
SUMMERSCHOOL 2007SUMMERSCHOOL 2015Parallel Programming
without MPI – Using
Coarrays in Fortran
August 5, 2015

Ge Baolai
SHARCNET
Western University

Outline
 What is coarray
 How to write: Terms, syntax
 How to compile and run
 A case study
 Performance

Parallel processing and coarrays

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

The idea…
 Process 1 does not have the slice of A that Process k has
 It wants to copy it from Process k

A(is:ie,js:je)1 ← A(is:ie,js:je)k

1

k

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Shared Memory

Single Processes
 One process does not see the content of another

1 2

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Shared Memory

Multithreaded Processes
 Threads on multicores within a process see all data within the process

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
MPI

Distributed/Shared Memory - MPI
 One process does not see the content of others
 A process generally can't access the content of another directly
 Access data held by others is via message passing (e.g. MPI)

1 2 p

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

How do we do it with MPI? we would write
 On rank 1, to receive data from rank k

MPI_Recv(A(is:ie,js:je),n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Or, more generic
MPI_Recv(buffer,n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Unmarshal buffered data into A

 On rank k, to send data to rank 1
MPI_Send(A(is:ie,js:je),n,MPI_REAL,1,tag,MPI_COMM_WORLD)

Or
Marshal data from local A in the buffer

MPI_Send(buffer,n,MPI_REAL,1,tag,MPI_COMM_WORLD)

1

k

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

But what we really want is symbolically as simple as this…

A(is:ie,js:je) ← A(is:ie,js:je)k

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

So here comes this

A(is:ie,js:je) = A(is:ie,js:je)[k]

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

program main

 real :: x(10000), u(10000)

 complex :: y(10000)

 real :: A(1000,1000)[*] ! Indicate to be possessed by every process

 … ...

end program main

A(is:ie,js:je) = A(is:ie,js:je)[k]

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

Distributed Shared Memory
 Every process – image – holds the same size object A
 A is local to the image; A[k] references to the A on image k.
 Access to A[k] invokes underlying data communications, e.g. on 1

1 2 3 4

A(1:4,3:4) = A(1:4,3:4)[2]

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

program main

 real :: x(10000), u(10000)

 complex :: y(10000)

 real :: A(1000,1000)[*]

 … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray

program main

 real :: x(10000), u(10000)

 complex :: y(10000)

 real :: A(1000,1000)[*]

 … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
History and Current Development

 Introduced by R. W. Numrich and J. Reid in 1998.
 Many years of experience, as an extension to Fortran, mainly on Cray

hardware.
 Adopted as a language feature as part of the ISO standard (2008).
 Additional features expected to be published in due course.
 Compilers are catching up, e.g. popular ones

– Intel
– GCC
– G95 project

 Support libraries
– Opencoarrays project
– Rice University

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
History: Trend

Models and tools for the next generation of HPC architectures?
 Coarray
 Unified Parallel C (UPC)
 Global arrays, SHMEM
 OpenACC, OpenMP
 New languages – for programmability and performance? For example

– Chapel
– X10
– Fortress (ceased)

Partitioned Global Address Spaces (PGAS)

How does it work?

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Parallel Programming without MPI!

Coarray Syntax
 Globally addressible arrays amongst

processes – images.
 Each image holds the same size

copies of data objects – coarrays.
 Data objects with subscripts in square

brackets indicates coarray, in any of
the following forms
– X[*] ! Upper bound not set
– X[16] ! Max images 16
– X[p,q] ! p-by-q images
– X[p,*] ! Last bound not set
– X[8,0:7,1:*] ! Three codimensions

 [identifier] defines the number of
images (and topology)

 Upper bound usually not defined.

Example

! Array coarrays

real :: a(1000,1000)[*]

real :: b(1000,1000)[16,16], x(10000)[16]

complex, allocatable, codimension[:] :: z(:)

complex, allocatable :: zz(:,:)[:]

! Scalar coarrays

integer :: m[*], n[*]

if (this_image() == 1) then

 input data

 do image = 1, num_images()

 u[image] = u ! Send u to all images

 enddo

endif

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Parallel Programming without MPI!

Coarray Syntax (cont'd)
 Objects of derived types

type(type1) :: p[*]

type(type2), allocatable :: u[:]

Example

! Derived data types

type particle

 real :: m

 real :: x, y, z

 real :: u, v, w

end type particle

! Static storage

type(particle):: p(1000000)[*]

! Dynamic storage

type(particle), allocatable:: p(:)[:]

u = p(k)[16]%u

v = p(k)[16]%v

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Parallel Programming without MPI!

Concept Example

program try_coarray

 real :: a[*] ! Declare a as coarray obj

 real, codimension[*] :: b ! Or this way

 ! a and b below are local to the iamge

 a = this_image()

 b = this_image()*2

 ! Access a and b on other images

 if (this_image() == 1) then

 do image = 1, num_images()

 print *, 'Image', this_image(), a[i], b[i]

 enddo

 endif

end program try_coarray

a=1, b=2

a=2, b=4

a=3, b=6

a=16, b=32

do i = 1, num_images()
 print *, a[i], b[i]
enddo

.

.

.

Images Execution of code

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Accessing Coarrays

 Access coarray objects by referencing to the object with an image index in square [],
e.g.

x[i] = y ! Put local value y to x on image i

z = z[i] ! Get value of z on image i and assign it to local z

a(:,:)[i] = b(:) ! Whole array assignment not used in coarrays

 Note this is executed by every image (due to SPMD model)

x[16] = 1

 For selective execution

if (this_image() == 16) then

 x = 1

endif
 Note Fortran arrays use () for array elements, not [], so there is no confusion!

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Examples

We are now ready to write our first complete parallel code

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Example: Broadcast

program ex1

 implicit none

 real :: z[*]

 integer :: i

 sync all

 if (this_image() == 1) then

 read *, z

 print '("Image",i4,": before: z=",f10.5)', this_image(), z

 do i = 2, num_images()

 z[i] = z

 enddo

 endif

 sync all

 print '("Image",i4,": after: z=",f10.5)', this_image(), z

end program ex1

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Example: Broadcast

program ex1

 implicit none

 real :: z[*]

 integer :: i

 sync all

 if (this_image() == 1) then

 read *, z

 print '("Image",i4,": before: z=",f10.5)', this_image(), z

 do i = 2, num_images()

 z[i] = z

 enddo

 endif

 sync all

 print '("Image",i4,": after: z=",f10.5)', this_image(), z

end program ex1

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Synchronization

sync images (image-set)
 Sync with one image

sync images (16)
 Sync with a set of images

sync images ([1,3,5,7])
 Sync with every other

sync images (*)

 Sync all

sync all

if (this_image() == 1) then

 do image = 1, num_images()

 u[image] = u

 enddo

endif

sync all

sync all and sync images(*)

 sync images (*) and sync all (see right)
are not equivalent:

if (this_image() == 1) then

 Set data needed by all others

 sync images (*)

else

 sync image (1)

 Get data set by image 1

endif

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Locking and Critical Region

Locking
 Although frequent lock unlock are not expected in numerical computations, they are

useful in some operations, such as push and pop operations of a queue and stack,
etc.

 Use of ISO Fortran intrinsic modules are recommended, e.g.
subroutine job_manager(...)

 use, intrinsic :: iso_fortran_env, only: lock_type

 type(lock_type) :: stack_lock[*]

 … ...

 lock (stack_lock)

 if (stack_size > 0) then

 job = pop(stack)

 endif

 unlock (stack_lock)

 … ...

end subroutine job_manager

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray: Locking and Critical Region

Critical Section

 Multiple images try to update the object p on image 6, but only one at a time

critical

 p[6] = p[6] + 1

 … …

end critical

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Example: Harvest

program ex2

 character(80) :: host[*] ! Note: host – local; host[i] – on image i

 integer :: i

 call get_environment_variable("HOSTNAME”,value=host)

 if (this_image() == 1) then

 do i = 1, num_images()

 print *, 'Hello from image', i, 'on host ', trim(host[i])

 enddo

 endif

end program ex2

Compiling coarray code

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Compilers

GNU gfortran Compiler
 Requirements

– Version 5.1 and newer
– An MPI library compiled with GCC 5.1
– A recent CAF (Coarray Fortran) MPI library libcaf_mpi, provided by the

Opencoarrays project (http://www.opencoarrays.org/)

 GCC 5.1: if to build yourself, include the essential options
./configure --prefix=/opt/gcc/5.1.0 --disable-bootstrap --enable-static --enable-shared --enable-shared-
libgcc --enable-languages=c,c++,fortran --disable-symvers --enable-threads=posix --enable-libatomic
--enable-libgomp --enable-libquadmath --enable-libquadmath-support

 To compile
mpifort -std=f2008 -fcoarray=lib mycode.f90 -o mycode \

 -L${LIBCAF_MPI_PATH} -lcaf_mpi

 To run
mpirun -n num_procs ./mycode

http://www.opencoarrays.org/

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Compilers

Intel Compiler
 Requirements

– Intel compiler 14 and newer
– Intel MPI runtime suite
– Intel Cluster Toolkit (for distributed memory coarray, licenced)

 To compile
ifort -coarray=shared [-coarray-num-images=8] mycode.f90 -o mycode

ifort -coarray=distributed mycode.f90 -o mycode

 To run
export PATH=$BIN_INTEL_MPIRT:$PATH

export LD_LIBRARY_PATH=$LIB_INTEL_MPIRT:$LD_LIBRARY_PATH

export FOR_COARRAY_NUM_IMAGES=8

./mycode

mpirun -n num_procs ./mycode

A case study: Diffusion

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion

Problem
 Consider the density of some substances made of large number of particles.
 What’s the density of the substance after some time?

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion

Implementation: We simulate the process – the displacements of particles from
the origin over time – by random walks

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion

Implementation (Serial) on one processor
 Use a 2D array x(num_steps,num_walkers) to store displacements of walkers over

time steps.

 Set each walker to start from the origin. Simulate the position of each walker:

do i =1, num_walkers

 do k = 1, num_steps

 toss a coin

 if (heads up) then

 x(k,i) = x(k,i) + dx

 else

 x(k,i) = x(k,i) – dx

 endif

 enddo

 enddo

local walkers

di
sp

la
ce

m
en

ts

X

k

i

2D array X of displacements

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion

Implementation: Using multiple processors

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion

Implementation (Parallel) using multi-processors
 Use a 2D array x(num_steps,local_walkers) on each process – images – to store

displacements over time steps.

 Set each walker to start from the origin. Simulate the position of each walker:

do i =1, local_walkers

 do k = 1, num_steps

 toss a coin

 if (heads up) then

 x(k,i) = x(k,i) + dx

 else

 x(k,i) = x(k,i) – dx

 endif

 enddo

 enddo

local walkers

di
sp

la
ce

m
en

ts

X

k

i

2D array X of displacements

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion

Implementation (Parallel) – cont'd
 On image 1, use array xall(num_steps,num_walkers) to harvest local x from all

sync all

do i = 1, num_images()

 xall(:,local_walkers*(i-1)+1:local_walkers*i) = x(:,:)[i]

enddo

sync all

 Imsage 1 to perform post processing, e.g. the mean square displacement and
histogram of x, etc.

xall

x

xall

x x x

image1 image2 image3 imageN

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Diffusion
program rwalk_p
 implicit none
 integer :: i, k, myid, nsteps[*], nwalkers, lwalkers[*]
 real, allocatable :: x(:,:)[:], x2(:), xall(:,:)
 real :: r

 sync all
 if (1 == this_image()) then
 read *, nwalkers, nsteps
 lwalkers = nwalkers / num_images()
 do i = 2, num_images()
 lwalkers[i] = lwalkers
 nsteps[i] = nsteps
 enddo
 allocate(xall(nsteps,nwalkers),x2(nsteps))
 end if
 sync all
 allocate(x(nsteps,lwalkers)[*])

 call random_init(this_image())
 x(1,:) = 0
 do i = 1, lwalkers
 do k = 2, nsteps
 call random_number(r)
 if (r < 0.5) then
 x(k,i) = x(k-1,i) + 1;
 else
 x(k,i) = x(k-1,i) - 1;
 endif
 enddo
 enddo

 sync all
 if (1 == this_image()) then
 do i = 1, num_images()
 xall(:,lwalkers*(i-1)+1:lwalkers*i) = x(:,:)[i]
 enddo

 do k = 1, nsteps
 x2(k) = sum(xall(k,:)*xall(k,:))/nwalkers;
 enddo

 write xall, x2 out to files for plots.
 end if
 sync all
end program rwalk_p

Image 1 reads parameters
and broadcasts parameters
All images initialize local
storage

Every image performs
random walks

Image 1 collects
results from others
and performs post
processing

Performance?

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray and MPI

 Note, on distributed systems, the “get” operation
A(:,:) = A(:,:)[p] ! Copying data on image p to local storage

is equivalent to
call MPI_Recv(buf,n*n,MPI_REAL,p,tag,comm,status,ierr)
Unmarshall data in buf to A

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray and MPI

 And the “put” operation
A(:,:)[p] = A(:,:) ! Push data to image p from local storage

is equivalent to
Marshall data from A into buf

call MPI_Send(buf,n*n,MPI_REAL,p,tag,comm,ierr)

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Coarray and MPI

 Technically coarray operations are closely related to one sided
communication (in MPI). This assignment on image other than p

A(:,:)[p] = A(:,:) ! Push data to image p from local storage

is equivalent to the following
call MPI_Win_create(A,ws,MPI_REAL,MPI_INFO_NULL,com,win,ierr)

call MPI_Win_fence(0,win,ierr)

call MPI_Put(A,n*n,MPI_REAL,p,start,n*n,MPI_REAL,win,ierr)

call MPI_Win_fence(0,win,ierr)

call MPI_Win_free(win,ierr)

n*n

A memory window on process p

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Remote Memory Access (RMA)

Process q Process p

A

offset1

A memory window for RMA

offset2

0

B

MPI_Put(A...)

MPI_Put(B...)

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Performance Concerns

 In serial code
A(:,:) = A(:,:) + B(:,:)

or simply
A = A + B

involves two loads and one store operations.
 While the parallel code

A(:,:)[p] = A(:,:) + B(:,:)

might involve the use of a temporary storage to hold the result of the
RHS operation A + B before a long haul store – send data to image p.

 Our recent tests show this operation is more expensive than using
native MPI calls directly.

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Performance Concerns

 Any comments on the broadcast operation?

 do i = 2, num_images()
 z[i] = z
 enddo

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Broadcast: Complexity

Linear

t0

t1

t2

t3

t4

t5

t6

t7

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Broadcast: Complexity

Improved

t0

t1

t2

t3

t0

t1

t2

t3

Summary

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Summary

 The SPMD model is assumed, i.e. every image executes the same program.

 The SPMD model assumes coarrays on every image, e.g.

real :: a(10000,10000)[*]

integer :: ma[*], na[*]

 The SPMD model requires self identification (“this image”) and others, via
– this_image()
– num_images()

 The control of work flow is done by the selection logics, e.g.

if (1 == this_image()) then

 call manager()

else

 call worker()

endif

 Memory coherence is not assured until you want to (e.g. via remote copies)

 Synchronizations

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
Summary

 Progammable for both shared (multicore) and distributed (cluster)
memory environment

 Easy to write high level code
 Expressive
 Productive

– Easy, takes less time to write
– Easy to read and maintain
– Reusable

 Efficient (yet to test)
 Having a promise future of availability and longevity
 Fortran and MATLAB users should consider in particular.

SHARCNET Seminars: Parallel Programming without MPI – Using Coarrays in Fortran, August 5, 2015Copyright © 2001-2015 Western University

SEMINAR SERIES 2015
References

[1] Michael Metcalf, John Reid and Malcolm Cohen, “Modern Fortran
Explained”, Oxford University Press, New York, 2011.

[2] R. W. Numrich, J. Reid, “Co-array Fortran for parallel programming”,
ACM SIGPLAN Fortran Forum, Vol.17, Iss. 2, 1998, pp. 1-31.

[3] JTC1/SC22 – The international standardization subcommittee for
programming languages (http://www.open-std.org/jtc1/sc22/).

[4] The Fortran standards committee (http://www.nag.co.uk/sc22wg5/).

[5] William Gropp et al, “Using MPI-2”, The MIT Press, 1999.

[6] Jonathan Dursi, “HPC is dying, and MPI is killing it”, his blog,
http://www.dursi.ca/.

http://www.nag.co.uk/sc22wg5/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Basics: Free Fortran Compilers
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	References

