Hybrid MPI and OpenMP
Parallel Programming

Jemmy Hu

SHARCNET HPTC Consultant
July 8, 2015

Objectives

difference between message passing and shared
memory models (MPI, OpenMP)

why or why not hybrid?

a common model for utilizing both MPI and
OpenMP approaches to parallel programming

example hybrid code

compile and execute hybrid code on SHARCNET
clusters

Hybrid Distributed-Shared Memory Architecture

network

* Employ both shared and distributed memory architectures

* The shared memory component is usually a cache coherent SMP node. Processors

on a given SMP node can address that node's memory as global.

* The distributed memory component is the networking of multiple SMP nodes. SMPs know
only about their own memory - not the memory on another SMP. Therefore, network
communications are required to move data from one SMP to another.

* Current trends seem to indicate that this type of memory architecture will continue to
prevail: more cpus per SMP node, less memory or bandwidth ratio per cpu.

MPI

standard for distributed memory communications

provides an explicit means to use message passing on
distributed memory clusters

specializes in packing and sending complex data structures
over the network

data goes to the process

synchronization must be handled explicitly due to the nature
of distributed memory

OpenMP

a shared memory paradigm, implicit intra-node
communication

efficient utilization of shared memory SMP systems

easy threaded programming, supported by most major
compilers

the process goes to the data, communication among threads is
implicit

MPI vs. OpenMP

— Pure MPI Pros: — Pure OpenMP Pros:
* Portable to distributed and * Easy to implement parallelism
shared memory machines. * Implicit Communication
* Scales beyond one node * Low latency, high bandwidth
* No data placement problem * Dynamic load balancing
— Pure MPI Cons: — Pure OpenMP Cons:
* EXxplicit communication * Only on shared memory
* High latency, low bandwidth nodes/machines
- Difficult load balancing * Scale within one node

* data placement problem

Why Hybrid: employ the best from both worlds

e MPI makes inter-node e OpenMP allows for high

communication relatively easy Eﬁiﬁ%ﬁ%ﬁgrﬁn(};&aﬁﬁl@y

threading
e MPI facilitates efficient inter-node

scatters, reductions, and sending of o O%enMP provides .é{p inperfa(f:e foi1
COIHPIEX data structures the concurrent utilization ot eac

SMP's shared memory, which is
much more efficient that using

e Since program state synchronization message passing

is done explicitly with messages, o
: : e Program state synchronization is
correctness issues are relatively easy to implicit on each SMP node

avoid which eliminates much of the
overhead associated with
message passing

Overall Goal:
to reduce communication needs and memory consumption,
or improve load balance

Why not Hybrid?

* OpenMP code performs worse than pure MPI code within node

— all threads are idle except one while MPI communication
— data placement, cache coherence
— critical section for shared variables

* Possible waste of effort

A Common Hybrid Approach

From sequential code, parallel with MPI first, then try to add
OpenMP.

From MPI code, add OpenMP
From OpenMP code, treat as serial code.

Simplest and least error-prone way is to use MPI outside parallel
region, and allow only master thread to communicate between MPI
tasks.

Could use MPI inside parallel region with thread-safe MPI.

Hybrid — Program Model

e Start with MPI initialization

* Create OMP parallel regions
within MPI task (process).

- Serial regions are the
master thread or MPI task.

- MPI rank is known to all
threads

 Call MPI library in serial and
parallel regions.

e Finalize MPI

Program hybrid
call MPL_INIT (ierr)
call MPI_COMM_RANK (...)
call MPI_COMM SIZE (...)
. some computation and MPI
communication
... start OpenMP within node
1$OMP PARALLEL DO PRIVATE(i)

I$OMP& SHARED(n)
do i=1,n
... computation
enddo
I1$SOMP END PARALLEL DO
. some computation and MPI
communication
call MPI_FINALIZE (ierr)
end

Hybrid MPI+OpenMP Programming

Each MPI process spawns multiple OpenMP threads

{
pardllel paraliel
sEclion ganion
rank 0 el |y AE
— o e o e
Carer| B BN * G —
masler k_] k il
Threac o .
O multic T
threaas threads
r'npirun
{ {
parallal paraliel
section saciion
} }
— F | F J
rank 1 | —» nr > ? - tr' - ':i' —
Thread - -
rriulti- il
threads threads

MPI vs. MPI+OpenMP

—_r —
—_ —
< <
2 12
L L
Z. 4
- c
o -
] D
L L
- o
- o
-] -’
J 2
— _
L L
St —
- o

Node
MPI MPI+OpenMP

16 cpus across 4 nodes 16 cpus across 4 nodes
16 MPI processes 1 MPI process and 4 threads per node

Example: Calculating 7t

* Numerical integration

1 4
J-[}l+.1'

* Discretization:
A=1/N: step = 1/NBIN
x;=(i+0.5)A (i=0,...,N-1)
N-1 4

2

i—01+x]

dx=1

2

A=

#include <stdio.h>

#define NBIN 100000

void main() {
int i1; double step,x,sum=0.0,pi;
step = 1.0/NBIN;
for (i=0; i<NBIN; i++) {

X = (i1+0.5)*step;
sum += 4.0/(1.0+x*x);}
pi = sum*step;

printf(“PI = %f\n",pi);

4/(1+x2)

f(x)

pi — MPI version

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h> I* MPI header file */
#define NUM_STEPS 100000000

int main(int argc, char *argv[]) {
int nprocs;
int myid;
double start_time, end_time;
inti;
double x, pi;
double sum = 0.0;
double step = 1.0/(double) NUM_STEPS;

I* initialize for MPI */

MPL_Init(&argc, &argv); I* starts MPI */

I* get number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

I* get this process's nhumber (ranges from 0 to nprocs - 1) */
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

I* do computation */
for (i=myid; i <NUM_STEPS; i += nprocs){ [* changed */
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
sum = step * sum; I* changed */
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

I* print results */
if (myid == 0) {
printf("parallel program results with %d processes:\n", nprocs);
printf("pi = %g (%17.15f)\n",pi, pi);
}

I* clean up for MPI */
MPI_Finalize();

return 0O;

OpenMP, reduction clause

#include <stdio.h>
#include <omp.h>
#define NBIN 100000
int main(int argc, char *argv[]) {
int I, nthreads;
double x, pi;
double sum = 0.0;
double step = 1.0/(double) NUM_STEPS;

I* do computation -- using all available threads */
#pragma omp parallel

{

#pragma omp for private(x) reduction(+:sum) schedule(runtime)
for (i=0; i < NUM_STEPS; ++i) {

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}
#pragma omp master
{
pi = step * sum;
}
}

printf("PI = %f\n",pi);
}

MPI+OpenMP Calculation of

 Each MPI process integrates over a range of width 1/nproc,
as a discrete sum of nbin bins each of width step

* Within each MPI process, nthreads OpenMP threads

perform part of the sum as in omp_pi.c
A
rank O

=

Z\N

N

4/(14x2)

f(x)

nbin*step
- -
nproc*(nbin*step)

MPI_OpenMP version

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h> I* MPI header file */

#include <omp.h> I* OpenMP header file */
#define NUM_STEPS 100000000

#define MAX_THREADS 4

int main(int argc, char *argv[]) {
int nprocs, myid;
int tid, nthreads, nbin;
double start_time, end_time;
double pi, Psum=0.0, sum[MAX_THREADS]={0.0};
double step = 1.0/(double) NUM_STEPS;

I* initialize for MPI */

MPIL_Init(&argc, &argv); I* starts MPI */

I* get number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

I* get this process's number (ranges from 0 to nprocs - 1) */
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

nbin= NUM_STEPS/nprocs;

#pragma omp parallel private(tid)
{ - -
int i;
double x;
nthreads=omp_get_num_threads();
tid=omp_get_thread_num();
for (i=nbin*myid+tid; i < nbin*(myid+1); i+= nthreads) { /* changed*/
X = (i+0.5)*step;
sum[tid] += 4.0/(1.0+x*x);
}
}
for(tid=0; tid<nthreads; tid++) [*sum by each mpi process?*/
Psum += sum[tid]*step;

MPI_Reduce(&Psum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

if (myid == 0) {
printf("parallel program results with %d processes:\n", nprocs);
printf("pi = %g (%17.15f)\n",pi, pi);

}

MPIL_Finalize();

return 0O;

Compile and Run

* Compile (default intel compilers on SHARCNT systems)
mpicc -0 pi-mpi pi-mpi.c
CC -openmp -0 pi-omp pi-omp.c
mpicc -openmp -0 pi-hybrid pi-hybrid.c

* Run (sqsub)
sqsub -q mpi -n 8 --ppn=4 -r 10m -o pi-mpi.log ./pi-mpi
sqsub -q threaded -n 8 -r 10m -o pi-omp.log ./pi-omp
sqsub -q mpi -n 8 --ppn=1 --tpp=4 -r 10m -o pi-hybrid.log ./pi-hybrid

Example codes and results are in:
/home/jemmyhu/CES706/Hybrid/pi/

Results
« MPI

MPI| uses 8 processes:
pi = 3.14159 (3.141592653589828)

* OpenMP
OpenMP uses 8 threads:
pi = 3.14159 (3.141592653589882)

* Hybrid
mpi process 0 uses 4 threads
mpi process 1 uses 4 threads
mpi process 1 sum is 1.287 (1.287002217586605)
mpi process 0 sum is 1.85459 (1.854590436003132)
Total MPI processes are 2
pi = 3.14159 (3.141592653589738)

Summary

Computer systems in High-performance computing (HPC) feature a
hierarchical hardware design (multi-core nodes connected via a network)

OpenMP can take advantage of shared memory to reduce communication
overhead

Pure OpenMP performs better than pure MPI within node is a necessity to
have hybrid code better than pure MPI across node.

Whether the hybrid code performs better than MPI code depends on whether
the communication advantage outcomes the thread overhead, etc. or not.

There are more positive experiences of developing hybrid MPI/OpenMP
parallel paradigms now. It’s encouraging to adopt hybrid paradigm in your
own application.

References

http://openmp.org/sc13/HybridPP_Slides.pdf
https://www.cct.Isu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf

http://www.cac.cornell.edu/education/Training/parallelMay2011/Hybrid_T
alk-110524.pdf

	Hybrid MPI and OpenMP Parallel Programming
	Objectives
	Slide 3
	MPI
	OpenMP
	Slide 6
	Why Hybrid: employ the best from both worlds
	Slide 8
	A Common Hybrid Approach
	Hybrid – Program Model
	Slide 11
	MPI vs. MPI+OpenMP
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Compile and Run
	Results
	Slide 22
	References

