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Introduction
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Parallel vs. serial

● Parallel programming is more difficult than 
serial programming each step of the way:
– Designing stage

– Coding

– Debugging

– Profiling

– Maintenance
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Parallel bugs

● In addition to usual, “serial” bugs, parallel 
programs can have “parallel-only” bugs, such 
as
– Race conditions

● When results depend on specific ordering of commands, 
which is not enforced

– Deadlocks
● When task(s) wait perpetually for a message/signal which 

never come
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Profiling issues

● Similarly to debugging, profiling of parallel 
codes deals both with issues common between 
serial and parallel codes (bad patterns for 
accessing memory, not cache friendly etc.), but 
also adds new, parallel-only issues, e.g.
– Workload balancing

– Costs of communications
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Tools

● Debugging of codes (including parallel ones) 
could be as primitive as inserting multiple printf 
statements.

● Similarly, for profiling one could resort to using 
wallclock timers in the code.

● But given the extra difficulty of dealing with 
parallel code issues, debugging and profiling of 
parallel (including MPI) codes better be done 
using proper tools.
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Allinea software

● For the rest of this webinar, I will focus on 
advanced parallel coder tools developed by 
Allinea and installed on multiple SHARCNET 
clusters (orca, monk, kraken etc.) Its two main 
components are
– DDT: serial and parallel (MPI, multi-threaded, 

CUDA) debugger

– MAP: serial and MPI code profiler.
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Useful links

● For detailed information on how to use the 
Allinea tools on our clusters, check these wiki 
pages:
– https://www.sharcnet.ca/help/index.php/DDT

– https://www.sharcnet.ca/help/index.php/MAP
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MPI debugging
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DDT live demo

● Compile your code with low or zero optimization, and use 
“-g” switch to add symbolic information.

● Module ddt is loaded by default, so no need to load it 
manually.

● DDT/MAP can be used interactively on orca development 
nodes (orc-dev1 ... orc-dev4).

● Simply prepend “ddt” in front of your code + command 
line arguments; don't use mpirun (it is invoked internally 
by DDT), e.g.

$ ddt ./my_mpi_code  arg1  arg2
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MPI debugging examples

● Deadlocks:
– deadlock_simple.c: two MPI ranks using blocking 

send/receive in the wrong order

– deadlock_ring.c: more interesting case of multiple 
ranks in ring topology

– deadlock_collective.c: deadlocks in collective 
communications
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MPI profiling
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MAP live demo

● Compile your code with “-g”, but unlike DDT you can 
(and should) also use optimization flags, like “-O2”.

● MAP is a part of DDT module, and is loaded by 
default. MAP is only available on orca.

● Can be used interactively on orca dev nodes (for 
small jobs: N_ranks<=24), or submitted to the orca 
scheduler in the batch mode:

$ sqsub -q mpi --nompirun -o out -n 24 -r 12h  map -n 24 -profile  ./code
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Dynamic workload balancing

● Dynamic workload balancing (DWB) is frequently 
used by MPI programs.

● We use it when the length of time spent on 
computing different parts of a large workload by 
different MPI ranks is hard or impossible to 
predict ahead of time.

● Well written DWB code should have a way to 
adjust the size of the workload quantum. (In 
other words – number of chunks.)
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DWB example

● Example code: 
– dynamic_workload_balancing.c: using “sleep” 

function to emulate different processing time for 
different elements of a large input array

– On 10 cpus, I got the following wall clock times:

N_chunks / N_CPUs Wall clock time (s)

1 10.3

10 5.8

100 5.4

1000 5.5

10,000 6.9

Severe workload
imbalance

Optimal performance

Latency becomes
important
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Concluding remarks
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● Though it is not possible to cover such complex 
topics as MPI debugging and profiling at any 
depth in one hour, I hope the webinar 
– Provided enough of information so you know where 

to start

– Demonstrated that with the right tools the parallel 
debugging/profiling is not as formidable as one 
might think
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Questions?

● You can always contact me directly 
(syam@sharcnet.ca) or send an email to 
help@sharcnet.ca .

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca
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