
 Debugging
 OpenMP

 programs

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)

2/24

Outline

● Introduction
● Overview of DDT
● OpenMP debugging demo
● Questions?

3/24

Introduction

4/24

Parallel vs. serial

● Parallel programming is more difficult than
serial programming each step of the way:
– Designing stage

– Coding

– Debugging

– Profiling

– Maintenance

5/24

Parallel bugs

● In addition to usual, “serial” bugs, parallel
programs can have “parallel-only” bugs, such
as
– Race conditions

● When results depend on specific ordering of commands,
which is not enforced

– Deadlocks
● When task(s) wait perpetually for a message/signal which

never come

6/24

Race condition

● In OpenMP, race conditions result from misuse of shared
variables, when
– a variable is mistakenly labeled as shared (where in fact it

needs to be private), or

– a variable is correctly labeled as shared, but the access to the
variable wasn't properly protected (serialized)

● The risk of having an issue of the first kind can be greatly
reduced if one resorts to always use “default(none)”
clause in OpenMP pragmas.

● Another risk factor is the “nowait” clause; if in doubt, test
your code with all “nowait” clauses removed, to see it
fixes the issue.

7/24

Race condition (cont.)

● Race condition manifests itself as wrong and
variable code results. (You get different results
every time you run the code, or only for some
runs, and when you change the number of
threads.)

● As only shared variables are at risk of creating
race conditions, use them sparingly (only when
truly necessary), and pay a lot of attention to
them during debugging.

8/24

Example of race condition

#pragma omp parallel sections shared(a,b,c)

#section
a = b + c;

#section
b = a + c;

#section
c = b + a;

9/24

Deadlocks

● It happens when thread(s) lock up while waiting
on a locked resource that will never become
available.

● The sign of a deadlock: the program hangs
(always or sometimes) when reaching a certain
point in the code.

10/24

Deadlocks (cont.)

● Prevention strategies:
– Be very careful with conditional clauses using

threadID as an argument, as common OpenMP
constructs (for/do, single) require all the threads in
the team reaching them.

– Communications between threads (using a shared
variable) have to use “flush” pragma, on both
writing and reading sides.

– Don't forget to unset locks after setting them.

11/24

Example of a deadlock

#pragma omp parallel sections
#section
{omp_set_lock(&locka);
omp_set_lock(&lockb);
omp_unset_lock(&lockb);
omp_unset_lock(&locka);}
#section
{omp_set_lock(&lockb);
omp_set_lock(&locka);
omp_unset_lock(&locka);
omp_unset_lock(&lockb);}

12/24

Tools

● Debugging of codes (including parallel ones)
could be as primitive as inserting multiple printf
statements.

● But given the extra difficulty of dealing with
parallel code issues, debugging and profiling of
parallel codes better be done using proper
tools.

13/24

Tools (cont.)

● SHARCNET has two tools suitable for OpenMP
debugging installed on multiple systems:
– DDT: commercial serial/parallel (MPI, OpenMP,

CUDA) debugger which includes a memory
debugger. Suitable for all programmer levels (from
a beginner to an expert).

– VALGRIND: powerful open source memory
debugger. Mostly for advanced/expert programmer
levels.

14/24

Allinea software

● For the rest of this webinar, I will focus on
advanced parallel debugging tool developed by
Allinea and installed on multiple SHARCNET
clusters (orca, monk, kraken etc.), DDT.

● For detailed information on how to use DDT on
our clusters, check this wiki page:

https://www.sharcnet.ca/help/index.php/DDT

15/24

Overview of DDT

16/24

Intro

The Distributed Debugging Tool (DDT) is a powerful
commercial debugger with a graphical user interface
(GUI).
It is designed for debugging parallel programs (MPI,
OpenMP, CUDA), though it can also be used with serial
codes.
The product was developed by Allinea (U.K.). It is
installed on many SHARCNET clusters (orca, monk,
kraken, requin).

17/24

Intro (cont.)

DDT supports C, C++, and Fortran 77 / 90 / 95 /
2003.
Detailed documentation (the User Guide) is
available as a PDF file on clusters where DDT is
installed, in

 /opt/sharcnet/ddt/*/doc
We also have an online tutorial:

https://www.sharcnet.ca/help/index.php/Para
llel_Debugging_with_DDT

18/24

Preparing your program

The code has to be compiled with the switch -g,
which tells the compiler to generate symbolic
information required by any debugger. Normally,
all optimizations have to be turned off. For
example,

f90 -g -O0 -openmp -o code code.f

cc -g -O0 -openmp -o code code.c

19/24

Launching DDT

● All debugging should be normally done on cluster
development nodes (orc-dev1...orc-dev4 on orca,
kraken-devel1...kraken-devel8).

● As DDT uses GUI, your computer has to have an
X window client. It comes bundled with Linux; for
Windows use free program MobaXterm; for Macs
use free program XQuarz. See for more details:

https://www.sharcnet.ca/help/index.php/Remote_
Graphical_Connections

20/24

Launching DDT (cont.)

● First ssh to a cluster, then ssh to a development
node. Use “-Y” argument with all your ssh
commands, to properly tunnel X11 traffic:
 $ ssh -Y user@orca.sharcnet.ca
 $ ssh -Y orc-dev3

● Load the DDT module:
 $ module load ddt

● Then simply type
 $ ddt code [optional code arguments]

Advanced source
browsing

One-click access to
all processes

Syntax highlighting

22/24

OpenMP

 debugging

demo

23/24

Instructions

ssh -Y user@orca.sharcnet.ca

ssh -Y orc-dev{1,2,3,4}

cp -r /home/syam/OpenMP* .

cd OpenMP*

mailto:user@orca.sharcnet.ca

24/24

Questions?

● You can always contact me directly
(syam@sharcnet.ca) or send an email to
help@sharcnet.ca .

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

