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*  UMA: Uniform Memory Access, NUMA: Non-Uniform Memory Access







• race conditions

transfer(Account from, Account to, double amount)
{ 

from = from – amount;
to = to + amount;

} 



• race conditions

transfer(Account from, Account to, double amount)
{ 

temp = from;
temp -= amount
from = temp;

temp = to;
temp -= amount
to = temp;

} 

MyAccount = 500;
ClerkA.transfer(B, MyAccount, 200);
ClearB.transfer(MyAccount, C, 50);



• race conditions

ClerkA.transfer
(B, MyAccount, 200);

ClearB.transfer
(MyAccount, C, 50);

temp = $300 (temp = from) temp = $500 (temp = from)

temp = $100 (temp -= amount) temp = $450 (temp -= amount) 

B = $100 (from = temp) === delay ===

temp = $500 (temp = to) …

temp = $700$ (temp += amount) …

MyAccount = $700 (to = temp) …

MyAccount = $450 (from = temp)



• mutual exclusion (mutex)

Time

Critical Section



• mutual exclusion (mutex)

foo()
{ 

do stuff before
lock(); 
…
critical code section
….
release(); 
do stuff after

} 

Thread 1 Thread 2

do stuff before do stuff before

lock lock

critical code …

release …

do stuff after critical code

release

do stuff after



• deadlocks

transfer(Account from, Account to, double amount)
{ 

sync(from); 
sync(to); 
from.withdraw(amount); 
to.deposit(amount); 
release(to); 
release(from); 

} 

Thread1 -> transfer(A, B, 10.0);
Thread2 -> transfer(B, A, 10.0);





• Serial Runtime : T1

• Parallel Runtime at n Processes: Tn
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• Serial Runtime : T1

• Parallel Runtime at n Processes: Tn

• Speedup (times faster): Sn=T1/Tn
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• Serial Runtime : T1

• Parallel Runtime at n Processes: Tn

• Speedup (times faster): Sn=T1/Tn

• Efficiency: En=Sn/n
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MASTER

WORKER

Assigns Tasks Performs Computation
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Collects Results
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