

+

-

+

-

Single Instruction

Multiple Instruction

SISD SIMD

MISD MIMD

SISD SIMD

MISD MIMD

NODE

Multi-Core CPU

CORE CORE

Multi-Core CPU

CORE CORE

NODE

NODE

NODE

NODE

NODE

Main Memory

CPU

cache

cache

CPU

cache

cache

CPU

cache

cache

CPU

cache

cache

CPU

cache

cache

I/O

* UMA: Uniform Memory Access, NUMA: Non-Uniform Memory Access

• race conditions

transfer(Account from, Account to, double amount)
{

from = from – amount;
to = to + amount;

}

• race conditions

transfer(Account from, Account to, double amount)
{

temp = from;
temp -= amount
from = temp;

temp = to;
temp -= amount
to = temp;

}

MyAccount = 500;
ClerkA.transfer(B, MyAccount, 200);
ClearB.transfer(MyAccount, C, 50);

• race conditions

ClerkA.transfer
(B, MyAccount, 200);

ClearB.transfer
(MyAccount, C, 50);

temp = $300 (temp = from) temp = $500 (temp = from)

temp = $100 (temp -= amount) temp = $450 (temp -= amount)

B = $100 (from = temp) === delay ===

temp = $500 (temp = to) …

temp = 700 (temp += amount) …

MyAccount = $700 (to = temp) …

MyAccount = $450 (from = temp)

• mutual exclusion (mutex)

Time

Critical Section

• mutual exclusion (mutex)

foo()
{

do stuff before
lock();
…
critical code section
….
release();
do stuff after

}

Thread 1 Thread 2

do stuff before do stuff before

lock lock

critical code …

release …

do stuff after critical code

release

do stuff after

• deadlocks

transfer(Account from, Account to, double amount)
{

sync(from);
sync(to);
from.withdraw(amount);
to.deposit(amount);
release(to);
release(from);

}

Thread1 -> transfer(A, B, 10.0);
Thread2 -> transfer(B, A, 10.0);

• Serial Runtime : T1

• Parallel Runtime at n Processes: Tn

0

2

4

6

8

10

12

1 2 4 8

R
U

N
T

IM
E

 (S
)

NUMBER OF PROCESSES (N)

Runtime

• Serial Runtime : T1

• Parallel Runtime at n Processes: Tn

• Speedup (times faster): Sn=T1/Tn

0

1

2

3

4

5

6

7

8

9

1 2 4 8

X
 F

A
S

T
E

R

Speedup

actual optimal

• Serial Runtime : T1

• Parallel Runtime at n Processes: Tn

• Speedup (times faster): Sn=T1/Tn

• Efficiency: En=Sn/n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8

A
C

T
U

A
L

 /
L

IN
E

A
R

NUMBER OF PROCESSES

Efficiency

MASTER

WORKER

Assigns Tasks Performs Computation

WORKER

WORKER

MASTER

Collects Results

MASTER

WORKER

WORKER

WORKER

MASTER

Process

Process

Process

Process

computation computation

communication

Process

Process

Process

Process

Process

Process Process
Q
U
E
U
E

Q
U
E
U
E

Process

Process
Process

Process Process Process

Q
U
E
U
E

Q
U
E
U
E

