
November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 1 / 49

Introduction to julia
Parallel Computing Revisited

Ge Baolai, Western University
Edward Armstrong, University of Guelph
SHARCNET | Compute Ontario | Compute Canada

A language for both prototyping and performance

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 2 / 49

Outline
We try to cover the following

 Examples of using parallelization enabled linear algebra libraries
 Examples of parallel processing support via Distributed
 Examples of using distributed arrays (DistributedArrays) and shared arrays (SharedArrays)
 A example of using threads

What will NOT be covered
 Using Julia in Jupyter Notebook
 Threaded computing details (a separate talk)
 MPI and others

This is not a tutorial, but rather a collection of pointers for ones to explore.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 3 / 49

Using libraries

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 4 / 49

Example: Matrix-vector operations via OpenBLAS

We run this simple code first

n = 5000

A = randn(n,n)

B = randn(n,n)

C = zeros(n,n)

using LinearAlgebra

for i=1:4

 @time C = A*B

end

Parallel computing: Implicit parallelism
And then set environment variable

 export OMP_NUM_THREADS=4

and run it again to see if there's any performance
changes.

Do not spawn julia threads!

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 5 / 49

Running on multiple processors

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 6 / 49

Parallel computing: Starting multiple processes
Launching from command line when starting julia

julia -p 8

or

julia --machine-file hostfile

Launching from within a julia process

using Distributed

Start extra 8 processes to have 9 in total
addprocs(8)

On clusters using a scheduler, dynamically
creating or increasing the number of
processes is DISCOURAGED.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 7 / 49

Parallel computing: Starting multiple processes
Launching from command line when starting julia

julia -p 8

or

julia --machine-file hostfile

Launching on a cluster

#!/bin/bash
#SBATCH --ntasks=64 # number of MPI
processes
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=1024M
#SBATCH --time=0-00:05
#SBATCH --account=def-bge
#SBATCH --job-name=hello
#SBATCH --output=hello.log

srun hostname -s > hostfile
sleep 5
julia --machine-file ./hostfile ./hello.jl

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 8 / 49

Parallel computing: Programming model
Two simple mechanisms

 @everywhere
 @spawn, @spawnat

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 9 / 49

Parallel computing: Broadcasting a value to all processes
Broadcast a value to all processes

using Distributed

@everywhere x = 12345 # This works

X0 = 12345 # X0 is a local variable to the main process

@everywhere x = x0 # This MAY fail, as x0 is local, check the following

@everywhere println(x)

@everywhere x = $x0 # This works! By "copying" x0 value

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 10 / 49

Parallel computing: Executing a function on all processes
Execute a locally defined function

using Distributed

The scope of this function is within this process

function showid()

 println("My ID: ", myid())

end

This is likely to fail on other processes

@everywhere showid()

Execute a globally defined function

using Distributed

This function is defined on every process

@everywhere function showid()

 println("My ID: ", myid())

end

Execute this procedure on every process

@everywhere showid()

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 11 / 49

Parallel computing: Executing a function on all processes
Execute a locally defined function

using Distributed

The scope of this function is within this process

function showid()

 println("My ID: ", myid())

end

This is likely to fail on other processes

@everywhere showid()

Execute a globally defined function

using Distributed

This function is defined on every process

@everywhere function showid()

 println("My ID: ", myid())

end

Execute this procedure on every process

@everywhere showid()

@everywhere stmt

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 12 / 49

Parallel computing: Executing a procedure remotely
Exercise: Type and run the following code
using Distributed

println("Number of cores: ", nprocs())
println("Number of workers: ", nworkers())

Fetch the ID of each worker and host the worker running on
for i in workers()
 id, pid, host = fetch(@spawnat i (myid(), getpid(), gethostname()))
 println(id, " " , pid, " Hello from ", host)
end

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 13 / 49

Parallel computing: Executing a procedure remotely
Julia uses the concept "future" referring to the remote execution.

To run a procedure on an automatically chosen process

f = @spawn (x.^2, myid())

To run a procedure on a specific process n

f = @spawnat n (x.^2, myid())

To get the result, one needs to "fetch" it by the reference.

fetch(f)

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 14 / 49

Parallel computing: Executing a procedure remotely
Note the performance difference in the following two calls

n=10_000
A=randn(n,n);

@time fetch(@spawnat :any sum(A.^2)) # Involves copying A to remote process

vs.

n=10_000
@time fetch(@spawnat :any sum(randn(n,n).^2)) # No data copy

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 15 / 49

Parallel computing: Executing a procedure remotely
Julia uses the concept "future" referring to the remote execution.

To run a procedure on an automatically chosen process

f = @spawn (x.^2, myid())

To run a procedure on a specific process n

f = @spawnat n (x.^2, myid())

To get the result, one needs to "fetch" it by the reference.

fetch(f)

@spawn stmt
@spawnat proc stmt

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 16 / 49

Parallel computing: Programming model
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

1 2 3 4 5

Tasks are dispatched and computed on workers, like jobs are done on compute nodes.

Code starts here;
● Define variables, functions;
● Broadcast variables, define

global functions;
● Dispatch tasks to workers;

@everywhere foo(x,...)

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 17 / 49

Parallel computing: Programming model
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

1 2 3 4 5

Tasks are dispatched and computed on workers, like jobs are done on compute nodes.

Code starts here;
● Define variables, functions;
● Broadcast variables, define

global functions;
● Dispatch tasks to workers;

@everywhere foo(x,...)

@spawn bar(u,...)

@spawn bar(v,...)

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 18 / 49

Parallel computing: Placing a remote call
Asynchronous call, non-blocking, returns immediately

f = remotecall(maximum, WorkerPool(workers()), x)

To get the result

r = fetch(f)

Synchronous call, combines remotecall() and fetch()

r = remotecall_fetch(maximum,WorkerPool(workers()),x)

call where var

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 19 / 49

Parallel computing: Calculating the approximation of pi
Example: We compute the approximation of pi by counting the points uniformly tossed inside an 1/4 circle vs
total number of points over the unit square (See Marc Marano Maza 2017).

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 20 / 49

Parallel computing: Calculating the approximation of pi
Create a file "pi_dist.jl", define a function that counts
the number of points falling inside the circle

function points_inside_circle(n)
 n_in = 0
 for i=1:n
 x, y=rand(), rand()
 n_in += (x*x + y*y) <= 1
 end
 return n_in
end

In the same file, define a function wrapper that
computes the approximation of pi in parallel

function pi_p(n)
 p = nworkers()
 n_in = @distributed (+) for i=1:p # A reduction call
 points_inside_circle(n/p)
 end
 return 4*n_in/n # The approximation of pi
end

This function executes on multiple cores in parallel
and collects the result by reduction

@distributed op procedure

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 21 / 49

Parallel computing: Calculating the approximation of pi
Create a file "pi_dist.jl", define a function that counts
the number of points falling inside the circle

function points_inside_circle(n)
 n_in = 0
 for i=1:n
 x, y=rand(), rand()
 n_in += (x*x + y*y) <= 1
 end
 return n_in
end

In the same file, define a function wrapper that
computes the approximation of pi in parallel

function pi_p(n)
 p = nworkers()
 n_in = @distributed (+) for i=1:p # A reduction call
 points_inside_circle(n/p)
 end
 return 4*n_in/n # The approximation of pi
end

N.B. This function executes on multiple cores in
parallel and collects the result by reduction

@distributed op procedure

@distributed op procedure

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 22 / 49

Parallel computing: Calculating the approximation of pi
Now we start julia with 4 workers using command

julia -p 4

Within julia, use the commands below

julia> using Distributed
julia> @everywhere include("pi_dist.jl") # Load functions on all processes

julia> pi_p(1_000_000) # pi_p() is defined in file “pi_dist.jl”
3.1419629999999996

Using 4 cores, for n=1,000,000,000, it will take about 4 to 5 seconds.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 23 / 49

Parallel computing: Calculating the approximation of pi
Create a file "pi_pmap.jl", define a function that
estimates pi one local processor

function points_inside_circle(n)
 n_in = 0
 for i=1:n
 x, y=rand(), rand()
 n_in += (x*x + y*y) <= 1
 end
 return n_in
end

In the same file, define a function wrapper that
computes the approximation of pi in parallel

function pi_p(n)
 p = nworkers()
 n_in = sum(pmap(x->points_inside_circle(x),
 [n/p for i=1:p]))
 return 4*n_in/n
end

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 24 / 49

Using distributed arrays

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 25 / 49

Parallel computing: Distributed arrays
Example: A matrix stored across 4 processes on a 2x2 Cartesian processor grid

Process 1 has the
blue portion.

But it also has
access to other
portions stored
remotely, simply via
indices.

Suitable for
handling large data
sets that can NOT
fit on a single
machine.

2 3

54

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 26 / 49

Parallel computing: Distributed arrays
using Distributed, DistributedArrays
@everywhere using LinearAlgebra
@everywhere function aa(n)
 la = zeros(n,n)
 la[diagind(la,0)] .= 2.0
 la[diagind(la,-1)] .= -1.0
 la[diagind(la,1)] .= -1.0
 return la
end
@everywhere function b1(n)
 la = zeros(n,n); la[1,n] = -1.0;
 return la
end
@everywhere function b2(n)
 la = zeros(n,n); la[n,1] = -1.0;
 return la
end

Matrix A distributed on 4 processors on a 2x2 grid

2 3

54

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 27 / 49

Parallel computing: Distributed arrays
Call functions on workers to created local portions
d11 = @spawnat 2 aa(4)
d12 = @spawnat 3 b1(4)
d21 = @spawnat 4 b2(4)
d22 = @spawnat 5 aa(4)

Create a distributed matrix on a 2x2 processor grid
DA = DArray(reshape([d11 d21 d12 d22],(2,2)));

NB:
 No (large) data communications between Main and workers;
 d11,d12,d21,d22 are not matrices, but handles – futures.

They are NOT taking up spaces;
 DA is NOT the whole matrix either, it’s a reference;
 But one can access the entire matrix by simply using the

index, e.g. DA[5000,5050] even though it’s not local.

Matrix A distributed on 4 processors on a 2x2 grid

2 3

54

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 28 / 49

Parallel computing: Distributed arrays
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

varinfo()

@everywhere using InteractiveUtils
fetch(@spawnat p varinfo())

To see vars on “me”

To see vars on others

1 2 3 4 5

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 29 / 49

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

2 3

54

Parallel computing: Distributed arrays
Call functions on workers to created local portions
n=100
d11 = @spawnat 2 aa(n)
d12 = @spawnat 3 b1(n)
d21 = @spawnat 4 b2(n)
d22 = @spawnat 5 aa(n)

Create a distributed matrix on a 2x2 processor grid
DA = DArray(reshape([d11 d12 d21 d22],(2,2)));

Examine storage on Main
varinfo()

Matrix A distributed on 4 processors on a 2x2 gridExamining the storage on Main (Process 1):
julia> varinfo()
 Name size summary
 –––––––––––––––– ––––––––––– ––
 Base Module
 Core Module
 DA 544 bytes 200×200 DArray{Float64,2,Array{Float64,2}}
 Distributed 2.021 MiBModule
 InteractiveUtils 162.090 KiB Module
 Main Module
 aa 0 bytes typeof(aa)
 ans 544 bytes 200×200 DArray{Float64,2,Array{Float64,2}}
 b1 0 bytes typeof(b1)
 b2 0 bytes typeof(b2)
 d11 32 bytes Future
 d12 32 bytes Future
 d21 32 bytes Future
 d22 32 bytes Future
 n 8 bytes Int64

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 30 / 49

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

2 3

54

Parallel computing: Distributed arrays
Call functions on workers to created local portions
n=100
d11 = @spawnat 2 aa(n)
d12 = @spawnat 3 b1(n)
d21 = @spawnat 4 b2(n)
d22 = @spawnat 5 aa(n)

Create a distributed matrix on a 2x2 processor grid
DA = DArray(reshape([d11 d12 d21 d22],(2,2)));

Examine remote storage on Worker 2
fetch(@spawnat 2 varinfo())

Matrix A distributed on 4 processors on a 2x2 gridExamining the storage on Worker 2:
julia> fetch(@spawnat 2 varinfo())
 Name size summary
 –––––––––––--------- –––––––––– ––
 Base Module
 Core Module
 DA 78.656 KiB 200×200 DistributedArrays.DArray{Float64,2,Array{Float64,2}}
 Distributed 1.421 MiBModule
 Main Module
 aa 0 bytes typeof(aa)
 b1 0 bytes typeof(b1)
 b2 0 bytes typeof(b2)
 n 8 bytes Int64

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 31 / 49

2 3

54

5 -4 1

-4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4

1 -4 5

Parallel computing: Distributed arrays
julia> # Perform A*A directly on distributed arrays
julia> DB = dzeros(8,8)
julia> DB = DA*DA

julia> # Check remote values on process 3
julia> f = @spawnat 3 DB.localpart # Remote call returns a future
julia> fetch(f)
4×4 Array{Float64,2}:
 0.0 0.0 1.0 -4.0
 0.0 0.0 0.0 1.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0

julia> remotecall_fetch(localpart,3,DB) # Alternative

Result of A*A distributed on 4 processors

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 32 / 49

Parallel computing: Distributed arrays
julia> # Access components owned remotedly
julia> DB[5:8,1:4]
4×4 view(::DArray{Float64,2,Array{Float64,2}}, 5:8, 1:4) with eltype
Float64:
 0.0 0.0 1.0 -4.0
 0.0 0.0 0.0 1.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0

Result of A*A distributed on 4 processors

2 3

54

5 -4 1

-4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4

1 -4 5

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 33 / 49

Parallel computing: Distributed arrays
Summary:

 Define functions to be executed on workers, e.g. via @everywhere;
 Define global variables and broadcast to workers, e.g. via @everywhere;
 Create distributed arrays, by calling functions on workers, via @spawnat or remotecall();
 Perform the operations on the distributed arrays, as if they were local;
 This is a very different concept from the SPMD model (often seen in scientific applications, e.g. written in

MPI)

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 34 / 49

Parallel computing: Distributed arrays
Summary (cont’d):

 So far not much self-contained functionalities are available, but only allows one to reference to global
spaces by indexing to the elements.

 Each process has a global view of any distributed objects.
 It uses one-sided communication via underlying libraries (e.g. MPI). The other prominent programming

language that supports global address access is Fortran.
 Support from third party libraries are expected.
 A few packages to look at

– Elemental – hides the communication APIs and one can do linear algebra operations as is, such as
svdvals(A) to get SVD values.

– PETSc – contains explicit MPI like APIs.
– Trilinos – contains explicit MPI like APIs.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 35 / 49

Using shared arrays

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 36 / 49

Parallel computing: Shared arrays
Shared arrays via module SharedArrays provide a convenient way of accessing data among processes. The
following creates a 5x4 integer array on each process

using SharedArrays

A = SharedArray{Int,2}((5,4))

Changes to A in one process also happen to A on other processes.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 37 / 49

Parallel computing: Shared arrays
julia> using SharedArrays
julia> A = SharedArray{Int,2}((5,4))
5×4 SharedArray{Int64,2}:
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
julia> A[:,3] = collect(11:15)
5-element Array{Int64,1}:
 11
 12
 13
 14
 15

julia> # Get the the 3rd column of A on worker 4
julia> @fetchfrom 4 A[:,3]
5-element Array{Int64,1}:
 11
 12
 13
 14
 15

Changes to A in one process also
happen to A on other processes.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 38 / 49

Parallel computing: Shared arrays
Remote calls
The following isn’t what you intended

n=16
a=zeros(n) # a is local
@distributed for i=1:n
 a[i] = i
end
a now is available on other workers!

@fetchfrom 2 a # Only see the first 4 elements are assigned values

NB: Surprise!
 The code results in a copy of a on each process.
 Only a portion of a gets assigned values on each process.

Using SharedArray

using SharedArrays
n=16
a = SharedArray{Float64}(n)
@distributed for i=1:n # Each process does a portion of the loop
 a[i] = i
end

NB: Each process has access to the entire chunk of the array a. In
other words, a is shared among participating processes.

SharedArray objects are used on the
same machine.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 39 / 49

Parallel computing: Shared arrays
Summary

 Shared arrays are for the local computer only (Fortran’s co-arrays can be across nodes);
 Shared arrays can be accessed via global indexing, hence convenient for parallel algorithms;
 For A = SharedArray{Float64,2}(n,n), the data is shared, but A is not. It’s a reference and must be passed

to participating workers via any of the following

@everywhere function … end or @everywhere var=...
@everywhere include(code_script)
@remotecall(func, worker_set, var_list)

 Math and linear algebra operations apply to shared array objects as regular arrays;
 Lastly the diffusion example can also be implemented using distributed arrays, so it can run on clusters.

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 40 / 49

Using threads, an example

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 41 / 49

Parallel computing: Multi-threading
Example: Given the observation data (right, blue
dots) and a model containing 8 parameters (dim
D=8),

find the parameters that best fit the observation data
in the least squares sense[1]

This example is extracted from a work by Armin Sobhani, Ge Baolai
and Pawel Pomorski.

[1] https://www.itl.nist.gov/div898/strd/nls/data/gauss3.shtml

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 42 / 49

Parallel computing: Multi-threading
Example: Given the observation data (right, blue
dots) and a model containing 8 parameters (dim
D=8),

find the parameters that best fit the observation data
in the least squares sense[1]

Solution: Find the 8 parameters using Monte-Carlo
approach.

[1] https://www.itl.nist.gov/div898/strd/nls/data/gauss3.shtml

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 43 / 49

Parallel computing: Multi-threading
Example: Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each
element of p uniformly distributed in the
corresponding dimension within its range;

2) For each point p, compute the error (a scalar)

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M
corresponding points p as new candidates; find
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that
encloses the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else
GOTO 1).

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 44 / 49

Parallel computing: Multi-threading
Example: Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each
component of p uniformly distributed in
corresponding dimension within its range;

2) For each point p, compute the error (a scalar)

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M
corresponding points p as new candidates; find
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else
GOTO 1).

Sketch of serial code

while (z_min > tol && iters <= num_iters)
 # Generate N parameter points params[D,N]
 for i in 1:N
 params[:,i] .= llims .+ rand(D).*intervals;
 z[i] = costfun(y,x,params[:,i],ym[:,i]);
 end
 … ...
end

param[1:D,1:N] =

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 45 / 49

Parallel computing: Multi-threading
Example: Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each
component of p uniformly distributed in
corresponding dimension within its range;

2) For each point p, compute the error (a scalar)

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M
corresponding points p as new candidates; find
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else
GOTO 1).

Sketch of serial code

while (z_min > tol && iters <= num_iters)
 # Generate N parameter points params[D,N]
 for i in 1:N
 params[:,i] .= llims .+ rand(D).*intervals;
 z[i] = costfun(y,x,params[:,i],ym[:,i]);
 end

 # Sort the vector z and find the smallest one
 iz_sorted[:] = sortperm(z);
 iz_min = iz_sorted[1]; z_min = z[iz_sorted[1]];
 … ...
end

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 46 / 49

Parallel computing: Multi-threading
Example: Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each
component of p uniformly distributed in
corresponding dimension within its range;

2) For each point p, compute the error (a scalar)

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M
corresponding points p as new candidates; find
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else
GOTO 1).

Sketch of serial code

while (z_min > tol && iters <= num_iters)
 # Generate N parameter points params[D,N]
 for i in 1:N
 params[:,i] .= llims .+ rand(D).*intervals;
 z[i] = costfun(y,x,params[:,i],ym[:,i]);
 end

 # Sort the z; pick the first M corresponding points of p
 iz_sorted[:] = sortperm(z);
 iz_min = iz_sorted[1]; z_min = z[iz_sorted[1]];
 elite_view = view(params,:,iz_sorted[1:num_elites]);

 # Update the range of each of the parameters
 llims[:] = minimum(elite_view,dims=2);
 uims[:] = maximum(elite_view,dims=2);
 intervals .= ulims .- llims;
 iter += 1;
end

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 47 / 49

Parallel computing: Multi-threading
Example: Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each
component of p uniformly distributed in
corresponding dimension within its range;

2) For each point p, compute the error (a scalar)

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M
corresponding points p as new candidates; find
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else
GOTO 1).

Sketch of parallel code using threads

while (z_min > tol && iters <= num_iters)
 # Generate N parameter points params[D,N]
 @threads for i in 1:N
 params[:,i] .= llims .+ rand(D).*intervals;
 z[i] = costfun(y,x,params[:,i],ym[:,i]);
 end

 # Sort the z; pick the first M corresponding points of p
 iz_sorted[:] = sortperm(z);
 iz_min = iz_sorted[1]; z_min = z[iz_sorted[1]];
 elite_view = view(params,:,iz_sorted[1:num_elites]);

 # Update the range of each of the parameters
 llims[:] = minimum(elite_view,dims=2);
 uims[:] = maximum(elite_view,dims=2);
 intervals .= ulims .- llims;
 iter += 1;
end

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 48 / 49

Parallel computing: Starting multiple threads
From command line (ver 1.5 and newer)

julia -t 8

or

julia --threads 8

Or via environment variable

export JULIA_NUM_THREADS=8

November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 49 / 49

References
[1] Marc Marano Maza, Lecture Notes: Distributed and parallel systems, Department of Compute Science,

Western University, 2017.
[2] Julia documentations: https://docs.julialang.org/en/v1/.
[3] Julia cheat sheet: https://juliadocs.github.io/Julia-Cheat-Sheet/.
[4] Jeff Bezanson, Stefan Karpinski, State of Julia, JuliaCon 2020 (YouTube).

https://docs.julialang.org/en/v1/
https://juliadocs.github.io/Julia-Cheat-Sheet/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

