
OpenMP 4.0/4.5: New Features and Protocols

Jemmy Hu

SHARCNET HPC Consultant

University of Waterloo

May 10, 2017

General Interest Seminar

Outline

• OpenMP overview

• Task constructs in OpenMP

• SIMP constructs in OpenMP

• Device model in OpenMP

• References

OpenMP overview

OpenMP: An API for Writing Multithreaded Applications

§ A set of compiler directives and library routines for

parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs

in Fortran, C and C++

§ Ease of Use: Provide capability to incrementally parallelize a serial
program, unlike message-passing libraries which typically require an all or
nothing approach

§ Standardizes established SMP practice + vectorization and

heterogeneous device programming

OpenMP: Fork-Join Model

• OpenMP uses the fork-join model of parallel execution:

FORK: the master thread then creates a team of parallel threads

The statements in the program that are enclosed by the parallel region construct

are then executed in parallel among the various team threads

JOIN: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

DO / for - shares iterations of a

loop across the team.

Represents a type of "data

parallelism".

SECTIONS - breaks work into

separate, discrete sections.

Each section is executed by a

thread. Can be used to

implement a type of "functional

parallelism".

SINGLE -

serializes a

section of

code

Types of Work-Sharing Constructs:

A motivating example

OpenMP: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

double x;

#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

pi = step * sum;

}

Create a team of threads …

without a parallel construct, you’ll

never have more than one thread

Break up loop iterations

and assign them to

threads … setting up a

reduction into sum.

program compute

……

write(*,*) "start"

!$omp parallel

!$omp sections

!$omp section

do i = 1, NX

ri = real(i)

x(i) = atan(ri)/ri

end do

!$omp section

do j = 1, NY

rj = real(j)

y(j) = cos(rj)/rj

end do

!$omp section

do k = 1, NZ

rk = real(k)

z(k) = log10(rk)/rk

end do

!$omp end sections

!$omp end parallel

write(*,*) "end"

end program

Example: sections

program compute

……

write(*,*) "start"

!$omp parallel

select case (omp_get_thread_num())

case (0)

do i = 1, NX

ri = real(i)

x(i) = atan(ri)/ri

end do

case (1)

do j = 1, NY

rj = real(j)

y(j) = cos(rj)/rj

end do

case (2)

do k = 1, NZ

rk = real(k)

z(k) = log10(rk)/rk

end do

end select

!$omp end parallel

write(*,*) "end"

end program

Not all programs have simple loops OpenMP

can parallelize

• Consider a program to traverse a linked list:

p=head;

while (p) {

processwork(p);

p = p->next;

}

• OpenMP can only parallelize loops in a basic standard form with

loop counts known at runtime

Example: Fibonacci numbers

int fib (int n)

{

int x,y;

if (n < 2) return n;

x = fib(n-1);

y = fib (n-2);

return (x+y);

}

int main()

{

int NW = 1000;

fib(NW);

}

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive

implementation!

What are tasks?

• Tasks are independent units of work

• Tasks are composed of:

– code to execute

– data to compute with

• Threads are assigned to perform the work of each task.

– The thread that encounters the task construct

may execute the task immediately.

– The threads may defer execution until later

Serial Parallel

Task constructs in OpenMP

#pragma omp task
- Creates a new task, Task added to task queue

- Available thread picks next task from queue to execute

#pragma omp taskwait
- Acts like barrier

- Waits until all child tasks have finished

• The task construct was added to support irregular programs:

– While loops or loops whose iteration limits are not known at

compiler time.

– Recursive algorithms

– divide and conquer problems.

• The task construct has expanded over the years with new features to

support irregular problems with tasks in each new release of OpenMP

The task construct (OpenMP 4.5)

where clause is one of the following:

if([task :]scalar-expression)

untied

default(shared | none)

private(list)

firstprivate(list)

shared(list)

final(scalar-expression)

mergeable

depend(dependence-type : list)

priority(priority-value)

#pragma omp task [clause[[,]clause]...]

structured-block
Generates an

explicit task

Task consists of
Code to execute

Data environment

#pragma omp taskloop

#pragma omp taskyield

#pragma omp taskgroup

• Binary tree of tasks

• Traversed using a recursive

function

• A task cannot complete until all

tasks below it in the tree are

complete (enforced with taskwait)

• x,y are local, and so by default

they are private to current task
– must be shared on child tasks so they

don’t create their own firstprivate

copies at this level!

Parallel Fibonacci
35

int fib (int n)

{

int x,y;

if (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib (n-2);

#pragma omp taskwait

return (x+y);

}

int main()

{ int NW = 1000;

#pragma omp parallel

{

#pragma omp master

fib(NW);

}

}

Linked lists with tasks

#pragma omp parallel

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p)

processwork(p);

p = p->next;

}

}

}

Creates a task with its

own copy of “p”

initialized to the value

of “p” when the task is

defined

Vectorization?

Vectorization is an on-node, in-core way of exploiting data

level parallelism in programs by applying the same

operation to multiple data items in parallel.

DO I= 1, N

Z(I) = X(I) + Y(I)

ENDDO

• Requires transforming a program so that a

single instruction can launch many operations

on different data

• Applies most commonly to array operations

in loops

What is Required for Vectorization?

• Vector Hardware: vector registers and vector functional units

• Code transformation

DO I = 1, N

Z(I) = X(I) + Y(I)

ENDDO

DO I = 1, N, 4

Z(I) = X(I) + Y(I)

Z(I+1) = X(I+1) + Y(I+1)

Z(I+2) = X(I+2) + Y(I+2)

Z(I+3) = X(I+3) + Y(I+3)

ENDDO

VLOAD X(I), X(I+1), X(I+2), X(I+3)

VLOAD Y(I), Y(I+1), Y(I+2), Y(I+3)

VADD Z(I, ..., I+3) X+Y(I, ..., I+3)

VSTORE Z(I), Z(I+1), Z(I+2), Z(I+3)

Compiler

• SIMD=single instruction applies the same operation to multiple data

concurrently

• vectorization = processing multiple elements of an array

at the same time.

• OpenMP can enable vectorization of both serial as well as

parallelized loops

• OpenMP uses SIMD constructs.

SIMD loop construct in OpenMP

#progma omp simd [clause [[,] clause], …]

for-loops

Example

void sprod(float *a, float *b, int n)

{

float sum=0.0;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

- Vectorize a loop nest is to cut loop into chunks that fit a SIMD

vector register

- No parallelization of the loop body

SIMD Worksharing Construct

void sprod(float *a, float *b, int n){

float sum=0.0;

#pragma omp for simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

parallelize
Thread 0 Thread 1 Thread 2

#progma omp for simd [clause [[,] clause], …]

for-loops

- Distribute a loop’s iteration

across a thread team

- Subdivide loop chunks to fit a

SIMD vector register

Example: loops

#include <stdio.h>

#define N 10000

int main()

{

long long d1=0;

double a[N], b[N], c[N], d2=0.0;

for (int i=0;i<N;i++)

d1+=i*(N+1-i);

for (int i=0; i<N;i++) {

a[i]=i;

b[i]=N+1-i;

}

for (int i=0; i<N; i++)

d2+=a[i]*b[i];

printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);

}

OpenMP SIMD Loop Example

#include <stdio.h>

#include <omp.h>

#define N 10000

int main()

{

long long d1=0;

double a[N], b[N], c[N], d2=0.0;

#pragma omp simd reduction(+:d1)

for (int i=0;i<N;i++)

d1+=i*(N+1-i);

#pragma omp simd

for (int i=0; i<N;i++) {

a[i]=i;

b[i]=N+1-i;

}

#pragma omp parallel for simd reduction(+:d2)

for (int i=0; i<N; i++)

d2+=a[i]*b[i];

printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);

}

Effort to support a wide variety of compute devices/accelerators:

GPU, Xeon Phi

Device Support in OpenMP

target constructs

 Creates a device data environment for the extent of the region
when a target data construct is encountered, a new device data environment

is created, and the encountering task executes the target data region

when an if clause is present and the if-expression evaluates to false,

the device is the host

More Directives and Functions for Devices

omp target data: Creates a device data environment and execute the construct on the

same device. The target construct specifies that the region is executed by a device and the

encountering task waits for the device to complete the target region

omp target update: Makes the corresponding list items in the device data

environment consistent with their original list items

omp distribute: distributes a loop over the teams in the league

omp declare target: marks function(s) that can be called on the device

omp teams: Creates a league of thread teams where the master thread of each team

executes the region, associated with num_teams and num_threads clause

omp get team num()

omp get team size()

omp get num devices()

 Host-centric: the execution of an OpenMP program starts on the host device

and it may offload target rgions to target devices
In principle, a target region also begins as a single thread of execution: when a

target construct is encountered, the target region is executed by the implicit device

thread and the encountering thread/task [on the host] waits at the construct

until the execution of theregion completes

If a target device is not present, or not supported, or not available, the target region is executed

by the host device

If a construct creates a data environment, the data environment is created at the time the

construct is encountered

Execution and Data Model

 When an OpenMP program begins, each device has an initial device data

environment

Directives accepting data-mapping attribute clauses determine how an original

variable is mapped to a corresponding variable in a device data environment
original: the variable on the host

corresponding: the variable on the device

the corresponding variable in the device data environment may share storage with

the original variable (danger of data races)

Example: Execution and Data Model

 Environment Variable OMP_DEFAULT_DEVICE=<int>: sets the

device number to use in target constructs

double B[N] = ...; // some initialization

#pragma omp target device(0) map(tofrom:B)

#pragma omp parallel for

for (i=0; i<N; i++)

B[i] += sin(B[i]);

double B[N] = ...; // some initialization

#pragma omp target device(0) map(tofrom:B)

#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute

for (i=0; i<N; i+= num_blocks)

#pragma omp parallel for

for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);

 same as above, but code probably better optimized for NVIDIA GPGPUs

 map variable B to device, then execute parallel region on

device, works probably pretty well on Intel Xeon Phi

References

1. OpenMP specifications for C/C++ and Fortran, http://www.openmp.org/

2. OpenMP tutorials:

http://www.nersc.gov/assets/Uploads/SC16-omp.pdf

https://wiki.scinet.utoronto.ca/wiki/images/9/9b/Ds-openmp.pdf

SIMD Vectorization with OpenMP, Michael Klemm

OpenMP for Accelerators - RWTH Aachen

https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_OpenMP4.5-
tutorial-jan17.pdf

http://www.openmp.org/
http://www.nersc.gov/assets/Uploads/SC16-omp.pdf
https://wiki.scinet.utoronto.ca/wiki/images/9/9b/Ds-openmp.pdf
https://doc.itc.rwth-aachen.de/download/attachments/28344675/SIMD Vectorization with OpenMP.PDF?version=1&modificationDate=1480523704000&api=v2
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwje7--fqMXTAhUl94MKHQx2BHYQFggoMAA&url=https%3A%2F%2Fdoc.itc.rwth-aachen.de%2Fdownload%2Fattachments%2F3474945%2FOMP4-OpenMP_for_Accelerators.pdf&usg=AFQjCNHxV96xL0ZhLS9WmzsS5fWn5k7Sbw
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_OpenMP4.5-tutorial-jan17.pdf

