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Introduction to julia
Parallel Computing Revisited

Ge Baolai, Western University
Edward Armstrong, University of Guelph
SHARCNET | Compute Ontario | Compute Canada

A language for both prototyping and performance



November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 2 / 49

Outline
We try to cover the following 

 Examples of using parallelization enabled linear algebra libraries
 Examples of parallel processing support via Distributed
 Examples of using distributed arrays (DistributedArrays) and shared arrays (SharedArrays)
 A example of using threads

What will NOT be covered
 Using Julia in Jupyter Notebook
 Threaded computing details (a separate talk)
 MPI and others

This is not a tutorial, but rather a collection of pointers for ones to explore. 
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Using libraries
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Example: Matrix-vector operations via OpenBLAS

We run this simple code first

n = 5000

A = randn(n,n)

B = randn(n,n)

C = zeros(n,n)

using LinearAlgebra

for i=1:4

    @time C = A*B

end

Parallel computing: Implicit parallelism
And then set environment variable

   export OMP_NUM_THREADS=4

and run it again to see if there's any performance 
changes.

Do not spawn julia threads!
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Running on multiple processors
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Parallel computing: Starting multiple processes
Launching from command line when starting julia

julia -p 8

or

julia --machine-file hostfile

Launching from within a julia process

using Distributed

# Start extra 8 processes to have 9 in total
addprocs(8) 

On clusters using a scheduler, dynamically 
creating or increasing the number of 
processes is DISCOURAGED.
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Parallel computing: Starting multiple processes
Launching from command line when starting julia

julia -p 8

or

julia --machine-file hostfile

Launching on a cluster

#!/bin/bash
#SBATCH --ntasks=64              # number of MPI 
processes
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=1024M
#SBATCH --time=0-00:05
#SBATCH --account=def-bge
#SBATCH --job-name=hello
#SBATCH --output=hello.log

srun hostname -s > hostfile
sleep 5
julia --machine-file ./hostfile ./hello.jl
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Parallel computing: Programming model
Two simple mechanisms

 @everywhere
 @spawn, @spawnat
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Parallel computing: Broadcasting a value to all processes
# Broadcast a value to all processes

using Distributed

@everywhere x = 12345 # This works

X0 = 12345 # X0 is a local variable to the main process

@everywhere x = x0 # This MAY fail, as x0 is local, check the following

@everywhere println(x)

@everywhere x = $x0 # This works! By "copying" x0 value
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Parallel computing: Executing a function on all processes
Execute a locally defined function

using Distributed

# The scope of this function is within this process

function showid()

    println("My ID: ", myid())

end

# This is likely to fail on other processes

@everywhere showid()

Execute a globally defined function

using Distributed

# This function is defined on every process

@everywhere function showid()

    println("My ID: ", myid())

end

# Execute this procedure on every process

@everywhere showid()
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Parallel computing: Executing a function on all processes
Execute a locally defined function

using Distributed

# The scope of this function is within this process

function showid()

    println("My ID: ", myid())

end

# This is likely to fail on other processes

@everywhere showid()

Execute a globally defined function

using Distributed

# This function is defined on every process

@everywhere function showid()

    println("My ID: ", myid())

end

# Execute this procedure on every process

@everywhere showid()

@everywhere stmt
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Parallel computing: Executing a procedure remotely
Exercise: Type and run the following code
using Distributed

println("Number of cores: ", nprocs())
println("Number of workers: ", nworkers())

# Fetch the ID of each worker and host the worker running on
for i in workers()
    id, pid, host = fetch(@spawnat i (myid(), getpid(), gethostname()))
    println(id, " " , pid, " Hello from ", host)
end
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Parallel computing: Executing a procedure remotely
Julia uses the concept "future" referring to the remote execution.

To run a procedure on an automatically chosen process

f = @spawn (x.^2, myid())

To run a procedure on a specific process n

f = @spawnat n (x.^2, myid())

To get the result, one needs to "fetch" it by the reference.

fetch(f)
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Parallel computing: Executing a procedure remotely
Note the performance difference in the following two calls

n=10_000
A=randn(n,n);

@time fetch(@spawnat :any sum(A.^2)) # Involves copying A to remote process

vs.

n=10_000
@time fetch(@spawnat :any sum(randn(n,n).^2)) # No data copy
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Parallel computing: Executing a procedure remotely
Julia uses the concept "future" referring to the remote execution.

To run a procedure on an automatically chosen process

f = @spawn (x.^2, myid())

To run a procedure on a specific process n

f = @spawnat n (x.^2, myid())

To get the result, one needs to "fetch" it by the reference.

fetch(f)

@spawn stmt
@spawnat proc stmt
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Parallel computing: Programming model
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

1 2 3 4 5

Tasks are dispatched and computed on workers, like jobs are done on compute nodes. 

Code starts here;
● Define variables, functions;
● Broadcast variables, define 

global functions;
● Dispatch tasks to workers;

@everywhere foo(x,...)
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Parallel computing: Programming model
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

1 2 3 4 5

Tasks are dispatched and computed on workers, like jobs are done on compute nodes. 

Code starts here;
● Define variables, functions;
● Broadcast variables, define 

global functions;
● Dispatch tasks to workers;

@everywhere foo(x,...)

@spawn bar(u,...)

@spawn bar(v,...)
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Parallel computing: Placing a remote call
Asynchronous call, non-blocking, returns immediately

f = remotecall( maximum, WorkerPool(workers()),   x   )

To get the result

r = fetch(f)

Synchronous call, combines remotecall() and fetch()

r = remotecall_fetch(maximum,WorkerPool(workers()),x)

call where var



November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 19 / 49

Parallel computing: Calculating the approximation of pi
Example: We compute the approximation of pi by counting the points uniformly tossed inside an 1/4 circle vs 
total number of points over the unit square (See Marc Marano Maza 2017).
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Parallel computing: Calculating the approximation of pi
Create a file "pi_dist.jl", define a function that counts 
the number of points falling inside the circle

function points_inside_circle(n)
    n_in = 0
    for i=1:n
        x, y=rand(), rand()
        n_in += (x*x + y*y) <= 1
    end
    return n_in
end

In the same file, define a function wrapper that 
computes the approximation of pi in parallel

function pi_p(n)
    p = nworkers()
    n_in = @distributed (+) for i=1:p # A reduction call
        points_inside_circle(n/p)
    end
    return 4*n_in/n # The approximation of pi
end

This function executes on multiple cores in parallel 
and collects the result by reduction

@distributed op procedure
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Parallel computing: Calculating the approximation of pi
Create a file "pi_dist.jl", define a function that counts 
the number of points falling inside the circle

function points_inside_circle(n)
    n_in = 0
    for i=1:n
        x, y=rand(), rand()
        n_in += (x*x + y*y) <= 1
    end
    return n_in
end

In the same file, define a function wrapper that 
computes the approximation of pi in parallel

function pi_p(n)
    p = nworkers()
    n_in = @distributed (+) for i=1:p # A reduction call
        points_inside_circle(n/p)
    end
    return 4*n_in/n # The approximation of pi
end

N.B. This function executes on multiple cores in 
parallel and collects the result by reduction

@distributed op procedure

@distributed op procedure
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Parallel computing: Calculating the approximation of pi
Now we start julia with 4 workers using command

julia -p 4

Within julia, use the commands below

julia> using Distributed
julia> @everywhere include("pi_dist.jl") # Load functions on all processes

julia> pi_p(1_000_000) # pi_p() is defined in file “pi_dist.jl”
3.1419629999999996

Using 4 cores, for n=1,000,000,000, it will take about 4 to 5 seconds.
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Parallel computing: Calculating the approximation of pi
Create a file "pi_pmap.jl", define a function that 
estimates pi one local processor

function points_inside_circle(n)
    n_in = 0
    for i=1:n
        x, y=rand(), rand()
        n_in += (x*x + y*y) <= 1
    end
    return n_in
end

In the same file, define a function wrapper that 
computes the approximation of pi in parallel

function pi_p(n)
    p = nworkers()
    n_in = sum(pmap(x->points_inside_circle(x), 
        [n/p for i=1:p]))
    return 4*n_in/n
end
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Using distributed arrays
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Parallel computing: Distributed arrays
Example: A matrix stored across 4 processes on a 2x2 Cartesian processor grid

Process 1 has the 
blue portion.

But it also has 
access to other 
portions stored 
remotely, simply via 
indices.

Suitable for 
handling large data 
sets that can NOT 
fit on a single 
machine.

2 3
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-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2
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Parallel computing: Distributed arrays
using Distributed, DistributedArrays
@everywhere using LinearAlgebra
@everywhere function aa(n)
    la = zeros(n,n)
    la[diagind(la,0)] .= 2.0
    la[diagind(la,-1)] .= -1.0
    la[diagind(la,1)] .= -1.0
    return la
end
@everywhere function b1(n)
    la = zeros(n,n); la[1,n] = -1.0;
    return la
end
@everywhere function b2(n)
    la = zeros(n,n); la[n,1] = -1.0;
    return la
end

Matrix A distributed on 4 processors on a 2x2 grid

2 3
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Parallel computing: Distributed arrays
# Call functions on workers to created local portions
d11 = @spawnat 2 aa(4)
d12 = @spawnat 3 b1(4)
d21 = @spawnat 4 b2(4)
d22 = @spawnat 5 aa(4)

# Create a distributed matrix on a 2x2 processor grid
DA = DArray(reshape([d11 d21 d12 d22],(2,2)));

NB:
 No (large) data communications between Main and workers;
 d11,d12,d21,d22 are not matrices, but handles – futures. 

They are NOT taking up spaces;
 DA is NOT the whole matrix either, it’s a reference;
 But one can access the entire matrix by simply using the 

index, e.g. DA[5000,5050] even though it’s not local.

Matrix A distributed on 4 processors on a 2x2 grid

2 3
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Parallel computing: Distributed arrays
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

varinfo()

@everywhere using InteractiveUtils
fetch(@spawnat p varinfo())

To see vars on “me”

To see vars on others

1 2 3 4 5



November 4, 2020 General Interest Seminar: Julia – Parallel Computing Revisited, Ge B. 29 / 49

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

2 3

54

Parallel computing: Distributed arrays
# Call functions on workers to created local portions
n=100
d11 = @spawnat 2 aa(n)
d12 = @spawnat 3 b1(n)
d21 = @spawnat 4 b2(n)
d22 = @spawnat 5 aa(n)

# Create a distributed matrix on a 2x2 processor grid
DA = DArray(reshape([d11 d12 d21 d22],(2,2)));

# Examine storage on Main
varinfo()

Matrix A distributed on 4 processors on a 2x2 gridExamining the storage on Main (Process 1):
julia> varinfo()
  Name size summary                                   
  –––––––––––––––– ––––––––––– ––––––––––––––––––––––––––––––––––––––––––
  Base Module                                    
  Core Module                                    
  DA             544 bytes 200×200 DArray{Float64,2,Array{Float64,2}}
  Distributed             2.021 MiBModule                                    
  InteractiveUtils         162.090 KiB Module                                    
  Main Module                                    
  aa   0 bytes typeof(aa)                                
  ans                  544 bytes 200×200 DArray{Float64,2,Array{Float64,2}}
  b1   0 bytes typeof(b1)                                
  b2   0 bytes typeof(b2)                                
  d11 32 bytes Future                                    
  d12 32 bytes Future                                    
  d21 32 bytes Future                                    
  d22 32 bytes Future                                    
  n   8 bytes Int64                                     
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Parallel computing: Distributed arrays
# Call functions on workers to created local portions
n=100
d11 = @spawnat 2 aa(n)
d12 = @spawnat 3 b1(n)
d21 = @spawnat 4 b2(n)
d22 = @spawnat 5 aa(n)

# Create a distributed matrix on a 2x2 processor grid
DA = DArray(reshape([d11 d12 d21 d22],(2,2)));

# Examine remote storage on Worker 2
fetch(@spawnat 2 varinfo())

Matrix A distributed on 4 processors on a 2x2 gridExamining the storage on Worker 2:
julia> fetch(@spawnat 2 varinfo())
  Name size summary                                                     
  –––––––––––--------- –––––––––– ––––––––––––––––––––––––––––––––––––––––––––––––––––––
  Base Module                                                      
  Core Module                                                      
  DA           78.656 KiB 200×200 DistributedArrays.DArray{Float64,2,Array{Float64,2}}
  Distributed             1.421 MiBModule                                                      
  Main Module                                                      
  aa   0 bytes typeof(aa)                                                  
  b1   0 bytes typeof(b1)                                                  
  b2   0 bytes typeof(b2)                                                  
  n   8 bytes Int64                                                  
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2 3

54
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1 -4 6 -4

1 -4 5

Parallel computing: Distributed arrays
julia> # Perform A*A directly on distributed arrays
julia> DB = dzeros(8,8)
julia> DB = DA*DA

julia> # Check remote values on process 3
julia> f = @spawnat 3 DB.localpart # Remote call returns a future
julia> fetch(f)
4×4 Array{Float64,2}:
 0.0  0.0  1.0  -4.0
 0.0  0.0  0.0   1.0
 0.0  0.0  0.0   0.0
 0.0  0.0  0.0   0.0

julia> remotecall_fetch(localpart,3,DB) # Alternative

Result of A*A distributed on 4 processors
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Parallel computing: Distributed arrays
julia> # Access components owned remotedly
julia> DB[5:8,1:4]
4×4 view(::DArray{Float64,2,Array{Float64,2}}, 5:8, 1:4) with eltype 
Float64:
 0.0  0.0  1.0  -4.0
 0.0  0.0  0.0   1.0
 0.0  0.0  0.0   0.0
 0.0  0.0  0.0   0.0

Result of A*A distributed on 4 processors

2 3

54
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Parallel computing: Distributed arrays
Summary:

 Define functions to be executed on workers, e.g. via @everywhere;
 Define global variables and broadcast to workers, e.g. via @everywhere;
 Create distributed arrays, by calling functions on workers, via @spawnat or remotecall();
 Perform the operations on the distributed arrays, as if they were local;
 This is a very different concept from the SPMD model (often seen in scientific applications, e.g. written in 

MPI)
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Parallel computing: Distributed arrays
Summary (cont’d):

 So far not much self-contained functionalities are available, but only allows one to reference to global 
spaces by indexing to the elements.

 Each process has a global view of any distributed objects.
 It uses one-sided communication via underlying libraries (e.g. MPI). The other prominent programming 

language that supports global address access is Fortran.
 Support from third party libraries are expected.
 A few packages to look at

– Elemental – hides the communication APIs and one can do linear algebra operations as is, such as 
svdvals(A) to get SVD values.  

– PETSc – contains explicit MPI like APIs.
– Trilinos – contains explicit MPI like APIs.
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Using shared arrays
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Parallel computing: Shared arrays
Shared arrays via module SharedArrays provide a convenient way of accessing data among processes. The 
following creates a 5x4 integer array on each process

using SharedArrays

A = SharedArray{Int,2}((5,4))

Changes to A in one process also happen to A on other processes.
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Parallel computing: Shared arrays
julia> using SharedArrays
julia> A = SharedArray{Int,2}((5,4))
5×4 SharedArray{Int64,2}:
 0  0  0  0
 0  0  0  0
 0  0  0  0
 0  0  0  0
 0  0  0  0
julia> A[:,3] = collect(11:15)
5-element Array{Int64,1}:
 11
 12
 13
 14
 15

julia> # Get the the 3rd column of A on worker 4
julia> @fetchfrom 4 A[:,3]
5-element Array{Int64,1}:
 11
 12
 13
 14
 15

Changes to A in one process also 
happen to A on other processes.
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Parallel computing: Shared arrays
Remote calls
The following isn’t what you intended

n=16
a=zeros(n) # a is local
@distributed for i=1:n
    a[i] = i
end
# a now is available on other workers!

@fetchfrom 2 a # Only see the first 4 elements are assigned values

NB: Surprise!
 The code results in a copy of a on each process.
 Only a portion of a gets assigned values on each process.

Using SharedArray

using SharedArrays
n=16
a = SharedArray{Float64}(n)
@distributed for i=1:n # Each process does a portion of the loop 
    a[i] = i
end

NB: Each process has access to the entire chunk of the array a. In 
other words, a is shared among participating processes.

SharedArray objects are used on the 
same machine.
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Parallel computing: Shared arrays
Summary 

 Shared arrays are for the local computer only (Fortran’s co-arrays can be across nodes);
 Shared arrays can be accessed via global indexing, hence convenient for parallel algorithms;
 For A = SharedArray{Float64,2}(n,n), the data is shared, but A is not. It’s a reference and must be passed 

to participating workers via any of the following

@everywhere function … end or @everywhere var=...
@everywhere include(code_script)
@remotecall(func, worker_set, var_list)

 Math and linear algebra operations apply to shared array objects as regular arrays;
 Lastly the diffusion example can also be implemented using distributed arrays, so it can run on clusters.
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Using threads, an example
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Parallel computing: Multi-threading
Example:  Given the observation data (right, blue 
dots) and a model containing 8 parameters (dim 
D=8),

find the parameters that best fit the observation data 
in the least squares sense[1]

This example is extracted from a work by Armin Sobhani, Ge Baolai 
and Pawel Pomorski.

[1] https://www.itl.nist.gov/div898/strd/nls/data/gauss3.shtml
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Parallel computing: Multi-threading
Example:  Given the observation data (right, blue 
dots) and a model containing 8 parameters (dim 
D=8),

find the parameters that best fit the observation data 
in the least squares sense[1]

Solution: Find the 8 parameters using Monte-Carlo 
approach.

[1] https://www.itl.nist.gov/div898/strd/nls/data/gauss3.shtml
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Parallel computing: Multi-threading
Example:  Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each 
element of p uniformly distributed in the 
corresponding dimension within its range;

2) For each point p, compute the error (a scalar) 

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M 
corresponding points p as new candidates; find 
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that 
encloses the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else 
GOTO 1).
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Parallel computing: Multi-threading
Example:  Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each 
component of p uniformly distributed in 
corresponding dimension within its range;

2) For each point p, compute the error (a scalar) 

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M 
corresponding points p as new candidates; find 
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that 
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else 
GOTO 1).

Sketch of serial code

while (z_min > tol && iters <= num_iters)
    # Generate N parameter points params[D,N]
    for i in 1:N
        params[:,i] .= llims .+ rand(D).*intervals;
        z[i] = costfun(y,x,params[:,i],ym[:,i]);
    end
    … ...
end

param[1:D,1:N] =
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Parallel computing: Multi-threading
Example:  Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each 
component of p uniformly distributed in 
corresponding dimension within its range;

2) For each point p, compute the error (a scalar) 

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M 
corresponding points p as new candidates; find 
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that 
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else 
GOTO 1).

Sketch of serial code

while (z_min > tol && iters <= num_iters)
    # Generate N parameter points params[D,N]
    for i in 1:N
        params[:,i] .= llims .+ rand(D).*intervals;
        z[i] = costfun(y,x,params[:,i],ym[:,i]);
    end
    
    # Sort the vector z and find the smallest one
    iz_sorted[:] = sortperm(z);
    iz_min = iz_sorted[1]; z_min = z[iz_sorted[1]];
    … ...
end
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Parallel computing: Multi-threading
Example:  Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each 
component of p uniformly distributed in 
corresponding dimension within its range;

2) For each point p, compute the error (a scalar) 

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M 
corresponding points p as new candidates; find 
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that 
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else 
GOTO 1).

Sketch of serial code

while (z_min > tol && iters <= num_iters)
    # Generate N parameter points params[D,N]
    for i in 1:N
        params[:,i] .= llims .+ rand(D).*intervals;
        z[i] = costfun(y,x,params[:,i],ym[:,i]);
    end
    
    # Sort the z; pick the first M corresponding points of p
    iz_sorted[:] = sortperm(z);
    iz_min = iz_sorted[1]; z_min = z[iz_sorted[1]];
   elite_view = view(params,:,iz_sorted[1:num_elites]);

    # Update the range of each of the parameters
    llims[:] = minimum(elite_view,dims=2);
    uims[:] = maximum(elite_view,dims=2);
    intervals .= ulims .- llims;
    iter += 1;
end
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Parallel computing: Multi-threading
Example:  Non-linear fitting (cont’d) using a Monte-
Carlo method:

1) Generate N points of p (of dim D=8) , with each 
component of p uniformly distributed in 
corresponding dimension within its range;

2) For each point p, compute the error (a scalar) 

z[i] = ||y – f(x;p)||, i=1...N

3) Sort z in ascending order, pick the first M 
corresponding points p as new candidates; find 
the minimum z_min (and the best p);

4) Adjust the range for each dimension of p that 
embraces the M selected candidates;

5) If z_min <= tol && iter <= num_iters STOP; else 
GOTO 1).

Sketch of parallel code using threads

while (z_min > tol && iters <= num_iters)
    # Generate N parameter points params[D,N]
    @threads for i in 1:N
        params[:,i] .= llims .+ rand(D).*intervals;
        z[i] = costfun(y,x,params[:,i],ym[:,i]);
    end
    
    # Sort the z; pick the first M corresponding points of p
    iz_sorted[:] = sortperm(z);
    iz_min = iz_sorted[1]; z_min = z[iz_sorted[1]];
   elite_view = view(params,:,iz_sorted[1:num_elites]);

    # Update the range of each of the parameters
    llims[:] = minimum(elite_view,dims=2);
    uims[:] = maximum(elite_view,dims=2);
    intervals .= ulims .- llims;
    iter += 1;
end
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Parallel computing: Starting multiple threads
From command line (ver 1.5 and newer)

julia -t 8

or

julia --threads 8

Or via environment variable

export JULIA_NUM_THREADS=8
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