
Hybrid MPI and OpenMP

Parallel Programming

Jemmy Hu

SHARCNET HPTC Consultant

July 20, 2016

/home/jemmyhu/CES706/Hybrid

Objectives

• difference between message passing (MPI) and

shared memory (OpenMP) approaches

• why or why not hybrid?

• a straightforward approach to combine both MPI

and OpenMP in parallel programming

• example hybrid code, compile and execute hybrid

code on SHARCNET clusters

Hybrid Distributed-Shared Memory Architecture

• Computer cluster basics, Employ both shared and distributed memory architectures

• The shared memory component is usually a cache coherent SMP node. Processors

on a given SMP node can address that node's memory as global.

• The distributed memory component is the networking of multiple SMP nodes. SMPs know

only about their own memory - not the memory on another SMP. Therefore, network

communications are required to move data from one SMP to another.

MPI

• standard for distributed memory communications

• provides an explicit means to use message passing on

distributed memory clusters

• specializes in packing and sending complex data structures

over the network

• data goes to the process

• synchronization must be handled explicitly due to the nature of

distributed memory

OpenMP

• a shared memory paradigm, implicit intra-node
communication

• efficient utilization of shared memory SMP systems

• easy threaded programming, supported by most major
compilers

• the process goes to the data, communication among threads is
implicit

MPI vs. OpenMP

– Pure MPI Pros:

• Portable to distributed and
shared memory machines.

• Scales beyond one node

• No data placement problem

– Pure MPI Cons:

• Explicit communication

• High latency, low bandwidth

• Difficult load balancing

– Pure OpenMP Pros:

• Easy to implement parallelism

• Implicit Communication

• Low latency, high bandwidth

• Dynamic load balancing

– Pure OpenMP Cons:

• Only on shared memory node
or machine

• Scale within one node

• data placement problem

Why Hybrid: employ the best from both approaches

● OpenMP allows for high
performance, and relatively
straightforward, intra-node
threading

● OpenMP provides an interface for
the concurrent utilization of each
SMP's shared memory, which is
much more efficient that using
message passing

● Program state synchronization is
implicit on each SMP node,
which eliminates much of the
overhead associated with
message passing

● MPI makes inter-node

communication relatively easy

● MPI facilitates efficient inter-node

scatters, reductions, and sending of

complex data structures

● Since program state synchronization

is done explicitly with messages,

correctness issues are relatively easy to

avoid

Overall Goal:

to reduce communication needs and memory consumption,

or improve load balance

Why not Hybrid?

• OpenMP code performs worse than pure MPI code within node

– all threads are idle except one while MPI communication

– data placement, cache coherence

– critical section for shared variables

• Possible waste of effort?

A Common Hybrid Approach

• From sequential code, parallel with MPI first, then try to add
OpenMP.

• From MPI code, add OpenMP

• From OpenMP code, treat as serial code.

• Simplest and least error-prone way is to use MPI outside
parallel region, and allow only master thread to communicate
between MPI tasks.

• Could use MPI inside parallel region with thread-safe MPI.

Hybrid – Program Model

• Start with MPI initialization

• Create OMP parallel regions

within MPI task (process).

- Serial regions are the

master thread or MPI task.

- MPI rank is known to all

threads

• Call MPI library in serial and

parallel regions.

• Finalize MPI

Program hybrid

call MPI_INIT (ierr)
call MPI_COMM_RANK (…)
call MPI_COMM_SIZE (…)
… some computation and MPI

communication
… start OpenMP within node

!$OMP PARALLEL DO PRIVATE(i)

!$OMP& SHARED(n)
do i=1,n

… computation
enddo

!$OMP END PARALLEL DO
… some computation and MPI

communication
call MPI_FINALIZE (ierr)
end

MPI vs. MPI+OpenMP

MPI MPI+OpenMP
Node

16 cpus across 4 nodes 16 cpus across 4 nodes

4 MPI processes per node 1 MPI process and 4 threads per node

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h> /* MPI header file */

#define NUM_STEPS 100000000

int main(int argc, char *argv[]) {

int nprocs;

int myid;

double start_time, end_time;

int i;

double x, pi;

double sum = 0.0;

double step = 1.0/(double) NUM_STEPS;

/* initialize for MPI */

MPI_Init(&argc, &argv); /* starts MPI */

/* get number of processes */

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* get this process's number (ranges from 0 to nprocs - 1) */

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

pi – MPI version

/* do computation */

for (i=myid; i < NUM_STEPS; i += nprocs) { /* changed */

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

sum = step * sum; /* changed */

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

/* print results */

if (myid == 0) {

printf("parallel program results with %d processes:\n", nprocs);

printf("pi = %g (%17.15f)\n",pi, pi);

}

/* clean up for MPI */

MPI_Finalize();

return 0;

}

#include <stdio.h>

#include <omp.h>

#define NBIN 100000

int main(int argc, char *argv[]) {

int I, nthreads;

double x, pi;

double sum = 0.0;

double step = 1.0/(double) NUM_STEPS;

/* do computation -- using all available threads */

#pragma omp parallel

{

#pragma omp for private(x) reduction(+:sum) schedule(runtime)

for (i=0; i < NUM_STEPS; ++i) {

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

#pragma omp master

{

pi = step * sum;

}

}

printf("PI = %f\n",pi);

}

OpenMP, reduction clause

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h> /* MPI header file */

#include <omp.h> /* OpenMP header file */
#define NUM_STEPS 100000000

#define MAX_THREADS 4

int main(int argc, char *argv[]) {

int nprocs, myid;

int tid, nthreads, nbin;

double start_time, end_time;

double pi, Psum=0.0, sum[MAX_THREADS]={0.0};

double step = 1.0/(double) NUM_STEPS;

/* initialize for MPI */

MPI_Init(&argc, &argv); /* starts MPI */

/* get number of processes */

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* get this process's number (ranges from 0 to nprocs - 1) */

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

nbin= NUM_STEPS/nprocs;

MPI_OpenMP version

#pragma omp parallel private(tid)

{

int i;

double x;

nthreads=omp_get_num_threads();

tid=omp_get_thread_num();

for (i=nbin*myid+tid; i < nbin*(myid+1); i+= nthreads) { /* changed*/

x = (i+0.5)*step;

sum[tid] += 4.0/(1.0+x*x);

}

}

for(tid=0; tid<nthreads; tid++) /*sum by each mpi process*/

Psum += sum[tid]*step;

MPI_Reduce(&Psum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

if (myid == 0) {

printf("parallel program results with %d processes:\n", nprocs);

printf("pi = %g (%17.15f)\n",pi, pi);

}

MPI_Finalize();

return 0;

}

Compile and Run

• Compile (default intel compilers on SHARCNT systems)

mpicc -o pi-mpi pi-mpi.c

cc -openmp -o pi-omp pi-omp.c

mpicc -openmp -o pi-hybrid pi-hybrid.c

• Run (sqsub)

sqsub -q mpi -n 8 --ppn=4 -r 10m -o pi-mpi.log ./pi-mpi

sqsub -q threaded -n 8 -r 10m -o pi-omp.log ./pi-omp

sqsub -q mpi -n 8 --ppn=1 --tpp=4 -r 10m -o pi-hybrid.log ./pi-hybrid

Example codes and results are in:
/home/jemmyhu/CES706/Hybrid/pi/

Results

• MPI
MPI uses 8 processes:

pi = 3.14159 (3.141592653589828)

• OpenMP
OpenMP uses 8 threads:

pi = 3.14159 (3.141592653589882)

• Hybrid
mpi process 0 uses 4 threads

mpi process 1 uses 4 threads

mpi process 1 sum is 1.287 (1.287002217586605)

mpi process 0 sum is 1.85459 (1.854590436003132)

Total MPI processes are 2

pi = 3.14159 (3.141592653589738)

Summary

• Computer systems in High-performance computing (HPC) feature a

hierarchical hardware design (multi-core nodes connected via a network)

• OpenMP can take advantage of shared memory to reduce communication

overhead

• Pure OpenMP performs better than pure MPI within node is a necessity to

have hybrid code better than pure MPI across node.

• Whether the hybrid code performs better than MPI code depends on

whether the communication advantage outcomes the thread overhead, etc.

or not.

• There are more positive experiences of developing hybrid MPI/OpenMP

parallel paradigms now. It’s encouraging to adopt hybrid paradigm in your

own application.

References

• http://openmp.org/sc13/HybridPP_Slides.pdf

• https://www.cct.lsu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf

• http://www.cac.cornell.edu/education/Training/parallelMay2011/Hybrid_Ta

lk-110524.pdf

