Introduction to Eclipse II: Debugging MPI code

September 8, 2021

Ge Baolai, *Western University* SHARCNET | Compute Ontario | Compute Canada

Outline

- Eclipse
- Scope of the talk
- Developing C/C++ and Fortran code
- Debugging serial code
- Debugging parallel MPI code
- Further reading

General Interest Seminars 2021-2022

About Eclipse

What is Eclipse

An IDE for development and debugging

- C/C++
- Fortran
- Other languages
- MPI, OpenMP, threaded
- Others?

It runs on your local computer (and remote systems).

What Eclipse is not

It is a front-end, with an editor and code analyzer for C/C++, Fortran, MPI and others, to the underlying compilers and debuggers. It DOES NOT come with

- Compilers
- Debuggers
- Memory analyzers
- Schedulers

Why Eclipse

Debugging parallel code is not straightforward. Options for debugging parallel, MPI code

- DDT (cost)
- TotalView (cost)
- gdb (free) command line based, hard to use.
- Eclipse (free) GUI, reasonably intuitive to use.
- Others?

Why Eclipse

Requirements

- Windows
 - Compilers, debugger, e.g. from cigywin distribution.
 - But WSL a true Linux environment running on top of Windows by Microsoft - is recommended. See a tutorial on enabling WSL on Windows at https://youtube.sharcnet.ca/.
- Linux
 - GCC compilers, gdb.
 - make, cmake.
 - OpenMPI
- Mac OS

General advice

- It's always a good practice to install an MPI implementation on your own machine (laptop or desktop), so you have immediate access and can practice and develop code.
- For Linux and Mac OS X, install OpenMPI or MPICH.
- For Windows, we recommend
 - Enable Windows Subsystem for Linux (WSL) and
 - Install a Linux distro, e.g. Ubuntu, Debian, etc. on it.
- Install latest GNU compilers and gdb.

Scope of The Tutorial

What are covered and what aren't

What to be introduced in this tutorial

- Eclipse on Linux.
- C/C++ and Fortran code.
- MPI code.

What NOT to be covered

- Threaded, OpenMP code.
- OpenACC code.
- Non GCC compilers, debuggers.
- Running and debugging code on remote systems.
- Use of git.

Development and Debugging

Using gdb and avoiding stepping into foreign territories

One may set in \$HOME/.gdbinit rules to skip non user sources, for example, by putting the following lines

Skip C++ compiler / reserved namespace symbols...

```
skip -rfu ^__.*:..*
```

Skip ISO C++ namespace symbols...

```
skip -rfu ^std.*:..*
```

skip -rfu ^tr.*:..*

skip -rfu ^posix::.*

Skip these namespaces' symbols...

```
skip -rfu ^boost::.*
```

skip -rfu ^cv::.*

Creating Fortran project

Rule of thumb

- Choose C/C++ project
- Choose C/C++ managed build
- Add Fortran toolchains
- Configure the build to use gfortran (or mpifort if using OpenMPI)

Having multiple files?

If you are creating or importing a new project that has multiple source files, you may just put them in the src folder. The CDT make management is smart to create a Makefile that takes care them.

