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Parallel processing and coarrays
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The idea…
 Process 1 does not have the slice of A that Process k has
 It wants to copy it from Process k

A(is:ie,js:je)1 ← A(is:ie,js:je)k

1

k
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Single Processes
 One process does not see the content of another

1 2
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Multithreaded Processes
 Threads on multicores within a process see all data within the process
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Distributed/Shared Memory - MPI
 One process does not see the content of others
 A process generally can't access the content of another directly
 Access data held by others is via message passing (e.g. MPI)

1 2 p
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How do we do it with MPI? we would write
 On rank 1, to receive data from rank k

MPI_Recv(A(is:ie,js:je),n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Or, more generic
MPI_Recv(buffer,n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Unmarshal buffered data into A

 On rank k, to send data to rank 1
MPI_Send(A(is:ie,js:je),n,MPI_REAL,1,tag,MPI_COMM_WORLD)

Or
Marshal data from local A in the buffer

MPI_Send(buffer,n,MPI_REAL,1,tag,MPI_COMM_WORLD)

1

k
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But what we really want is symbolically as simple as this…

A(is:ie,js:je) ← A(is:ie,js:je)k
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So here comes this

A(is:ie,js:je) = A(is:ie,js:je)[k]
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program main

   real :: x(10000), u(10000)

   complex :: y(10000)

   real :: A(1000,1000)[*] ! Indicate to be possessed by every process

   

   … ...

end program main

A(is:ie,js:je) = A(is:ie,js:je)[k]
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Distributed Shared Memory
 Every process – image – holds the same size object A
 A is local to the image; A[k] references to the A on image k.
 Access to A[k] invokes underlying data communications, e.g. on 1

1 2 3 4

A(1:4,3:4) = A(1:4,3:4)[2]
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program main

   real :: x(10000), u(10000)

   complex :: y(10000)

   real :: A(1000,1000)[*]  

   

   … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]
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program main

   real :: x(10000), u(10000)

   complex :: y(10000)

   real :: A(1000,1000)[*]

   

   … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]
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 Introduced by R. W. Numrich and J. Reid in 1998.
 Many years of experience, as an extension to Fortran, mainly on Cray 

hardware.
 Adopted as a language feature as part of the ISO standard (2008).
 Additional features expected to be published in due course.
 Compilers are catching up, e.g. popular ones

– Intel
– GCC
– G95 project

 Support libraries
– Opencoarrays project
– Rice University
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Models and tools for the next generation of HPC architectures?
 Coarray 
 Unified Parallel C (UPC)
 Global arrays, SHMEM
 OpenACC, OpenMP
 New languages – for programmability and performance? For example 

– Chapel
– X10
– Fortress (ceased)

Partitioned Global Address Spaces (PGAS)



How does it work?
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Coarray Syntax
 Globally addressible arrays amongst 

processes – images.
 Each image holds the same size 

copies of data objects – coarrays.
 Data objects with subscripts in square 

brackets indicates coarray, in any of 
the following forms
– X[*] ! Upper bound not set
– X[16] ! Max images 16
– X[p,q] ! p-by-q images
– X[p,*] ! Last bound not set
– X[8,0:7,1:*] ! Three codimensions

 [identifier] defines the number of 
images (and topology)

 Upper bound usually not defined.

Example

! Array coarrays

real :: a(1000,1000)[*]

real :: b(1000,1000)[16,16], x(10000)[16]

complex, allocatable, codimension[:] :: z(:)

complex, allocatable :: zz(:,:)[:]

! Scalar coarrays

integer :: m[*], n[*]

if (this_image() == 1) then

   input data

   do image = 1, num_images()

      u[image] = u ! Send u to all images

   enddo

endif
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Coarray Syntax (cont'd)
 Objects of derived types

type(type1) :: p[*]

type(type2), allocatable :: u[:]

Example

! Derived data types

type particle

   real :: m

   real :: x, y, z

   real :: u, v, w

end type particle

! Static storage

type(particle):: p(1000000)[*]

! Dynamic storage

type(particle), allocatable:: p(:)[:]

u = p(k)[16]%u

v = p(k)[16]%v
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Concept Example

program try_coarray

   real :: a[*] ! Declare a as coarray obj

   real, codimension[*] :: b ! Or this way

   ! a and b below are local to the iamge

   a = this_image()

   b = this_image()*2

   ! Access a and b on other images

   if (this_image() == 1) then

      do image = 1, num_images()

         print *, 'Image', this_image(), a[i], b[i]

      enddo

   endif

end program try_coarray

a=1, b=2

a=2, b=4

a=3, b=6

a=16, b=32

do i = 1, num_images()
   print *, a[i], b[i]
enddo

.

.

.

Images Execution of code
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 Access coarray objects by referencing to the object with an image index in square [ ], 
e.g.

x[i] = y ! Put local value y to x on image i

z = z[i] ! Get value of z on image i and assign it to local z

a(:,:)[i] = b(:) ! Whole array assignment not used in coarrays

 Note this is executed by every image (due to SPMD model)

x[16] = 1

 For selective execution

if (this_image() == 16) then

  x = 1

endif
 Note Fortran arrays use ( ) for array elements, not [ ], so there is no confusion!
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We are now ready to write our first complete parallel code
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program ex1

   implicit none

   real :: z[*]

   integer :: i

 

   sync all

   if (this_image() == 1) then

      read *, z

      print '("Image",i4,": before: z=",f10.5)', this_image(), z

      do i = 2, num_images()

         z[i] = z

      enddo

   endif

   sync all

   print '("Image",i4,": after: z=",f10.5)', this_image(), z

end program ex1
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Example: Broadcast

program ex1

   implicit none

   real :: z[*]

   integer :: i

 

   sync all

   if (this_image() == 1) then

      read *, z

      print '("Image",i4,": before: z=",f10.5)', this_image(), z

      do i = 2, num_images()

         z[i] = z

      enddo

   endif

   sync all

   print '("Image",i4,": after: z=",f10.5)', this_image(), z

end program ex1
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sync images (image-set)
 Sync with one image

sync images (16)
 Sync with a set of images

sync images ([1,3,5,7])
 Sync with every other

sync images (*)

 Sync all

sync all

if (this_image() == 1) then

   do image = 1, num_images()

      u[image] = u

   enddo

endif

sync all

sync all and sync images(*)

 sync images (*) and sync all (see right) 
are not equivalent:

if (this_image() == 1) then

   Set data needed by all others

   sync images (*)

else

   sync image (1)

   Get data set by image 1

endif



SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright ©  2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Locking and Critical Region

Locking
 Although frequent lock unlock are not expected in numerical computations, they are 

useful in some operations, such as push and pop operations of a queue and stack, 
etc.

 Use of ISO Fortran intrinsic modules are recommended, e.g.
subroutine job_manager(...)

  use, intrinsic :: iso_fortran_env, only: lock_type

  type(lock_type) :: stack_lock[*]

  … ...

  lock (stack_lock)

  if (stack_size > 0) then

     job = pop(stack)

  endif

  unlock (stack_lock) 

  … ...

end subroutine job_manager
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Critical Section

 Multiple images try to update the object p on image 6, but only one at a time

critical

   p[6] = p[6] + 1

   … …

end critical
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program ex2

   character(80) :: host[*] ! Note: host – local; host[i] – on image i

   integer :: i

   call get_environment_variable("HOSTNAME”,value=host)

   if (this_image() == 1) then

      do i = 1, num_images()

         print *, 'Hello from image', i, 'on host ', trim(host[i])

      enddo

   endif

end program ex2



Compiling coarray code
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GNU gfortran Compiler
 Requirements

– Version 5.1 and newer
– An MPI library compiled with GCC 5.1
– A recent CAF (Coarray Fortran) MPI library libcaf_mpi, provided by the 

Opencoarrays project (http://www.opencoarrays.org/)

 GCC 5.1: if to build yourself, include the essential options
./configure --prefix=/opt/gcc/5.1.0 --disable-bootstrap --enable-static --enable-shared --enable-shared-
libgcc --enable-languages=c,c++,fortran --disable-symvers --enable-threads=posix --enable-libatomic 
--enable-libgomp --enable-libquadmath --enable-libquadmath-support

 To compile
mpifort -std=f2008 -fcoarray=lib mycode.f90 -o mycode \

    -L${LIBCAF_MPI_PATH} -lcaf_mpi

 To run
mpirun -n num_procs ./mycode

http://www.opencoarrays.org/
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Intel Compiler
 Requirements

– Intel compiler 14 and newer
– Intel MPI runtime suite
– Intel Cluster Toolkit (for distributed memory coarray, licenced)

 To compile
ifort -coarray=shared [ -coarray-num-images=8 ] mycode.f90 -o mycode

ifort -coarray=distributed mycode.f90 -o mycode

 To run
export PATH=$BIN_INTEL_MPIRT:$PATH

export LD_LIBRARY_PATH=$LIB_INTEL_MPIRT:$LD_LIBRARY_PATH

export FOR_COARRAY_NUM_IMAGES=8

./mycode

mpirun -n num_procs ./mycode



A case study: Diffusion
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Problem
 Consider the density of some substances made of large number of particles.
 What’s the density of the substance after some time?
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Implementation: We simulate the process – the displacements of particles from 
the origin over time – by random walks
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Implementation (Serial) on one processor
 Use a 2D array x(num_steps,num_walkers)  to store displacements of walkers over 

time steps.

 Set each walker to start from the origin. Simulate the position of each walker:

do i =1, num_walkers

    do k = 1, num_steps

        toss a coin

        if (heads up) then

            x(k,i) = x(k,i) + dx

        else

            x(k,i) = x(k,i) – dx

        endif

     enddo

 enddo

local walkers

di
sp

la
ce

m
en

ts

X

k

i

2D array X of displacements
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Implementation: Using multiple processors
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Implementation (Parallel) using multi-processors
 Use a 2D array x(num_steps,local_walkers) on each process – images – to store 

displacements over time steps.

 Set each walker to start from the origin. Simulate the position of each walker:

do i =1, local_walkers

    do k = 1, num_steps

        toss a coin

        if (heads up) then

            x(k,i) = x(k,i) + dx

        else

            x(k,i) = x(k,i) – dx

        endif

     enddo

 enddo

local walkers

di
sp

la
ce

m
en

ts

X

k

i

2D array X of displacements
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Implementation (Parallel) – cont'd
 On image 1, use array xall(num_steps,num_walkers)  to harvest local x from all

sync all

do i = 1, num_images()

   xall(:,local_walkers*(i-1)+1:local_walkers*i) = x(:,:)[i]

enddo

sync all

 Imsage 1 to perform post processing, e.g. the mean square displacement and 
histogram of x, etc.

xall

x

xall

x x x

image1 image2 image3 imageN
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program rwalk_p
   implicit none
   integer :: i, k, myid, nsteps[*], nwalkers, lwalkers[*]
   real, allocatable :: x(:,:)[:], x2(:), xall(:,:)
   real :: r

   sync all
   if (1 == this_image()) then
      read *, nwalkers, nsteps
      lwalkers = nwalkers / num_images()
      do i = 2, num_images()
         lwalkers[i] = lwalkers
         nsteps[i] = nsteps
      enddo
      allocate(xall(nsteps,nwalkers),x2(nsteps))
   end if
   sync all
   allocate(x(nsteps,lwalkers)[*])

   call random_init(this_image())
   x(1,:) = 0
   do i = 1, lwalkers
      do k = 2, nsteps
         call random_number(r)
         if (r < 0.5) then
            x(k,i) = x(k-1,i) + 1;
         else
            x(k,i) = x(k-1,i) - 1;
         endif
      enddo
   enddo

   sync all
   if (1 == this_image()) then
      do i = 1, num_images()
         xall(:,lwalkers*(i-1)+1:lwalkers*i) = x(:,:)[i]
      enddo

      do k = 1, nsteps
         x2(k) = sum(xall(k,:)*xall(k,:))/nwalkers;
      enddo

      write xall, x2  out to files for plots.
   end if
   sync all
end program rwalk_p

Image 1 reads parameters
and broadcasts parameters
All images initialize local
storage

Every image performs
random walks

Image 1 collects
results from others
and performs post
processing



Performance?
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 Note, on distributed systems, the “get” operation
A(:,:) = A(:,:)[p] ! Copying data on image p to local storage

is equivalent to 
call MPI_Recv(buf,n*n,MPI_REAL,p,tag,comm,status,ierr)
Unmarshall data in buf to A



SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright ©  2001-2015 Western University

SEMINAR SERIES 2015
Coarray and MPI

 And the “put” operation
A(:,:)[p] = A(:,:) ! Push data to image p from local storage

is equivalent to
Marshall data from A into buf

call MPI_Send(buf,n*n,MPI_REAL,p,tag,comm,ierr)



SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright ©  2001-2015 Western University

SEMINAR SERIES 2015
Coarray and MPI

 Technically coarray operations are closely related to one sided 
communication (in MPI). This assignment on image other than p

A(:,:)[p] = A(:,:) ! Push data to image p from local storage

is equivalent to the following
call MPI_Win_create(A,ws,MPI_REAL,MPI_INFO_NULL,com,win,ierr)

call MPI_Win_fence(0,win,ierr)

call MPI_Put(A,n*n,MPI_REAL,p,start,n*n,MPI_REAL,win,ierr)

call MPI_Win_fence(0,win,ierr)

call MPI_Win_free(win,ierr)

n*n

A memory window on process p
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Process q Process p

A

offset1

A memory window for RMA

offset2

0

B

MPI_Put(A...)

MPI_Put(B...)
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 In serial code
A(:,:) = A(:,:) + B(:,:)

or simply
A = A + B

involves two loads and one store operations.
 While the parallel code

A(:,:)[p] = A(:,:) + B(:,:)

might involve the use of a temporary storage to hold the result of the 
RHS operation A + B before a long haul store – send data to image p.

 Our recent tests show this operation is more expensive than using 
native MPI calls directly.
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 Any comments on the broadcast operation?

      do i = 2, num_images()
         z[i] = z
      enddo



SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright ©  2001-2015 Western University

SEMINAR SERIES 2015
Broadcast: Complexity

Linear

t0

t1

t2

t3

t4

t5

t6

t7
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Improved

t0

t1

t2

t3

t0

t1

t2

t3



Summary
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 The SPMD model is assumed, i.e. every image executes the same program.

 The SPMD model assumes coarrays on every image, e.g.

real :: a(10000,10000)[*]

integer :: ma[*], na[*]

 The SPMD model requires self identification (“this image”) and others, via
– this_image()
– num_images()

 The control of work flow is done by the selection logics, e.g.

if (1 == this_image()) then

   call manager()

else

   call worker()

endif

 Memory coherence is not assured until you want to (e.g. via remote copies)

 Synchronizations
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Summary

 Progammable for both shared (multicore) and distributed (cluster) 
memory environment

 Easy to write high level code
 Expressive
 Productive

– Easy, takes less time to write
– Easy to read and maintain
– Reusable

 Efficient (yet to test)
 Having a promise future of availability and longevity
 Fortran and MATLAB users should consider in particular.
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