
Profiling GPU codes with Nsight

Sergey Mashchenko
syam@sharcnet.ca 

SHARCNET / Compute Ontario / Alliance

May 18, 2022

mailto:syam@sharcnet.ca


18/05/22 Nsight, by Sergey Mashchenko 2 / 22

Overview
● Why?
● Where?
● How?
● Demo



18/05/22 Nsight, by Sergey Mashchenko 3 / 22

Why to profile GPU codes?
● GPUs are significantly more expensive, and less available, 

than CPUs
● Not all research codes / algorithms are well suited for GPU 

acceleration.
● As a consequence, profiling is a critical step in a GPU code 

development, and should start from the very first kernel you 
write.



18/05/22 Nsight, by Sergey Mashchenko 4 / 22

Tools
● NVIDIA is has produced an retired quite a few GPU 

profilers.
● The following profilers are no longer maintained (though 

still available, work up to V100):
– nvprof: command-line function-level profiler, for both GPU and 

CPU parts of the code
– nvvp: graphical (GUI) profiler



18/05/22 Nsight, by Sergey Mashchenko 5 / 22

Tools: Nsight
● NVIDIA also maintained for years their Nsight suite of 

products (IDE / debugger / profiler).
– Nsight Eclipse edition (Linux, Mac)
– Nsight Visual Studio Edition (Windows)

● Since 2018, Nsight profilers became also available as three 
stand alone packages: Nsight Compute, Nsight Systems, 
and Nsight Graphics.



18/05/22 Nsight, by Sergey Mashchenko 6 / 22

Nsight packages



18/05/22 Nsight, by Sergey Mashchenko 7 / 22

Where to run Nsight
● If you have a fairly capable recent GPU inside your laptop / PC, you can install and 

use Nsight suite (Eclipse for Linux/Mac, Visual Studio for Windows) on your own 
computer.

● But if the goal is to optimize your code for Alliance national systems, you definitely 
want to run Nsight remotely on our clusters.
– Command line (CLI) tools can be submitted as jobs
– Interactive GUI tools can be used on compute nodes allocated with salloc, with either X11 or 

VNC connections (more about that later).

● If your internet is too slow, you can run CLI Nsight tools on a cluster, then analyze the 
results on your computer using GUI Nsight.



18/05/22 Nsight, by Sergey Mashchenko 8 / 22

How to use GUI tools on clusters
● X11 forwarding (MobaXterm for Windows, Xquartz for Mac):
$ ssh -Y graham.computecanada.ca
$ salloc --x11 …

● VNC on a compute node (requires two terminal windows)
[login_node]$ salloc …
[gra123]$ export XDG_RUNTIME_DIR=${SLURM_TMPDIR}
[gra123]$ vncserver
[your_PC]$ ssh graham.computecanada.ca -NL 5902:gra123:5901

– On your PC, launch TigerVNC viewer

– Enter the destination: localhost:5902



18/05/22 Nsight, by Sergey Mashchenko 9 / 22

VNC helper script
#!/bin/bash

# Required for vncserver:

export XDG_RUNTIME_DIR=${SLURM_TMPDIR}

# Starting VNC server, recording the channel:

N=$(vncserver 2>&1 |grep "^New" |cut -d: -f3)

# Computing the remote port:

Rport=$((5900 + $N))

# Printing the command for the local computer:

echo "ssh $USER@$SLURM_CLUSTER_NAME.computecanada.ca -NL 5902:$SLURMD_NODENAME:$Rport"



18/05/22 Nsight, by Sergey Mashchenko 10 / 22

NVIDIA profilers on our clusters
● Loaded when a cuda module is loaded, e.g.
$ module load cuda/11.4

● Old tools (up to Volta: P100, V100):
– nvprof (CLI)

– nvvp (GUI)

● Nsight tools (work on P100*, V100, T4, A100):
– ncu, ncu-ui: Nsight Compute (CLI / GUI; V100 and up)

– nsys, nsys-ui: Nsight Systems (CLI / GUI; P100 and up)



18/05/22 Nsight, by Sergey Mashchenko 11 / 22

Compiling code
● Compile the code as usual (after loading the cuda 

module)
– The only extra compiler switch required is -lineinfo (do 

not use -G – that one is for debugging)

$ module load cuda
$ nvcc -O2 -arch=sm_70 -lineinfo code.cu



18/05/22 Nsight, by Sergey Mashchenko 12 / 22

Nsight Compute
● Command: ncu, ncu-ui

$ ncu -o output_file code

● Typically the first step in profiling a GPU code
● Allows one to maximize the performance of individual kernels
● Full documentation: 

https://docs.nvidia.com/nsight-compute/NsightCompute 

https://docs.nvidia.com/nsight-compute/NsightCompute


18/05/22 Nsight, by Sergey Mashchenko 13 / 22

Kernel metrics



18/05/22 Nsight, by Sergey Mashchenko 14 / 22

Line-by-line info



18/05/22 Nsight, by Sergey Mashchenko 15 / 22

Nsight Systems
● Command: nsys, nsys-ui
$ nsys profile -o output_file code

● Typically the last step in profiling a GPU code
● Fine-tuning the interactions between kernels, memcopies, CPU 

code etc, both synchronous and asynchronous
● Full documentation:

https://docs.nvidia.com/nsight-systems/UserGuide 

https://docs.nvidia.com/nsight-systems/UserGuide


18/05/22 Nsight, by Sergey Mashchenko 16 / 22

CUDA trace



18/05/22 Nsight, by Sergey Mashchenko 17 / 22

Live demo



18/05/22 Nsight, by Sergey Mashchenko 18 / 22

Reduction code
● The code adds up elements of a long vector on GPU.
● The first version uses a very slow method: serialized 

summation using atomicAdd() function.

● The second version uses the proper way: parallel 
summation using binary reduction.



18/05/22 Nsight, by Sergey Mashchenko 19 / 22

Binary reduction



18/05/22 Nsight, by Sergey Mashchenko 20 / 22

Staged copy/compute code
● The first version of the code first copies a long vector 

to GPU, then carries out independent per-element 
computations.

● The second version hides some of the costs of 
copying data to GPU by running copying and 
computing in parallel, using two GPU streams.



18/05/22 Nsight, by Sergey Mashchenko 21 / 22

Staged copy/compute algorithm

You need two streams for this:

One stream scenario:



18/05/22 Nsight, by Sergey Mashchenko 22 / 22

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

