
Par$$ons	and	scheduling,	running	jobs	
effec$vely	on	Graham	and	Cedar	

	

Par$$ons	

•  Your	job	will	automa$cally	be	assigned		
•  Somewhat	like	queues	or	classes	in	pbs/
torque	and	moab.	

•  A	job	can	be	in	mul$ple	par$$ons	
simultaneously,	and	can	have	mul$ple	a	per	
par$$on	priori$es.	

•  A	node	can	be	in	mul$ple	par$$ons	
simultaneously		

Venn	Diagram	
Has	only	2	legs	 Can	Fly	

BuJerfly	

Bee	

Crow	

Sparrow	

Kangaroo	

Ostrich	

Emu	

Par$$on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par$$on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par$$on)	
can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par$$on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par$$on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Par$$on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par$$on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par$$on)	
can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par$$on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par$$on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Par$$on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par$$on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par$$on)	
can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par$$on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par$$on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Par$$on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	(In	the	red	

par$$on	but	not	in	the	blue)	
•  A	Job	that	requires	CPUs	(red	par$$on)	can	

run	on	any	of	the	5	nodes	
•  A	job	that	requires	GPUS	(blue	par$$on)	

can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par$$on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par$$on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Par$$on	Venn	Diagram	
•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par$$on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par$$on)	
can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par$$on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par$$on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Par$$on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par$$on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par$$on)	
can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par$$on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par$$on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Par$$on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par$$on)	
–  3	nodes	with	GPUs	(Blue	par$$on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par$$on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par$$on)	
can	run	on	any	of	the	3	nodes.	

•  In	the	case	that	the	two	nodes	with	no	gpus	
in	the	red	par$$on	may	be	idle(green)	and	
3	nodes	with	gpus	may	be	busy.		
–  A	job	that	requires	a	GPU	node	(from	the	blue	

par$$on)	will	be	unable	to	start	if	no	GPU	
nodes	are	idle.	A	job	that	requires	CPUs	only	
(Red	par$$on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	jobs	in	the	blue	par$$on.	

Has	CPU	cores	
(Red	Par$$on)	

Has	GPUs	
(Blue	Par$$on)	

Idle	node	

Busy	node	

Node	types	on	Cedar	
Total	
Mem	TB	

Cores	 Memory	 GPUS	 Number	of	
Nodes	

Par88on	
type	

1/8	 32	 4GB/core	 576	 cpubase	
1/4		 32	 8GB/core	 182	 cpubase	
1/2	 32	 16GB/core	 24	 cpularge	
1.5	 32	 48GB/core	 24	 cpularge	
3	 32	 96GB/core	 4	 cpularge	
1/8	 24	 32GB/GPU	 4	 114	 gpubase	
1/4	 24	 64GB/GPU	 4	 132	 gpularge	

Node	types	on	Graham	
Total	
Mem	TB	

Cores	 Memory	 GPUS	 Number	
of	Nodes	

Par88on	Type	

1/8	 32	 4GB/core	 800	 cpubase	
1/4		 32	 8GB/core	 55	 cpubase	
1/2	 32	 16GB/core	 24	 cpularge	
3	 32	 96GB/core	 3	 cpularge	
1/8	 32	 32GB/GPU	 4	 114	 gpubase	

Par$$ons	on	Cedar	and	Graham	

•  Separate	par$$ons	for	GPUs	and	CPU	request		
•  Nodes	that	are	in	the	by	core	par$$on	are	also	in	the	
by	node	par$$on,	the	reverse	is	not	always	true.		

•  There	are	separate	interac$ve	(tes$ng)	par$$ons	with	
dedicated	nodes	for	interac$ve	usage.			

By	node	

By	core	 Interac$ve	

By	node	

By	GPU	 Interac$ve	

CPUs	 GPUs	

													Cpubase	
CPUs	up	to	8GB	per	core			

														Cpularge	
CPUs	more	than	8GB	per	core			

Par$$ons	on	Cedar	and	Graham	

•  Separate	par$$ons	for	large	memory	Nodes	and	
jobs	that	have	more	than	8	GB	RAM	and	smaller	
memory	nodes	and	jobs.	
–  This	is	done	to	disallow	low	memory	jobs	from	
stopping	a	large	memory	job	from	running	quickly	on	
the	few	expensive	large	memory	nodes	we	have.	

By	node	

By	core	 Interac$ve	

By	node	

By	GPU	
Interac$ve	

GPUs	

By	node	

By	core	
Interac$ve	

Par$$ons		why	the	complexity?	
•  If	we	allowed	serial	jobs	to	run	on	all	nodes,	the	chances	

that	there	was	a	node	that	had	all	32	cores	not	used	or	
coming	to	an	end	soon	would	be	very	small.			
–  if	½	the	cluster	was	empty	and	the	job	distributed	randomly	the	
chances	a	any	par$cular	node	to	be	empty	=																										

•  As	a	consequence	whole	node	jobs	would	in	prac$ce	all	
have	to	wait	(max	wall$me)	$me	to	start	regardless	of	
priority.		

•  If	the	whole	cluster	only	allows	alloca$on	to	jobs	by	node	
jobs	by	core	will	not	run	or	people	would	ask	for	a	node	
and	use	a	single	core.	

1
232

=
1

4,294, 967, 296

Par$$ons	on	Cedar	and	Graham	
•  There	are	par$$ons	based	

upon	how	long	the	
maximum	wall$me	your	
job	has.		

•  Your	job	ends	up	in	the	
shortest	wall$me	par$$on	
that	has	a	longer	wall$me	
than	your	job	

•  The	shorter	wall$me	
par$$ons	include	all	the	
nodes	of	longer	wall$me	
par$$ons.			

3	hr	

12	hr	

24	hr	

72	hr	

168	hr	

672	hr	

Par$$ons		why	the	complexity?	
•  Some	jobs	need	to	run	a	long	$me	

–  Commercial	code	that	does	not	checkpoint	
–  Checkpoints	can	take	a	very	long	$me		

•  If	we	allow	all	nodes	to	run	long	wall$me	jobs		
–  It	would	take	a	long	$me	for	resources	to	be	come	available,	

researchers	that	need	to	run	short	jobs	and	analyze	the	result	before	
running	another	would	find	the	system	unusable.	

–  People	that	can	divide	their	work	arbitrarily	would	run	long	wall$me	
jobs	as	they	have	already	waited	a	long	$me	for	their	job	to	start,	
making	the	situa$on	worse.		

•  CC	has	dealt	with	the	situa$on	in	the	past	by	having	different	
cluster	each	has	different	wall$mes.	But	there	are	not	enough	
clusters	to	do	this	anymore.	

•  The	solu$on	of	concentric	par$$ons	on	larger	cluster	allows	us	to	
more	efficiently	address	diverse	user	needs.		

Par$$ons	on	Cedar	and	Graham	

Par$$ons	on	Cedar	and	Graham	

Par$$on	Stats	
(CC	script)	

Node type | Max walltime
 | 3 hr | 12 hr | 24 hr | 72 hr | 168 hr | 672 hr |
----------|---
 Number of Queued Jobs by partition Type (by node:by core)
----------|---
Regular | 0:2 | 0:0 | 0:559 | 0:110 | 0:664 | 0:15 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU | 6:78 | 6:206 | 4:35 | 7:6 | 3:3 | 2:0 |
GPU Large | 0:- | 0:- | 0:- | 0:- | 0:- | 0:- |
----------|---
 Number of Running Jobs by partition Type (by node:by core)
----------|---
Regular | 0:2 | 1:159 | 16:33 | 13:100 | 17:22 | 51:3 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 1:0 |
GPU | 10:0 | 3:0 | 0:0 | 8:0 | 1:0 | 0:0 |
GPU Large | 0:- | 0:- | 1:- | 1:- | 2:- | 1:- |
----------|---
 Number of Idle nodes by partition Type (by node:by core)
----------|---
Regular | 137:30 | 110:18 | 74:11 | 74:11 | 19:1 | 18:0 |
Large Mem | 2:1 | 2:1 | 2:1 | 2:1 | 2:1 | 2:1 |
GPU | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU Large | 13:- | 9:- | 7:- | 5:- | 0:- | 0:- |
----------|---
 Total Number of nodes by partition Type (by node:by core)
----------|---
Regular | 691:317 | 635:285 | 542:223 | 478:191 | 255:95 | 159:39 |
Large Mem | 50:5 | 50:5 | 50:5 | 44:5 | 17:2 | 3:2 |
GPU | 112:64 | 96:64 | 96:47 | 63:31 | 32:8 | 16:4 |
GPU Large | 32:- | 28:- | 24:- | 20:- | 8:- | 4:- |
----------|---

Par$$ons	and	priority	example	

•  Par$$on	A	has	3	hour	wall$me	and	
includes	all	the	nodes	of	this	type	
on	the	cluster	

•  Par$$on	B	is	the	largest	par$$on	
that		your	job	can	run	in.	

•  Par$$on	C	is	a	subset	of	par$$on	B	
and	contains	jobs	that	have	a	
longer	wall$me	and	nodes	that	can	
run	those	jobs.	

•  Each	small	green	circle	represents	a	
idle	an	idle	node	

•  Each	small	yellow	circle	represents	
a	busy	node	

C		

Idle	node	

Busy	node	

B		

A		

Par$$ons	and	priority	example	

Lets	assume	we	have	3	jobs:	
– Highest	priority	job	(1)	in	
par$$on	C	that	requires	4	
nodes.	

–  2nd	highest	job	in	par$$on	
job	(2)	in	par$$on	A	that	
requires	5	nodes.	

– Our	job	in	par$$on	B	that	
requires	2	nodes	

C		

Idle	node	

Busy	node	

B		

A		

Par$$ons	and	priority	example	

•  Highest	priority	job	(1)	in	par$$on	
C	that	requires	4	nodes.	

•  2nd	highest	job	(2)	in	par$$on	A	
that	requires	5	nodes.	

•  Our	job	(3)	in	par$$on	B	that	
requires	2	nodes	

C		

Idle	node	

Busy	node	

B		

A		

•  Job	1	cannot	run	as	there	are	only	
3	idle	nodes	in	par$$on	C.	
–  A	reserva$on	is	created	for	the	

idle	nodes	in	par$$on	C	and	the	
first	of	the	busy	nodes	that	will	
become	available.	

•  Job	2	likely	cannot	run	either	as	it	
needs	one	of	the	nodes	reserved	
by	job	1,	and	unless	job	2	can	
finish	before	job	1	starts	it	will	not	
be	able	to	run.		

•  Job	3	will	likely	not	run	as	well	
because	it	requires	resources	
(nodes)	that	are	reserved	by	other	
higher	priority	jobs.		

Par$$ons	and	priority	example	

•  Highest	priority	job	(1)	in	par$$on	
C	that	requires	4	nodes.	

•  2nd	highest	job	(2)	in	par$$on	A	
that	requires	5	nodes.	

•  Our	job	(3)	in	par$$on	B	that	
requires	2	nodes	

C		

Idle	node	

Busy	node	

B		

A		
This	cluster	is	70%	idle	and	
and	jobs	cannot	run	why?	
–  The	example	cluster	is	

small	and	the	jobs	are	
large	in	comparison	

–  There	are	no	short	single	
node	jobs	that	can	fill	in	
these	empty	nodes.	

–  This	example	was	created	
to	show	a	worse	case	
scenario	

Par$$ons	and	priority	lessons	learned	

•  Submit	smaller,	shorter	jobs		
•  When	looking	at	priority	and	why	

your	job		is	not	running,	look	at	the	
priority	of	other	jobs	in	the	
par$$ons	that	are	either	a	subset	
or	superset	of	your	job.	

•  The	situa$on	in	Compute	Canada	
will	get	beJer	when	Niagara	is	up	
as	that	system	is	designed	for	large	
jobs.	The	types	of	jobs	on	Cedar	
and	Graham	will	become	less	
diverse	and	we	will	be	beJer	able	
to	efficiently	schedule	similar	and	
smaller	jobs	on	Graham	and	Cedar.	
	

C		

Idle	node	

Busy	node	

B		

A		

Ques$ons	

Other	resources	and	sessions	

Invita$on	to	the	WestGrid	Workshop	to	be	Held	
Oct	24-26		1:00	-	3:00	pm	MDT	(3:00-6:00pm	Eastern)	

	hJp://goo.gl/rFQv7W	
	
In	addi$on	to	Scharcnet	training	you	are	all	
welcome	in	WestGrid	training	events:	
hJps://www.westgrid.ca/events/westgrid-training-events	
	
	
	

