Transfer Learning with TensorFlow Hub

Weiguang Guan (guanw@sharcnet.ca)

SHARNet/Compute Canada

Outline

- Basics of deep learning neural networks
- Introduction to transfer learning and Tensorflow Hub
- Case study (using Tensorflow, keras, Tensorflow Hub)

Code:

https://staff.sharcnet.ca/guanw/2022/transferLearning.tar.gz

Basics of Neural Networks

- Made up of a number of layers
- Each layer contains
 - Zero or more trainable variables and
 - Zero or more non-trainable variables
- Trainable variable != Trainable parameter in Tensorflow

In deep learning terminology: weights = variables = parameters?

Training Mode vs Inference Mode

Training mode

- Trainable variables in a neural network are gradually updated in training mode so as to minimize a predefined loss
- Two passes
 - Feed forward
 - Back propagation

Inference mode

- No variables are changed in inference mode
- One pass
 - Feed forward

Basic Cleft or V-graft

cut for grafting

and inserted

buds will shoot in spring

What is Transfer Learning

Definition: Using a pre-trained model to solve a new similar problem

How to Apply Transfer Learning

- Model selection
 - Similar problems: image-based or text-based or voice-based
 - Pre-trained on large training data
- Usage:
 - As feature extractor or
 - Base model to be fine tuned together with added layers

Why Transfer Learning

- Some pre-trained models are proven to be successful and valuable
 - Large scale architectures
 - Trained on large datasets (like ImageNet)
 - Being refined many times
 - Training such a large network needs GPU resources
- Transfer learning
 - Transfer the success (or knowledge) from previous training
 - Training is easier and faster
 - Less trial-n-error in adjusting architecture

The Sources of Pre-trained Models

- Pre-trained models of your own or other's tf.keras.models.load_model(filepath, ...)
- Keras pre-trained models keras.applications.MobileNetV2(weights='imagenet', include_top=False, ...)
- **Tensorflow Hub** (previously Model Zoo) pre-trained models hub.KerasLayer(url, trainable=False, ...)

Tensorflow Hub

- Search for the model you need in the Hub (<u>https://tfhub.dev/</u>)
- Understand the model
- Use the model

How to Do Transfer Learning

- Choose appropriate pre-trained model
 - Type of the application (image-based, text-based, ...)
 - Scale of the pre-trained model
- Compatibility at both the input and output ends of the base model
 - Shape
 - Data type
- Train with the base model frozen before fine tuning

Case Study

Task: Transfer pre-trained model MobileNet V2 on classification of images of dogs and cats.

- Load the pre-trained model via Keras interface
- Load the pre-trained model via Tensorflow Hub interface