S IsHARCHNET

Parallel Design

Models and Paradigms

EEEEEEEEEEEEEEEEEEEE

Goals & Outline

* Outline the design process of a parallel program.
* Introduce metrics for judging performance.

* Build a vocabulary of parallel programming.

* Show basic design patterns.

* Present metrics used for measuring parallelism.

Ed Armstrong - SHARCNET

Implicit / Explicit Parallelism

* Implicit: Parallelism as a result of language design, or by way of a
compiler, which is transparent to the programmer.

+ Programmers do not worry about communication or task division.

Less than optimal code, harder to debug,.

* Explicit: Parallelism by way of deliberate language constructs or
annotation on top of existing languages. The programmer
specifies where and when parallel constructs take place.

+ Potentially very efficient code.

Unique parallel bugs (ie. deadlock), longer development time.

Ed Armstrong - SHARCNET

Types of Parallelism

e Hardware

* |nstruction Level
* Thread Level
* Shared Memory/Cache (SMP)

* Cluster Level
* Message Passing

e Software
e Task Parallelism

e Data Parallelism
* Hybrid Task/Data

Ed Armstrong - SHARCNET

Flynn Taxonomy of Parallelism

Single Instruction

Multiple Instruction m

Ed Armstrong - SHARCNET

* SISD : Standard single core CPU.
* SIMD : Standard GPU processing model.

* MISD : Not commonly found in practice.
* MIMD: Standard Multi-Core model.

Ed Armstrong - SHARCNET)

Target Hardware: Cluster Computing
e

NODE

o ~owe | core | [cone [core

NODE

w w Multi-Core CPU Multi-Core CPU
NODE
NODE

NODE

Ed Armstrong - SHARCNET

Symmetric Multiprocessor (SMP)

-
O
=
O
=
c
'
=

Shared Memory/SMP

* Global address space for intuitive
memory access.

* Synchronization can be a tricky concept to grasp.

» Data sharing is fast, also consistent in

unA g =EEEE]
* systems.

* Memory consistency model.

e (Cache coherence.

* Lacks scalability.

e Have to wait for hardware advances.
* More CPUs = more memory traffic.

* UMA: Uniform Memory Access, NUMA: Non-Uniform Memory Access

Ed Armstrong - SHARCNET 9

Message Passing Interface (MPI)

* Distributed memory model (will run on shared memory systems).

* Memory addresses are not mapped.
* No globally accessible memory.
* Hybrid systems will also use threads.

* Memory is local & scalable.

* No need for local memory synchronization.

* You may require specialized data structures.
* Non-Uniform memory access times on remote nodes.

* Access times affected by the network (could be Ethernet).

Ed Armstrong - SHARCNET

10

Challenges

* non-determinism

* communication

* synchronization

* data/task partitioning

Ed Armstrong - SHARCNET

11

Challenges

* non-determinism

e communication
* synchronization

transfer(Account from, Account to, double amount)

{

from = from - amount;
to = to + amount;

Ed Armstrong - SHARCNET

12

Challenges

* non-determinism

e communication
* synchronization

transfer(Account from, Account to, double amount)

{

temp = from;
temp -= amount
from = temp;
temp = to;
temp -= amount
to = temp;

}

MyAccount = 500;
ClerkA.transfer(B, MyAccount, 200);
ClearB.transfer(MyAccount, C, 50);

Ed Armstrong - SHARCNET

13

Challenges

* non-determinism

* communication
* synchronization

ClerkA.transfer
(B, MyAccount, 200);

temp = $300 (temp = from)
temp = $100 (temp -= amount)

B = $100 (from = temp)
temp = $500 (temp = to)
temp = 700 (temp += amount)

MyAccount = $700 (to = temp)

Ed Armstrong - SHARCNET

ClearB.transfer
(MyAccount, C, 50);

temp = $500 (temp = from)
temp = $450 (temp -= amount)

=== delay ===

MyAccount = $450 (from = temp)

14

Challenges

* hon-determinism
e communication

* synchronization

Critical Section

Ed Armstrong - SHARCNET

Time

v

15

Challenges

* non-determinism

e communication

* synchronization

foo()

{
do stuff before
lock();
critical code section
release();
do stuff after
}
Thread 1 Thread 2

do stuff before do stuff before
lock lock
critical code

release

do stuff after critical code

release

do stuff after

Ed Armstrong - SHARCNET

16

Challenges

* hon-determinism
e communication
* synchronization

transfer(Account from, Account to, double
{

sync(from);

sync(to);

from.withdraw(amount);

to.deposit(amount);

release(to);

release(from);

}

Threadl -> transfer(A, B, 10.0);
Thread2 -> transfer(B, A, 10.0);

Ed Armstrong - SHARCNET

amount)

17

Performance Metrics

* Serial Runtime : T,

* Parallel Runtime at n Processes: T,
* Speedup (times faster): S =T /T,

» Efficiency: E =S, /n

Ed Armstrong - SHARCNET

Performance Metrics : Presentation

* Serial Runtime : T,
* Parallel Runtime at n Processes: T,

Runtime

* Speedup (times faster): S =T /T,

* Efficiency: E =S, /n i \

RUNTIME (S)
~ (o)) (o)

7
NUMBER OF PROCESSES (N)

Ed Armstrong - SHARCNET

Performance Metrics : Presentation

* Serial Runtime : T,
* Parallel Runtime at n Processes: T,
Speedup

* Speedup (times faster): S =T_/T.
e Efficiency: E =S, /n

P N W P U1 OO 0L

Ed Armstrong - SHARCNET

Performance Metrics : Presentation

* Serial Runtime : T,
* Parallel Runtime at n Processes: T,
Efficiency

* Speedup (times faster): S =T_/T.
» Efficiency: E.=S_/n

ACTUAL / LINEAR
O O o O o O o O o
O R N W &~ 0 oy © O p

4
NUMBER OF PROCESSES

Ed Armstrong - SHARCNET

Amdahl's law

Percentage of the program which can be parallelized: p
Percentage of the program which is serial only: 1-p
Serial runtime: T =(2-p) T, +p T,

Theoretical parallel runtime: T, =(2-p) T,+pT,/n
Tn/T1=(2-p) +p/n

Sn=T1/Tn=1/((2-Pp)+PN) note: Amdahl calls this ‘speedup in latency".

Ed Armstrong - SHARCNET

22

Amdahl's law

States that the minimum execution time of a parallel program is
dictated by the execution time of the serial portion of the program.

* disk1/O

* inter-process communication
* critical code segments

* lock overhead

* context switching

* latency (p) can change in ratio to the number of processes.

Ed Armstrong - SHARCNET

23

Patterns

* Master-Worker
* Multi-Walk

* Pipeline

* Hybrid

* Loop Parallelism

Ed Armstrong - SHARCNET

24

Master-Worker

/ WORKER \

MASTER P WORkeR [28 MASTER

\ WORKER /

Assigns Tasks Performs Computation Collects Results

Ed Armstrong - SHARCNET

 All communication is
between the master and a
worker.

e The master can either wait
(block) or perform
computation.

Scalability (see Hadoop).

Simple to code.

 No inter-worker
communication.

Singe point of failure.

MASTER

Ed Armstrong - SHARCNET

I e I

— [—
I orc Lt

MASTER

26

M U Iti 'Wa I k (single program multiple data)

m computatlon /
m —
_—

Ed Armstrong - SHARCNET

computation

l l l l

« Communication is between
processes, as opposed to
facilitated such as in Master-
Worker.

* Barrier points (communication).

* Not suited for large variation in
process runtime.

* Prone to communication delays.

Ed Armstrong - SHARCNET 28

Pipeline

u

Ed Armstrong - SHARCNET 29

* Data assembly line model.

* Queue driven model. @ =D

* Prone to starvation.
* Variable sized process pools.

* Instruction pipeline.
* Graphics pipeline.

Ed Armstrong - SHARCNET 30

Loop Parallelism

EEEEEEEEEEEEEEEEEEEE

* Data independence between
iterations of the loop.

* Easy to implement.

* Susceptible to race conditions
from mutex locks on critical
code sections.

Ed Armstrong - SHARCNET 32

Hybrid Patterns
=8
'>-~:>.

Hybrid Patterns (nested, asynchronous): A composition of patterns
resulting in a hierarchy of tasks which allows sub-patterns to be
replaced with another pattern with matching input-output
dependencies.

Ed Armstrong - SHARCNET

33

ThankYou.
Questions?

EEEEEEEEEEEEEEEEEEEE

