
Contrastive Learning

Weiguang Guan, guanw@sharcnet.ca

SHARCNet/Digital Research Alliance of Canada

Typical architecture of CNN for image classification

Convolution
Activation
Pooling
BatchNormalization
Dropout

Resnet-50

● A sequences of blocks of convolution

layers

● Last (head) layer is a fully connected

layer

● The input to the FC layer (or the

output of the global average pooling)

is a vector of length 2048, which is

the final feature used for

classification

Today’s task

Task: Train the Resnet-50 model to classify Cifar-10 dataset (32×32×3)

Source: https://keras.io/examples/vision/supervised-contrastive-learning/

Comparison:

● Train the NN in the traditional way

● Contrastive training

https://keras.io/examples/vision/supervised-contrastive-learning/

Contrastive learning from Resnet-50

Dropout

Dense

Dropout

Dense

Contrastive learning

● Train the base model with an added top layer so

that its output (feature in the form of vector)
○ maximizes the difference between samples of

different classes

○ minimizes the difference between samples of the

same class

● Then train the entire NN with base model frozen

(only train the added layers)

Dropout

Dense

Dropout

Dense

Dense

Similarity measurement between features

Suppose v
1

 and v
2

 are two (row) feature vectors, then

Similarity(v
1

, v
2

) = (v
1

/|v
1

|) (v
2

T/|v
2

|) = cos(𝜃),

where 𝜃 is the angle between v
1

 and v
2

tfa.losses.npairs_loss(y_true, y_pred)

● y_true: [batch_size]

Labels of samples

● y_pred: [batch_size, batch_size]

Element [i, j] of the matrix represents the similarity of sample i with

sample j

tfa.losses.npairs_loss(y_true, y_pred) cont.

Suppose a mini-batch has labels y_true and v
i
 is a row vector associated with

sample i, then

● Calculate similarity matrix (y_pred) before calling this loss function

y_pred[i,j] = v
i
 ⋅ v

j
T

y_pred = V VT (where V=)

v
1

v
2

v
3

…

tfa.losses.npairs_loss(y_true, y_pred) cont.

● Remapping labels (y_true) into matrix of the same shape as y_pred

If y_true = [1, 8, 5, 1, 7], then

 [False, True, False, False, False],

remapped = equal(y_true, y_trueT) = [False, False, True, False, False],

 [True, False, False, True, False],

tfa.losses.npairs_loss(y_true, y_pred) cont.

● Computes softmax cross entropy

entropy = nn.softmax_cross_entropy_with_logits(

logits=y_pred,
labels=remapped

)

● loss = reduce_mean(entropy)

Some considerations

● Fine tune after contrastive learning

● Resnet-50 does not show its full power for images smaller than

224x224.

● Better result could be obtained if contrastive learning is combined with

transfer learning

