhLS9WmzsS5fWn5k7Sbw
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_OpenMP4.5-tutorial-jan17.pdf

