
SHARCNET General Interest Seminar Series

GPU Basics

Isaac Ye, High Performance Technical
Consultant

SHARCNET, York University

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

2

CPU	
 vs	
 GPU	

•	
 GPU	
 compu.ng	
 	

•	
 GPGPU	

•	
 GPU	
 systems	
 in	
 SHARCNET

CUDA	
 Basics	

• Introduc.on	
 to	
 CUDA	

• CUDA	
 Programming	

CUDA	
 Example	

• Hello,	
 CUDA!

SHARCNET General Interest Seminar Series

GPU Basics Isaac Ye

- GPU COMPUTING
- GPGPU
- CPU VS. GPU

CPU	
 vs	
 GPU

3

SHARCNET General Interest Seminar Series

GPU Basics Isaac Ye

What happens to CPU?

4

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

GPU computing timeline

5

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

General computing APIs for GPUs
• NVIDIA offers CUDA while AMD has moved toward OpenCL (also

supported by NVIDIA)

!

• These computing platforms bypass the graphics pipeline and expose
the raw computational capabilities of the hardware. Programmer
needs to know nothing about graphics programming.

!

• OpenACC compiler directive approach is emerging as an alternative
(works somewhat like OpenMP)

!

• More recent and less developed alternative to CUDA: OpenCL

– a vendor-agnostic computing platform

– supports vendor-specific extensions akin to OpenGL

– goal is to support a range of hardware architectures including GPUs, CPUs,

Cell processors, Larrabee and DSPs using a standard low-level API

6

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

The appeal of GPGPU
• “Supercomputing for the masses”

– significant computational horsepower at an attractive price point

– readily accessible hardware

!

• Scalability

– programs can execute without modification on a run-of-the-mill

PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

!

• Bright future – the computational capability of GPUs
doubles each year

– more thread processors, faster clocks, faster DRAM, …

– “GPUs are getting faster, faster”

7

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Comparing GPUs and CPUs

• Task parallelism

• Minimize latency

• Multithreaded

• Some SIMD

• excel at number crunching

• data parallelism (single task)

• maximize throughput

• super-threaded

• large-scale SIMD

8

Latency-optimized cores
(Fast serial processing)

Throughput-optimized cores
(Scalable parallel processing)

SHARCNET General Interest Seminar Series

GPU Basics Isaac Ye

- INTRODUCTION TO CUDA
- CUDA PROGRAMMING

CUDA	
 Basics

9

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

CUDA

• “Compute Unified Device Architecture”

!

• A platform that exposes NVIDIA GPUs
as general purpose compute devices

!

• Is CUDA considered GPGPU?

– yes and no

• CUDA can execute on devices with no
graphics output capabilities (the NVIDIA Tesla
product line) – these are not “GPUs”, per se

• however, if you are using CUDA to run some
generic algorithms on your graphics card, you
are indeed performing some General Purpose
computation on your Graphics Processing
Unit…

10

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Speedup
• What kind of speedup can I expect?

– 0x – 2000x reported

– 10x – considered typical (vs. multi-CPU machines)

– >= 30x considered worthwhile

!

• Speedup depends on

– problem structure

• need many identical independent calculations

• preferably sequential memory access

– level of intimacy with hardware

– time investment

11

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Stream computing
• A parallel processing model where a computational

kernel is applied to a set of data (a stream)

– the kernel is applied to stream elements in parallel

!
!
!
!
!
!
!
!

• GPUs excel at this thanks to a large number of
processing units and a parallel architecture

8-%>()$5&)C6-*+'$
•  1$C(%(BB>B$C%&5>??*+'$)&3>B$,.>%>$($5&)C6-(-*&+(B$
-).*)/$*?$(CCB*>3$-&$($?>-$&A$3(-($S($01.)23T$
–  -.>$W>%+>B$*?$(CCB*>3$-&$?-%>()$>B>)>+-?$*+$C(%(BB>B$

•  !"#?$>L5>B$(-$-.*?$-.(+W?$-&$($B(%'>$+6)G>%$&A$
C%&5>??*+'$6+*-?$(+3$($C(%(BB>B$(%5.*->5-6%>$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

`$ Q$ V$ c$ O$ V$ d$ e$ e$ V$ f$ `$

!" #" $" %" &" $" '" (" (" $")" !"

F,+.,/$

G.7;($1(+,*5$

H;(7;($1(+,*5$

12

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Beyond stream computing
• Current GPUs offer functionality that goes beyond mere

stream computing

!

• Shared memory and thread synchronization primitives
eliminate the need for data independence

!

• Gather and scatter operations allow kernels to read and
write data at arbitrary locations

13

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

CUDA programming model
• The main CPU is referred to as the host

• The compute device is viewed as a coprocessor capable

of executing a large number of lightweight threads in
parallel

• Computation on the GPU device is performed by
kernels, functions executed in parallel on each data
element

• Both the host and the device have their own memory

– the host and device cannot directly access each other’s

memory, but data can be transferred using the runtime API

• The host manages all memory allocations on the device.

14

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

GPU Hardware architecture - NVIDIA Fermi

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved | http://www.in-stat.com Page 7

Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This

diagram explains why CUDA cores can get by without their own register files, caches, or load/store

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll

explain below.)













 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



















































Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80

architectures. All 32 cores share the resources of their streaming multiprocessor, such as

registers, caches, local memory, and load/store units. The “special function units” (SFUs)

handle complex math operations, such as square roots, reciprocals, sines, and cosines.

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved | http://www.in-stat.com Page 9

Another shared resource in a streaming multiprocessor is a new load/store unit, which can execute 16

load or store operations per clock cycle. It does even better when using a special “uniform cache,” seen

at the bottom of Figure 3. Matrix-math operations often load scalar values from sequential addresses
belonging to a particular thread, and they also load a common value shared among all threads in a

warp. In those cases, a streaming multiprocessor can load two operands per cycle.

Figure 5 is the highest-level view of the Fermi architecture. All 16 streaming multiprocessors — each

with 32 CUDA cores — share a 768KB unified L2 cache. By the standards of modern general-purpose
CPUs, this cache is relatively small, but previous CUDA architectures had no L2 cache at all. Fermi

maintains cache coherency for all the streaming multiprocessors sharing the L2 cache.

Figure 5. Fermi architecture block diagram. This top-level view of the architecture shows the 16

streaming multiprocessors, the six 64-bit DRAM interfaces, the host interface (PCI Express),

and the GigaThread hardware thread scheduler. This improved scheduler manages thousands

of simultaneous threads and switches contexts between graphics and compute applications

in as little as 25 microseconds — ten times faster than NVIDIA’s previous schedulers.

(Switching among threads within a graphics or compute instruction stream requires only one

clock cycle, but alternating between graphics and compute workloads takes longer, because

the caches must be flushed and refilled.)

Fermi’s Memory Hierarchy

The memory hierarchy of a Fermi GPU is somewhat different than the better-known hierarchy for a
general-purpose CPU. For one thing, a GPU has a large frame buffer — as much as a gigabyte of 15

MP

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Hardware basics
• The compute device is composed of a number of

multiprocessors, each of which contains a number of
SIMD processors

– Tesla M2070 has 14 multiprocessors (each with 32

CUDA cores) 

• A multiprocessor can execute K threads in parallel
physically, where K is called the warp size

– thread = instance of kernel

– warp size on current hardware is 32 threads

!

• Each multiprocessor contains a large number of 32-bit
registers which are divided among the active threads

16

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Output of device diagnostic program
[isaac@mon241:~] ssh monk-dev1
[isaac@mon54:~/GI_seminar/device_diagnostic] ./device_diagnostic.x
found 2 CUDA devices
 --- General Information for device 0 ---
Name: Tesla M2070
Compute capability: 2.0
Clock rate: 1147000
Device copy overlap: Enabled
Kernel execution timeout : Disabled
 --- Memory Information for device 0 ---
Total global mem: 5636554752
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
 --- MP Information for device 0 ---
Multiprocessor count: 14
Shared mem per mp: 49152
Registers per mp: 32768
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (65535, 65535, 65535) !
 --- General Information for device 1 ---
Name: Tesla M2070
...

17

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

CUDA versions installed (SHARCNET)
• Different versions of CUDA available - choose one via modules 

– on monk latest CUDA installed in /opt/sharcnet/cuda/6.0.37/

!!
[isaac@mon241:~] module list
Currently Loaded Modulefiles:
 1) torque/2.5.13 6) openmpi/intel/1.6.2
 2) moab/7.0.0 7) ldwrapper/1.1
 3) sq-tm/2.5 8) cuda/6.0.37
 4) mkl/10.3.9 9) user-environment/2.0.1
 5) intel/12.1.3 !
– sample projects in /opt/sharcnet/cuda/6.0.37/sample

 

18

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Execution model

19

• Each thread is
executed in a core

• Each block is
executed by one MP

• Each kernel is
executed on one
device

Tutorial: GPU Programming Isaac Ye

High Performance Computing Symposium 2014

Thread batching
• To take advantage of the multiple multiprocessors,

kernels are executed as a grid of threaded blocks

!

• All threads in a thread block are executed by a single
multiprocessor

!

• The resources of a multiprocessor are divided among the
threads in a block (registers, shared memory, etc.)

– this has several important implications that will be

discussed later

20

Tutorial: GPU Programming Isaac Ye

High Performance Computing Symposium 2014

Thread batching: 1D example
=.%>(3$G(-5.*+'H$Q0$>L()CB>$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

>91.$
I?+2J"
B$ I?+2J"

G$ I?+2J"
#$ I?+2J"

&$ I?+2J"
$$ I?+2J"

)$ I?+2J"
!$ I?+2J"

'$ I?+2J"
?RRR

I?+2J"$$
;*9/6."

B"
;*9/6."

G"
;*9/6."

#"
;*9/6."

&"
;*9/6."

$"
;*9/6."

@,
RRR$

21

Tutorial: GPU Programming Isaac Ye

High Performance Computing Symposium 2014

Thread batching: 2D example

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

22

SHARCNET General Interest Seminar Series

GPU Basics Isaac Ye

CUDA	
 Hands-­‐on

23

- HELLO, CUDA!
- SAXPY CUDA, SAXPY CUBLAS
- DOT PRODUCT

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Simple processing flow

24

1. Copy input data from CPU memory to
 GPU memory

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Simple processing flow

25

1. Copy input data from CPU memory to
 GPU memory
2. Load GPU code(kernel) and execute it

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Simple processing flow

26

1. Copy input data from CPU memory to
 GPU memory
2. Load GPU code(kernel) and execute it
3. Copy results from GPU memory to
 CPU memory

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Template for CUDA
#include <stdio.h> !
main(){ !

Initialize the GPU
Memory allocation !
Memory copy !
FunctionG << N, M >> (Parameters) !
Memory copy !
} !
void __global__ functionG(parameters){ !

functionA();
functinB ();

} !
cudafree(); !
}

27

Memory control

Execute kernel

Mem copy to GPU

Mem copy from GPU

CUDA kernel (global)

CUDA cleanup

High Performance Computing Symposium 2014

Tutorial: GPU Programming Isaac Ye

HELLO, CUDA!
GPU Programming: Hands-on #1

28

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Example: Hello, CUDA!
!

• Basic example: hello_cuda.c

#include <stdio.h> !
int main(void)
{
 printf("Hello, CUDA!\n");
}

29

[isaac@mon54:~/hpcs14/hellocuda] ./a.out
Hello, CUDA!

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Hello CUDA Kernel
!

• CUDA language closely follows C/C++ syntax with
minimum set of extension

!
!
!
!
!

• The __global__ qualifier identifies this function as a
kernel that executes on the device

#include <stdio.h> !
__global__ void cudakernel(void){
 printf("Hello, I am CUDA kernel ! Nice to meet you!\n");
}

30

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Qualifiers

__global__ Device kernels callable from host

__device__ Device functions (only callable from device)

__host__ Host functions (only callable from host)

__shared__ Memory shared by a block of threads executing on a
multiprocessor.

__constant__ Special memory for constants (cached)

Functions

Data

31

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

CUDA data types
• C primitives:

– char, int, float, double, …
!

• Short vectors:

– int2, int3, int4, uchar2, uchar4, float2, float3, float4, …
!

• Special type used to represent dimensions

– dim3
!

• Support for user-defined structures, e.g.:

 struct particle
 {
 float3 position, velocity, acceleration;
 float mass;
 };

32

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Library functions available to kernels
• Math library functions:

– sin, cos, tan, sqrt, pow, log, …
– sinf, cosf, tanf, sqrtf, powf, logf, …

!
• ISA intrinsics

– __sinf, __cosf, __tanf, __powf, __logf, …
– __mul24, __umul24, …

!
• Intrinsic versions of math functions are faster but less

precise

33

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Hello CUDA code
• Program returns immediately after launching the kernel. To prevent

program to finish before kernel is completed, we have call
cudaDeviceSynchronize()

int main(void){ !
 printf("Hello, Cuda! \n"); !
 cudakernel<<<1,1>>>();
 cudaDeviceSynchronize(); !
 printf("Nice to meet you too! Bye, CUDA\n"); !
 return(0);
} !
__global__ void cudakernel(void){
 printf("Hello, I am CUDA kernel ! Nice to meet you!\n");
}

34

SHARCNET General Interest Seminar Series

GPU Basics Isaac Ye

HOW TO COMPILE AND RUN

35

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

SHARCNET GPU systems
• Always check our software page for latest info! See also:

https://www.sharcnet.ca/help/index.php/GPU_Accelerated_Computing

!

• angel.sharcnet.ca  
 
11 NVIDIA Tesla S1070 GPU servers 
 
each with 4 GPUs + 16GB of global memory  
 
each GPU server connected to two compute nodes (2 4-core Xeon CPUs + 8GB RAM each)  
 
1 GPU per quad-core CPU; 1:1 memory ratio between GPUs/CPUs 

• visualization workstations 
 
Some old and don’t support CUDA, but some have up to date cards,
check list at:  
 
https://www.sharcnet.ca/my/systems/index  

!
!

!
36

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

“monk” cluster
• 54 nodes, InfiniBand interconnect, 80 Tb storage

• Node:  

8 x CPU cores (Intel Xeon 2.26 GHz)  
48 GB memory 
2 x M2070 GPU cards

• Nvidia Tesla M2070 GPU 
“Fermi” architecture 
ECC memory protection 
L1 and L2 caches 
2.0 Compute Capability 
448 CUDA cores 
515 Gigaflops (DP) 
 

37

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Language and compiler
• CUDA provides a set of extensions to the C programming

language

– new storage quantifiers, kernel invocation syntax, intrinsics,

vector types, etc.

!

• CUDA source code saved in .cu files

– host and device code and coexist in the same file

– storage qualifiers determine type of code

!
• Compiled to object files using nvcc compiler

– object files contain executable host and device code

!

• Can be linked with object files generated by other C/C++
compilers

38

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Compiling
• nvcc -arch=sm_20 -O2 program.cu -o program.x

• -arch=sm_20 means code is targeted at Compute

Capability 2.0 architecture (what monk has)

• -O2 optimizes the CPU portion of the program (needs to

be off for debugging/profiling)

• There are no flags to optimize CUDA code

• Various fine tuning switches possible

• SHARCNET has a CUDA environment module preloaded.

See what it does by executing: module show cuda

• add -lcublas to link with CUBLAS libraries

39

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Hello CUDA code with built-in variable
• Basic example: hello_cuda.cu

#include <stdio.h> !
__global__ void cudakernel(void){
 printf("Hello, I am CUDA block %d! Nice to meet you!\n", blockIdx);
} !
int main(void){ !
 printf("Hello, Cuda! \n"); !
 cudakernel<<<16,1>>>();
 cudaDeviceSynchronize(); !
 printf("Nice to meet you too! Bye, CUDA\n"); !
 return(0);
}

40

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

cudakernel<<<16,1>>>();

41

Block 0
Block 1
Block 2
:
:
Block 15

Hello, I am CUDA block 0! Nice to meet you!

Hello, I am CUDA block 1! Nice to meet you!

Hello, I am CUDA block 2! Nice to meet you!

Hello, I am CUDA block 15! Nice to meet you!

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

Hello CUDA result with BlockIdx value

[isaac@mon54:~/GI_seminar/hellocuda] ./a.out
Hello, Cuda!
Hello, I am CUDA block 4 ! Nice to meet you!
Hello, I am CUDA block 11 ! Nice to meet you!
Hello, I am CUDA block 15 ! Nice to meet you!
Hello, I am CUDA block 5 ! Nice to meet you!
Hello, I am CUDA block 7 ! Nice to meet you!
Hello, I am CUDA block 14 ! Nice to meet you!
Hello, I am CUDA block 3 ! Nice to meet you!
Hello, I am CUDA block 9 ! Nice to meet you!
Hello, I am CUDA block 13 ! Nice to meet you!
Hello, I am CUDA block 6 ! Nice to meet you!
Hello, I am CUDA block 2 ! Nice to meet you!
Hello, I am CUDA block 12 ! Nice to meet you!
Hello, I am CUDA block 8 ! Nice to meet you!
Hello, I am CUDA block 0 ! Nice to meet you!
Hello, I am CUDA block 1 ! Nice to meet you!
Hello, I am CUDA block 10 ! Nice to meet you!
Nice to meet you too! Bye, CUDA

42

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

C Language extensions
• Basic example: hello_cuda_thread.cu

#include <stdio.h> !
__global__ void cudakernel(void){
 printf("Hello, I am CUDA thread %d! Nice to meet you!\n", threadIdx.x);
} !
int main(void){ !
...
 cudakernel<<<1,16>>>();
 cudaDeviceSynchronize(); !
...
}

43

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

cudakernel<<<1,16>>>();

44

Thread 0
Thread 1
Thread 2
:
:
Thread 15

Hello, I am CUDA thread 0! Nice to meet you!

Hello, I am CUDA thread 1! Nice to meet you!

Hello, I am CUDA thread 2! Nice to meet you!

Hello, I am CUDA thread 15! Nice to meet you!

Block 0

 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

C Language extensions

[isaac@mon54:~/GI_seminar/hellocuda] ./a.out
Hello, Cuda!
Hello, I am CUDA thread 0! Nice to meet you!
Hello, I am CUDA thread 1! Nice to meet you!
Hello, I am CUDA thread 2! Nice to meet you!
Hello, I am CUDA thread 3! Nice to meet you!
Hello, I am CUDA thread 4! Nice to meet you!
Hello, I am CUDA thread 5! Nice to meet you!
Hello, I am CUDA thread 6! Nice to meet you!
Hello, I am CUDA thread 7! Nice to meet you!
Hello, I am CUDA thread 8! Nice to meet you!
Hello, I am CUDA thread 9! Nice to meet you!
Hello, I am CUDA thread 10! Nice to meet you!
Hello, I am CUDA thread 11! Nice to meet you!
Hello, I am CUDA thread 12! Nice to meet you!
Hello, I am CUDA thread 13! Nice to meet you!
Hello, I am CUDA thread 14! Nice to meet you!
Hello, I am CUDA thread 15! Nice to meet you!
Nice to meet you too! Bye, CUDA

45

