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GPU computing timeline
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General computing APIs for GPUs
• NVIDIA offers CUDA while AMD has moved toward OpenCL (also 

supported by NVIDIA)

!

• These computing platforms bypass the graphics pipeline and expose 
the raw computational capabilities of the hardware.  Programmer 
needs to know nothing about graphics programming.

!

• OpenACC compiler directive approach is emerging as an alternative 
(works somewhat like OpenMP)

!

• More recent and less developed alternative to CUDA:  OpenCL

– a vendor-agnostic computing platform

– supports vendor-specific extensions akin to OpenGL

– goal is to support a range of hardware architectures including GPUs, CPUs, 

Cell processors, Larrabee and DSPs using a standard low-level API
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The appeal of GPGPU
• “Supercomputing for the masses”


– significant computational horsepower at an attractive price point

– readily accessible hardware

!

• Scalability

– programs can execute without modification on a run-of-the-mill 

PC with a $150 graphics card or a dedicated multi-card 
supercomputer worth thousands of dollars

!

• Bright future – the computational capability of GPUs 
doubles each year

– more thread processors, faster clocks, faster DRAM, …

– “GPUs are getting faster, faster”
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Comparing GPUs and CPUs

• Task parallelism 

• Minimize latency

• Multithreaded

• Some SIMD

• excel at number crunching

• data parallelism (single task)

• maximize throughput

• super-threaded

• large-scale SIMD
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Latency-optimized cores 
(Fast serial processing)

Throughput-optimized cores 
(Scalable parallel processing)
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- CUDA PROGRAMMING
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CUDA

• “Compute Unified Device Architecture”

!

• A platform that exposes NVIDIA GPUs 
as general purpose compute devices

!

• Is CUDA considered GPGPU?

– yes and no


• CUDA can execute on devices with no 
graphics output capabilities (the NVIDIA Tesla 
product line) – these are not “GPUs”, per se


• however, if you are using CUDA to run some 
generic algorithms on your graphics card, you 
are indeed performing some General Purpose 
computation on your Graphics Processing 
Unit…

10
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Speedup
• What kind of speedup can I expect?


– 0x – 2000x reported

– 10x – considered typical (vs. multi-CPU machines)

– >= 30x considered worthwhile

!

• Speedup depends on

– problem structure


• need many identical independent calculations

• preferably sequential memory access


– level of intimacy with hardware

– time investment

11
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Stream computing
• A parallel processing model where a computational 

kernel is applied to a set of data (a stream)

– the kernel is applied to stream elements in parallel

!
!
!
!
!
!
!
!

• GPUs excel at this thanks to a large number of 
processing units and a parallel architecture
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Beyond stream computing
• Current GPUs offer functionality that goes beyond mere 

stream computing

!

• Shared memory and thread synchronization primitives 
eliminate the need for data independence

!

• Gather and scatter operations allow kernels to read and 
write data at arbitrary locations

13
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CUDA programming model
• The main CPU is referred to as the host

• The compute device is viewed as a coprocessor capable 

of executing a large number of lightweight threads in 
parallel


• Computation on the GPU device is performed by 
kernels, functions executed in parallel on each data 
element


• Both the host and the device have their own memory

– the host and device cannot directly access each other’s 

memory, but data can be transferred using the runtime API


• The host manages all memory allocations on the device. 
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GPU Hardware architecture - NVIDIA Fermi

 

   

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved   |   http://www.in-stat.com     Page 7 

Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This 

diagram explains why CUDA cores can get by without their own register files, caches, or load/store 

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32 
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which 

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll 

explain below.) 
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Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming 

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80 

architectures. All 32 cores share the resources of their streaming multiprocessor, such as 

registers, caches, local memory, and load/store units. The “special function units” (SFUs) 

handle complex math operations, such as square roots, reciprocals, sines, and cosines. 
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Another shared resource in a streaming multiprocessor is a new load/store unit, which can execute 16 

load or store operations per clock cycle. It does even better when using a special “uniform cache,” seen 

at the bottom of Figure 3. Matrix-math operations often load scalar values from sequential addresses 
belonging to a particular thread, and they also load a common value shared among all threads in a 

warp. In those cases, a streaming multiprocessor can load two operands per cycle. 

Figure 5 is the highest-level view of the Fermi architecture. All 16 streaming multiprocessors — each 

with 32 CUDA cores — share a 768KB unified L2 cache. By the standards of modern general-purpose 
CPUs, this cache is relatively small, but previous CUDA architectures had no L2 cache at all. Fermi 

maintains cache coherency for all the streaming multiprocessors sharing the L2 cache. 

 

Figure 5. Fermi architecture block diagram. This top-level view of the architecture shows the 16 

streaming multiprocessors, the six 64-bit DRAM interfaces, the host interface (PCI Express), 

and the GigaThread hardware thread scheduler. This improved scheduler manages thousands 

of simultaneous threads and switches contexts between graphics and compute applications 

in as little as 25 microseconds — ten times faster than NVIDIA’s previous schedulers. 

(Switching among threads within a graphics or compute instruction stream requires only one 

clock cycle, but alternating between graphics and compute workloads takes longer, because 

the caches must be flushed and refilled.) 

 

Fermi’s Memory Hierarchy 

The memory hierarchy of a Fermi GPU is somewhat different than the better-known hierarchy for a 
general-purpose CPU. For one thing, a GPU has a large frame buffer — as much as a gigabyte of 15

MP
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Hardware basics
• The compute device is composed of a number of 

multiprocessors, each of which contains a number of 
SIMD processors

– Tesla M2070 has 14 multiprocessors (each with 32 

CUDA cores) 

• A multiprocessor can execute K threads in parallel 
physically, where K is called the warp size

– thread = instance of kernel

– warp size on current hardware is 32 threads

!

• Each multiprocessor contains a large number of 32-bit 
registers which are divided among the active threads

16
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Output of device diagnostic program
[isaac@mon241:~] ssh monk-dev1 
[isaac@mon54:~/GI_seminar/device_diagnostic] ./device_diagnostic.x  
found 2 CUDA devices 
   --- General Information for device 0 --- 
Name:  Tesla M2070 
Compute capability:  2.0 
Clock rate:  1147000 
Device copy overlap:  Enabled 
Kernel execution timeout :  Disabled 
   --- Memory Information for device 0 --- 
Total global mem:  5636554752 
Total constant Mem:  65536 
Max mem pitch:  2147483647 
Texture Alignment:  512 
   --- MP Information for device 0 --- 
Multiprocessor count:  14 
Shared mem per mp:  49152 
Registers per mp:  32768 
Threads in warp:  32 
Max threads per block:  1024 
Max thread dimensions:  (1024, 1024, 64) 
Max grid dimensions:  (65535, 65535, 65535) !
   --- General Information for device 1 --- 
Name:  Tesla M2070 
...

17
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CUDA versions installed (SHARCNET)
• Different versions of CUDA available - choose one via modules 

– on monk latest CUDA installed in /opt/sharcnet/cuda/6.0.37/

!!
[isaac@mon241:~] module list 
Currently Loaded Modulefiles: 
  1) torque/2.5.13            6) openmpi/intel/1.6.2 
  2) moab/7.0.0               7) ldwrapper/1.1 
  3) sq-tm/2.5                8) cuda/6.0.37 
  4) mkl/10.3.9               9) user-environment/2.0.1 
  5) intel/12.1.3 !
– sample projects in /opt/sharcnet/cuda/6.0.37/sample


 

18
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Execution model

19

• Each thread is 
executed in a core

• Each block is 
executed by one MP

• Each kernel is 
executed on one 
device
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Thread batching
• To take advantage of the multiple multiprocessors, 

kernels are executed as a grid of threaded blocks

!

• All threads in a thread block are executed by a single 
multiprocessor

!

• The resources of a multiprocessor are divided among the 
threads in a block (registers, shared memory, etc.)

– this has several important implications that will be 

discussed later

20
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Thread batching: 1D example
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Thread batching: 2D example
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CUDA	
  Hands-­‐on
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- HELLO, CUDA! 
- SAXPY CUDA, SAXPY CUBLAS 
- DOT PRODUCT 
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Simple processing flow

24

1. Copy input data from CPU memory to     
    GPU memory
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Simple processing flow
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1. Copy input data from CPU memory to     
    GPU memory 
2. Load GPU code(kernel) and execute it
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Simple processing flow
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1. Copy input data from CPU memory to     
    GPU memory 
2. Load GPU code(kernel) and execute it 
3. Copy results from GPU memory to  
    CPU memory
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Template for CUDA
#include <stdio.h> !
main(){ !

Initialize the GPU 
Memory allocation !
Memory copy !
FunctionG << N, M >> (Parameters) !
Memory copy !
} !
void __global__ functionG(parameters){ !

functionA(); 
functinB (); 

} !
cudafree(); !
}

27

Memory control

Execute kernel

Mem copy to GPU

Mem copy from GPU

CUDA kernel (global)

CUDA cleanup



High Performance Computing Symposium 2014

Tutorial: GPU Programming Isaac Ye

HELLO, CUDA!
GPU Programming: Hands-on #1
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Example: Hello, CUDA!
!

• Basic example: hello_cuda.c

#include <stdio.h> !
int main(void) 
{ 
  printf("Hello, CUDA!\n"); 
}

29

[isaac@mon54:~/hpcs14/hellocuda] ./a.out  
Hello, CUDA!  
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Hello CUDA Kernel
!

• CUDA language closely follows C/C++ syntax with 
minimum set of extension

!
!
!
!
!

• The __global__ qualifier identifies this function as a 
kernel that executes on the device

#include <stdio.h> !
__global__ void cudakernel(void){ 
  printf("Hello, I am CUDA kernel ! Nice to meet you!\n"); 
} 

30
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Qualifiers

__global__ Device kernels callable from host

__device__ Device functions (only callable from device)

__host__ Host functions (only callable from host)

__shared__ Memory shared by a block of threads executing on a 
multiprocessor.

__constant__ Special memory for constants (cached)

Functions

Data

31
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CUDA data types
• C primitives:


– char, int, float, double, … 
!

• Short vectors:

– int2, int3, int4, uchar2, uchar4, float2, float3, float4, … 
!

• Special type used to represent dimensions

– dim3 
!

• Support for user-defined structures, e.g.:

 struct particle 
 { 
     float3 position, velocity, acceleration; 
     float mass; 
 };

32
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Library functions available to kernels
• Math library functions:


– sin, cos, tan, sqrt, pow, log, … 
– sinf, cosf, tanf, sqrtf, powf, logf, … 

!
• ISA intrinsics


– __sinf, __cosf, __tanf, __powf, __logf, … 
– __mul24, __umul24, … 

!
• Intrinsic versions of math functions are faster but less 

precise

33
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Hello CUDA code
• Program returns immediately after launching the kernel. To prevent 

program to finish before kernel is completed, we have call 
cudaDeviceSynchronize()

int main(void){ !
   printf("Hello, Cuda! \n"); !
   cudakernel<<<1,1>>>(); 
   cudaDeviceSynchronize(); !
   printf("Nice to meet you too! Bye, CUDA\n"); !
   return(0); 
} !
__global__ void cudakernel(void){ 
  printf("Hello, I am CUDA kernel ! Nice to meet you!\n"); 
} 

34
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HOW TO COMPILE AND RUN
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SHARCNET GPU systems
• Always check our software page for latest info!  See also:


https://www.sharcnet.ca/help/index.php/GPU_Accelerated_Computing

!

• angel.sharcnet.ca  
 
11 NVIDIA Tesla S1070 GPU servers 
 
each with 4 GPUs + 16GB of global memory  
 
each GPU server connected to two compute nodes (2 4-core Xeon CPUs + 8GB RAM each)  
 
1 GPU per quad-core CPU; 1:1 memory ratio between GPUs/CPUs 

• visualization workstations 
 
Some old and don’t support CUDA, but some have up to date cards, 
check list at:  
 
https://www.sharcnet.ca/my/systems/index  

!
!

!
36
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“monk” cluster
• 54 nodes, InfiniBand interconnect, 80 Tb storage

• Node:  

8 x CPU cores (Intel Xeon 2.26 GHz)  
48 GB memory 
2 x M2070 GPU cards


• Nvidia Tesla M2070 GPU 
“Fermi” architecture 
ECC memory protection 
L1 and L2 caches 
2.0 Compute Capability 
448 CUDA cores 
515 Gigaflops (DP) 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Language and compiler
• CUDA provides a set of extensions to the C programming 

language

– new storage quantifiers, kernel invocation syntax, intrinsics, 

vector types, etc.

!

• CUDA source code saved in .cu files

– host and device code and coexist in the same file

– storage qualifiers determine type of code


!
• Compiled to object files using nvcc compiler


– object files contain executable host and device code

!

• Can be linked with object files generated by other C/C++ 
compilers

38
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Compiling
• nvcc -arch=sm_20 -O2 program.cu -o program.x

• -arch=sm_20 means code is targeted at Compute 

Capability 2.0 architecture (what monk has)

• -O2 optimizes the CPU portion of the program (needs to 

be off for debugging/profiling)

• There are no flags to optimize CUDA code

• Various fine tuning switches possible

• SHARCNET has a CUDA environment module preloaded.  

See what it does by executing:  module show cuda

• add -lcublas to link with CUBLAS libraries

39
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Hello CUDA code with built-in variable
• Basic example: hello_cuda.cu

#include <stdio.h> !
__global__ void cudakernel(void){ 
  printf("Hello, I am CUDA block %d! Nice to meet you!\n", blockIdx); 
} !
int main(void){ !
   printf("Hello, Cuda! \n"); !
   cudakernel<<<16,1>>>(); 
   cudaDeviceSynchronize(); !
   printf("Nice to meet you too! Bye, CUDA\n"); !
   return(0); 
}

40
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cudakernel<<<16,1>>>();

41

Block 0
Block 1
Block 2
:
:
Block 15

Hello, I am CUDA block 0! Nice to meet you!

Hello, I am CUDA block 1! Nice to meet you!

Hello, I am CUDA block 2! Nice to meet you!

Hello, I am CUDA block 15! Nice to meet you!
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Hello CUDA result with BlockIdx value

[isaac@mon54:~/GI_seminar/hellocuda] ./a.out  
Hello, Cuda!  
Hello, I am CUDA block 4 ! Nice to meet you! 
Hello, I am CUDA block 11 ! Nice to meet you! 
Hello, I am CUDA block 15 ! Nice to meet you! 
Hello, I am CUDA block 5 ! Nice to meet you! 
Hello, I am CUDA block 7 ! Nice to meet you! 
Hello, I am CUDA block 14 ! Nice to meet you! 
Hello, I am CUDA block 3 ! Nice to meet you! 
Hello, I am CUDA block 9 ! Nice to meet you! 
Hello, I am CUDA block 13 ! Nice to meet you! 
Hello, I am CUDA block 6 ! Nice to meet you! 
Hello, I am CUDA block 2 ! Nice to meet you! 
Hello, I am CUDA block 12 ! Nice to meet you! 
Hello, I am CUDA block 8 ! Nice to meet you! 
Hello, I am CUDA block 0 ! Nice to meet you! 
Hello, I am CUDA block 1 ! Nice to meet you! 
Hello, I am CUDA block 10 ! Nice to meet you! 
Nice to meet you too! Bye, CUDA

42



 GPU Basics Isaac Ye

SHARCNET General Interest Seminar Series

C Language extensions
• Basic example: hello_cuda_thread.cu

#include <stdio.h> !
__global__ void cudakernel(void){ 
  printf("Hello, I am CUDA thread %d! Nice to meet you!\n", threadIdx.x); 
} !
int main(void){ !
... 
   cudakernel<<<1,16>>>(); 
   cudaDeviceSynchronize(); !
... 
}

43
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cudakernel<<<1,16>>>();

44

Thread 0
Thread 1
Thread 2
:
:
Thread 15

Hello, I am CUDA thread 0! Nice to meet you!

Hello, I am CUDA thread 1! Nice to meet you!

Hello, I am CUDA thread 2! Nice to meet you!

Hello, I am CUDA thread 15! Nice to meet you!

Block 0
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C Language extensions

[isaac@mon54:~/GI_seminar/hellocuda] ./a.out  
Hello, Cuda!  
Hello, I am CUDA thread 0! Nice to meet you! 
Hello, I am CUDA thread 1! Nice to meet you! 
Hello, I am CUDA thread 2! Nice to meet you! 
Hello, I am CUDA thread 3! Nice to meet you! 
Hello, I am CUDA thread 4! Nice to meet you! 
Hello, I am CUDA thread 5! Nice to meet you! 
Hello, I am CUDA thread 6! Nice to meet you! 
Hello, I am CUDA thread 7! Nice to meet you! 
Hello, I am CUDA thread 8! Nice to meet you! 
Hello, I am CUDA thread 9! Nice to meet you! 
Hello, I am CUDA thread 10! Nice to meet you! 
Hello, I am CUDA thread 11! Nice to meet you! 
Hello, I am CUDA thread 12! Nice to meet you! 
Hello, I am CUDA thread 13! Nice to meet you! 
Hello, I am CUDA thread 14! Nice to meet you! 
Hello, I am CUDA thread 15! Nice to meet you! 
Nice to meet you too! Bye, CUDA 

45


