

Hybrid MPI and OpenMP
Parallel Programming

Jemmy Hu

SHARCNET HPTC Consultant
July 8, 2015

Objectives

• difference between message passing and shared
memory models (MPI, OpenMP)

• why or why not hybrid?

• a common model for utilizing both MPI and
OpenMP approaches to parallel programming

• example hybrid code

• compile and execute hybrid code on SHARCNET
clusters

Hybrid Distributed-Shared Memory Architecture

• Employ both shared and distributed memory architectures
• The shared memory component is usually a cache coherent SMP node. Processors
 on a given SMP node can address that node's memory as global.
• The distributed memory component is the networking of multiple SMP nodes. SMPs know
 only about their own memory - not the memory on another SMP. Therefore, network
 communications are required to move data from one SMP to another.
• Current trends seem to indicate that this type of memory architecture will continue to
 prevail: more cpus per SMP node, less memory or bandwidth ratio per cpu.

MPI
• standard for distributed memory communications

• provides an explicit means to use message passing on
distributed memory clusters

• specializes in packing and sending complex data structures
over the network

• data goes to the process

• synchronization must be handled explicitly due to the nature
of distributed memory

OpenMP
• a shared memory paradigm, implicit intra-node

communication

• efficient utilization of shared memory SMP systems

• easy threaded programming, supported by most major
compilers

• the process goes to the data, communication among threads is

implicit

MPI vs. OpenMP

– Pure MPI Pros:
• Portable to distributed and

shared memory machines.
• Scales beyond one node
• No data placement problem

– Pure MPI Cons:
• Explicit communication
• High latency, low bandwidth
• Difficult load balancing

– Pure OpenMP Pros:
• Easy to implement parallelism
• Implicit Communication
• Low latency, high bandwidth
• Dynamic load balancing

– Pure OpenMP Cons:
• Only on shared memory

nodes/machines
• Scale within one node
• data placement problem

Why Hybrid: employ the best from both worlds

● OpenMP allows for high
performance, and relatively
straightforward, intra-node
threading

● OpenMP provides an interface for
the concurrent utilization of each
SMP's shared memory, which is
much more efficient that using
message passing

● Program state synchronization is
implicit on each SMP node,
which eliminates much of the
overhead associated with
message passing

● MPI makes inter-node
communication relatively easy

● MPI facilitates efficient inter-node
scatters, reductions, and sending of
complex data structures

● Since program state synchronization
is done explicitly with messages,
correctness issues are relatively easy to
avoid

 Overall Goal:
 to reduce communication needs and memory consumption,
 or improve load balance

Why not Hybrid?

• OpenMP code performs worse than pure MPI code within node

– all threads are idle except one while MPI communication
– data placement, cache coherence
– critical section for shared variables

• Possible waste of effort

A Common Hybrid Approach

• From sequential code, parallel with MPI first, then try to add
OpenMP.

• From MPI code, add OpenMP

• From OpenMP code, treat as serial code.

• Simplest and least error-prone way is to use MPI outside parallel
region, and allow only master thread to communicate between MPI
tasks.

• Could use MPI inside parallel region with thread-safe MPI.

Hybrid – Program Model

• Start with MPI initialization

• Create OMP parallel regions
within MPI task (process).

- Serial regions are the
master thread or MPI task.

- MPI rank is known to all
threads

• Call MPI library in serial and
parallel regions.

• Finalize MPI

 Program hybrid
 call MPI_INIT (ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI
communication
 … start OpenMP within node
 !$OMP PARALLEL DO PRIVATE(i)
 !$OMP& SHARED(n)
 do i=1,n
 … computation
 enddo
 !$OMP END PARALLEL DO
 … some computation and MPI
communication
 call MPI_FINALIZE (ierr)
 end

MPI vs. MPI+OpenMP

MPI MPI+OpenMP
Node

16 cpus across 4 nodes 16 cpus across 4 nodes
16 MPI processes 1 MPI process and 4 threads per node

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h> /* MPI header file */
#define NUM_STEPS 100000000

int main(int argc, char *argv[]) {
 int nprocs;
 int myid;
 double start_time, end_time;
 int i;
 double x, pi;
 double sum = 0.0;
 double step = 1.0/(double) NUM_STEPS;

 /* initialize for MPI */
 MPI_Init(&argc, &argv); /* starts MPI */
 /* get number of processes */
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 /* get this process's number (ranges from 0 to nprocs - 1) */
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

pi – MPI version

 /* do computation */
 for (i=myid; i < NUM_STEPS; i += nprocs) { /* changed */
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 sum = step * sum; /* changed */
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

/* print results */
 if (myid == 0) {
 printf("parallel program results with %d processes:\n", nprocs);
 printf("pi = %g (%17.15f)\n",pi, pi);
 }

 /* clean up for MPI */
 MPI_Finalize();

 return 0;
}

#include <stdio.h>
#include <omp.h>
#define NBIN 100000
int main(int argc, char *argv[]) {
 int I, nthreads;
 double x, pi;
 double sum = 0.0;
 double step = 1.0/(double) NUM_STEPS;

 /* do computation -- using all available threads */
 #pragma omp parallel
 {
 #pragma omp for private(x) reduction(+:sum) schedule(runtime)
 for (i=0; i < NUM_STEPS; ++i) {
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 #pragma omp master
 {
 pi = step * sum;
 }
 }
 printf("PI = %f\n",pi);
}

OpenMP, reduction clause

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h> /* MPI header file */
#include <omp.h> /* OpenMP header file */
#define NUM_STEPS 100000000
#define MAX_THREADS 4

int main(int argc, char *argv[]) {
 int nprocs, myid;
 int tid, nthreads, nbin;
 double start_time, end_time;
 double pi, Psum=0.0, sum[MAX_THREADS]={0.0};
 double step = 1.0/(double) NUM_STEPS;

 /* initialize for MPI */
 MPI_Init(&argc, &argv); /* starts MPI */
 /* get number of processes */
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 /* get this process's number (ranges from 0 to nprocs - 1) */
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 nbin= NUM_STEPS/nprocs;

MPI_OpenMP version

#pragma omp parallel private(tid)
{
 int i;
 double x;
 nthreads=omp_get_num_threads();
 tid=omp_get_thread_num();
 for (i=nbin*myid+tid; i < nbin*(myid+1); i+= nthreads) { /* changed*/
 x = (i+0.5)*step;
 sum[tid] += 4.0/(1.0+x*x);
 }
}
 for(tid=0; tid<nthreads; tid++) /*sum by each mpi process*/
 Psum += sum[tid]*step;

MPI_Reduce(&Psum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

 if (myid == 0) {
 printf("parallel program results with %d processes:\n", nprocs);
 printf("pi = %g (%17.15f)\n",pi, pi);
 }
 MPI_Finalize();

 return 0;
}

Compile and Run

• Compile (default intel compilers on SHARCNT systems)

 mpicc -o pi-mpi pi-mpi.c

 cc -openmp -o pi-omp pi-omp.c

 mpicc -openmp -o pi-hybrid pi-hybrid.c

• Run (sqsub)
 sqsub -q mpi -n 8 --ppn=4 -r 10m -o pi-mpi.log ./pi-mpi

 sqsub -q threaded -n 8 -r 10m -o pi-omp.log ./pi-omp

 sqsub -q mpi -n 8 --ppn=1 --tpp=4 -r 10m -o pi-hybrid.log ./pi-hybrid

Example codes and results are in:
/home/jemmyhu/CES706/Hybrid/pi/

Results

• MPI
 MPI uses 8 processes:
 pi = 3.14159 (3.141592653589828)

• OpenMP
 OpenMP uses 8 threads:
 pi = 3.14159 (3.141592653589882)

• Hybrid
mpi process 0 uses 4 threads
mpi process 1 uses 4 threads
mpi process 1 sum is 1.287 (1.287002217586605)
mpi process 0 sum is 1.85459 (1.854590436003132)
Total MPI processes are 2
pi = 3.14159 (3.141592653589738)

Summary

• Computer systems in High-performance computing (HPC) feature a
hierarchical hardware design (multi-core nodes connected via a network)

• OpenMP can take advantage of shared memory to reduce communication
overhead

• Pure OpenMP performs better than pure MPI within node is a necessity to
have hybrid code better than pure MPI across node.

• Whether the hybrid code performs better than MPI code depends on whether
the communication advantage outcomes the thread overhead, etc. or not.

• There are more positive experiences of developing hybrid MPI/OpenMP
parallel paradigms now. It’s encouraging to adopt hybrid paradigm in your
own application.

References

• http://openmp.org/sc13/HybridPP_Slides.pdf

• https://www.cct.lsu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf

• http://www.cac.cornell.edu/education/Training/parallelMay2011/Hybrid_T
alk-110524.pdf

	Hybrid MPI and OpenMP Parallel Programming
	Objectives
	Slide 3
	MPI
	OpenMP
	Slide 6
	Why Hybrid: employ the best from both worlds
	Slide 8
	A Common Hybrid Approach
	Hybrid – Program Model
	Slide 11
	MPI vs. MPI+OpenMP
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Compile and Run
	Results
	Slide 22
	References

