
Debugging and profiling of
MPI programs

The code examples:
http://syam.sharcnet.ca/MPI_debugging.tgz

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

2/19

Outline

● Introduction
● MPI debugging
● MPI profiling
● Concluding remarks

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

3/19

Introduction

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

4/19

Parallel vs. serial

● Parallel programming is more difficult than
serial programming each step of the way:
– Designing stage

– Coding

– Debugging

– Profiling

– Maintenance

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

5/19

Parallel bugs

● In addition to usual, “serial” bugs, parallel
programs can have “parallel-only” bugs, such
as
– Race conditions

● When results depend on specific ordering of commands,
which is not enforced

– Deadlocks
● When task(s) wait perpetually for a message/signal which

never come

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

6/19

Profiling issues

● Similarly to debugging, profiling of parallel
codes deals both with issues common between
serial and parallel codes (bad patterns for
accessing memory, not cache friendly etc.), but
also adds new, parallel-only issues, e.g.
– Workload balancing

– Costs of communications

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

7/19

Tools

● Debugging of codes (including parallel ones)
could be as primitive as inserting multiple printf
statements.

● Similarly, for profiling one could resort to using
wallclock timers in the code.

● But given the extra difficulty of dealing with
parallel code issues, debugging and profiling of
parallel (including MPI) codes better be done
using proper tools.

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

8/19

Allinea software

● For the rest of this webinar, I will focus on
advanced parallel coder tools developed by
Allinea and installed on multiple SHARCNET
clusters (orca, monk, kraken etc.) Its two main
components are
– DDT: serial and parallel (MPI, multi-threaded,

CUDA) debugger

– MAP: serial and MPI code profiler.

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

9/19

Useful links

● For detailed information on how to use the
Allinea tools on our clusters, check these wiki
pages:
– https://www.sharcnet.ca/help/index.php/DDT

– https://www.sharcnet.ca/help/index.php/MAP

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

10/19

MPI debugging

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

11/19

DDT live demo

● Compile your code with low or zero optimization, and use
“-g” switch to add symbolic information.

● Module ddt is loaded by default, so no need to load it
manually.

● DDT/MAP can be used interactively on orca development
nodes (orc-dev1 ... orc-dev4).

● Simply prepend “ddt” in front of your code + command
line arguments; don't use mpirun (it is invoked internally
by DDT), e.g.

$ ddt ./my_mpi_code arg1 arg2

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

12/19

MPI debugging examples

● Deadlocks:
– deadlock_simple.c: two MPI ranks using blocking

send/receive in the wrong order

– deadlock_ring.c: more interesting case of multiple
ranks in ring topology

– deadlock_collective.c: deadlocks in collective
communications

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

13/19

MPI profiling

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

14/19

MAP live demo

● Compile your code with “-g”, but unlike DDT you can
(and should) also use optimization flags, like “-O2”.

● MAP is a part of DDT module, and is loaded by
default. MAP is only available on orca.

● Can be used interactively on orca dev nodes (for
small jobs: N_ranks<=24), or submitted to the orca
scheduler in the batch mode:

$ sqsub -q mpi --nompirun -o out -n 24 -r 12h map -n 24 -profile ./code

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

15/19

Dynamic workload balancing

● Dynamic workload balancing (DWB) is frequently
used by MPI programs.

● We use it when the length of time spent on
computing different parts of a large workload by
different MPI ranks is hard or impossible to
predict ahead of time.

● Well written DWB code should have a way to
adjust the size of the workload quantum. (In
other words – number of chunks.)

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

16/19

DWB example

● Example code:
– dynamic_workload_balancing.c: using “sleep”

function to emulate different processing time for
different elements of a large input array

– On 10 cpus, I got the following wall clock times:

N_chunks / N_CPUs Wall clock time (s)

1 10.3

10 5.8

100 5.4

1000 5.5

10,000 6.9

Severe workload
imbalance

Optimal performance

Latency becomes
important

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

17/19

Concluding remarks

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

18/19

● Though it is not possible to cover such complex
topics as MPI debugging and profiling at any
depth in one hour, I hope the webinar
– Provided enough of information so you know where

to start

– Demonstrated that with the right tools the parallel
debugging/profiling is not as formidable as one
might think

July 22, 2015 “Debugging and profiling of MPI programs”
Sergey Mashchenko, SHARCNET

19/19

Questions?

● You can always contact me directly
(syam@sharcnet.ca) or send an email to
help@sharcnet.ca .

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

