A NET"

Profiling GPU codes with Nsight

Sergey Mashchenko

syam@sharcnet.ca
SHARCNET / Compute Ontario / Alliance

May 18, 2022

mailto:syam@sharcnet.ca

Overview

e Where? ;

* How? o
a : NVIDIA __

* Demo

18/05/22 Nsight, by Sergey Mashchenko 2/22

Why to profile GPU codes?

 GPUs are significantly more expensive, and less available,
than CPUs

* Not all research codes / algorithms are well suited for GPU
acceleration.

* As a consequence, profiling is a critical step in a GPU code
development, and should start from the very first kernel you

write.

18/05/22 Nsight, by Sergey Mashchenko 3/22

Tools

* NVIDIA is has produced an retired quite a few GPU
profilers.

* The following profilers are no longer maintained (though
still available, work up to V100):

- nvprof: command-line function-level profiler, for both GPU and
CPU parts of the code

— nvvp: graphical (GUI) profiler

18/05/22 Nsight, by Sergey Mashchenko 4/22

Tools: Nsight

* NVIDIA also maintained for years their Nsight suite of
products (IDE / debugger / profiler).

— Nsight Eclipse edition (Linux, Mac)
— Nsight Visual Studio Edition (Windows)

* Since 2018, Nsight profilers became also available as three
stand alone packages: Nsight Compute, Nsight Systems,
and Nsight Graphics.

18/05/22 Nsight, by Sergey Mashchenko 5/22

18/05/22

Nsight packages

Start here

Recheck overall
workload behavior

Recheck overall
workload behavior

Dive into top
CUDA kernels

Dive into graphics
frames

v

Finished if
performance
satisfactory

Nsight, by Sergey Mashchenko

6/22

Where to run Nsight

* If you have a fairly capable recent GPU inside your laptop / PC, you can install and
use Nsight suite (Eclipse for Linux/Mac, Visual Studio for Windows) on your own

computer.

* But if the goal is to optimize your code for Alliance national systems, you definitely
want to run Nsight remotely on our clusters.
- Command line (CLI) tools can be submitted as jobs
- Interactive GUI tools can be used on compute nodes allocated with salloc, with either X11 or

VNC connections (more about that later).

* If your internet is too slow, you can run CLI Nsight tools on a cluster, then analyze the

results on your computer using GUI Nsight.

18/05/22 Nsight, by Sergey Mashchenko 7/22

How to use GUI tools on clusters

* X11 forwarding (MobaXterm for Windows, Xquartz for Mac):
$ ssh -Y graham.computecanada.ca
$ salloc --x11 ..

* VNC on a compute node (requires two terminal windows)
[login_node]$ salloc ..
[gral23]%$ export XDG_RUNTIME_DIR=${SLURM_TMPDIR}
[gral23]$ vncserver
[your_PC]$ ssh graham.computecanada.ca -NL 5902:9gral23:5901

- On your PC, launch TigerVNC viewer/
— Enter the destination: localhost:5902

18/05/22 Nsight, by Sergey Mashchenko

8/22

VNC helper script

#!/bin/bash

Required for vncserver:
export XDG_RUNTIME_DIR=${SLURM_TMPDIR}

Starting VNC server, recording the channel:
N=$(vncserver 2>&1 |grep "ANew" |cut -d: -f3)

Computing the remote port:
Rport=$((5900 + $N))

Printing the command for the local computer:
echo "ssh $USER@$SLURM_CLUSTER_NAME.computecanada.ca -NL 5902:$SLURMD_NODENAME: $Rport"

18/05/22 Nsight, by Sergey Mashchenko 9/22

NVIDIA profilers on our clusters

* Loaded when a cuda module is loaded, e.qg.
$ module load cuda/11.4

* Old tools (up to Volta: P100, V100):
- nvprof (CLI)
- nvvp (GUI)
* Nsight tools (work on P100*, V100, T4, A100):

- ncu, ncu-ul: Nsight Compute (CLI/ GUI; V100 and up)
- nsys, nsys-uil: Nsight Systems (CLI/ GUI; P100 and up)

18/05/22 Nsight, by Sergey Mashchenko 10/22

Compiling code

 Complile the code as usual (after loading the cuda
module)

- The only extra compiler switch required is - 1ineinfo (do
not use -G — that one is for debugging)

$ module load cuda
$ nvcc -02 -arch=sm 70 -lineinfo code.cu

18/05/22 Nsight, by Sergey Mashchenko 11/22

Nsight Compute

e Command: ncu, ncu-ui
$ ncu -o output_file code

* Typically the first step in profiling a GPU code
* Allows one to maximize the performance of individual kernels

* Full documentation:
https://docs.nvidia.com/nsight-compute/NsightCompute

18/05/22 Nsight, by Sergey Mashchenko 12/22

https://docs.nvidia.com/nsight-compute/NsightCompute

Kernel metrics

@ NVIDIA Nsight Compute

Debug

* Launch: 2- 20-VecAd Add B; ne as Image

51 Regs: 16 GPU:

~ GPU Speed Of Light Throughput

High-level f the throughput for con i . For each unit, the th
throughput for each individual sub-metric ¢ ! y ly identify the highest contrib
Compute (Sl ughput [%]

Throughput [%]
L1/TEX Cache Throughput [%]
L2 Cache Throughput [%]
DRAM Throughput [%]

A Bottleneck [Warning] This kernel grid is toe small to fill the a Wi S 3 r detail

Roofline Analysis The ratio of peak double (fp64) performance on this device is 32:1. The kemel ach its fp64 peak performance.

GPU Throughput

» Compute Workload Analysis

lable pipeline. Pipeline: might limit the

Lo .. [Waming] All pipelines are under-utilized. Either this kernel
A High Pipe Utilization detai

» Memory Workioad Analysis

Detailed anak = the GPU. Memorn,

bandwidth between ti < dth), or by reaching the m.
Throughput [G

L1/TEX Hit %1

18/05/22 Nsight, by Sergey Mashchenko 13/22

Line-by-line Info

Source: matrxMul.cu ~ [E Source: MatrikMulCUDA = &

View: Source and SASS -

Mavigation: Instructions Executed A |15 |18 | = Mavigation: Sampling Data (All)

Sampling Instructions dicated-On Threat Sampling Instructions =
Source Data [All) Executed tructions Executec # Address Source Data (All) Executed

Bs[tyl[tx] = Ala + wA * ty + tx]; 1,23 3,712,000} 118,784,000 289 @EEAREEL PEhIDEAR MoV 14 64,000]
Bs[tyl[tx] = B[b + w8 * ty + txI; 1,254 3,712,000) 118,784,000 212 06BRGE0L BAbIbe1d mov 16| 4,00
0 711 9988088L BELIbE28 MOV 21 64,00

 Synchronize to make sure the matrice 212 90000000 98b9be30 MOV 14| 64,DDI1|
03 128,000 4,096,000 0000000b BObIbedd MoV 359 2,112,000

20000000 BBbIbESO MOV 500] 2,112,000|

/ Multiply the two matrices her; 215 998B008L BBLIbEGR MoV R22, 513 2,112,000

/ each thread computes on nen 216 @98EPRAL BAbILETO MOV 5 501]| 2,112,000

! of the block sub-matrix 217 ©0OOPOOL BOLILEED ISETP.LT.AND 405 2,112,000]
#pragma unroll 212 90888 BBbIbe0 PLOP3.LUT [405 2,112,000]
S @0AEE0AD BAbIbead [502 2,112,000|

(int k = 2; k < BLOCK_SIZE; ++k) 31,616{000) 946,176,400 220 00BOO00b @AbObebO [430 | 2,048,000

Csub += As[ty][k] * Bs[k][tx]; 161,792,000) [5,177,344,000 1 998OPEOh 6hIDECO MoV 505] | 2,048,000

2 B@BEREAD BBhJbedd MoV [504] | 2,048,000|

5 @8eEEEBD BBbYbecd MOV 523 | 2,048,000|

/ Synchronize to make sure that the pr 224 9880088b BBbYbeTO MOV [490 | 2,048,000]

c re loading t 5 G0EEEOEL BEbOLFAD MOV 514 [2,048,000

A and B in the t 5 @@68EAGh BEbILF1A MOV [481 | 2,048,000|

4,096,000 7 900B0OAD BOhOLF20 MoV 404] | 2,048,000|

° 00EEe8h BBbILT3e IADD3 470] | 2,048,000|

229 0POEAOAD POLILFAE TADD3.X ! [469) | 2,048,000|

Write the block sub-matrix to device mem 230 @eesPReb BEbILFSE MOV 5 517 | 2,048,000|
each thread writes one element 1 9008088h B8AbILTER SHF.R.532.HI [69| | 2,048,000|

c = wB * BLOCK_SIZE * by + BLOCK SIZE * 32,000 1,024,000 232 9@00008b BAbILF7E MOV . 483 | 2,048,000
Clc + wB * ty + tx] = Csub; 128,000 4,096,000 P00E000h BALILFER MOV . 400] | 2,048,000|
12,800 409,600 234 90AE0R0b @abIbTIe MOV R21, [457 | 2,045,000

@0BER0BL BBLIDFa0 MoV I 467 | 2,048,000

AORAAALL AOhOhEhA s I aonl [2 nao annl
»

Nsight, by Sergey Mashchenko

Nsight Systems

 Command: nsys, nsys-ul
$ nsys profile -o output_file code

* Typically the last step in profiling a GPU code

Fine-tuning the interactions between kernels, memcopies, CPU
code etc, both synchronous and asynchronous

Full documentation:
https://docs.nvidia.com/nsight-systems/UserGuide

18/05/22 Nsight, by Sergey Mashchenko 15/22

https://docs.nvidia.com/nsight-systems/UserGuide

18/05/22

CUDA trace

| = Timeline View -
0= |+990ms +9495ms 1= +5ms +10ms. +15ms. +20ms
b CPU (6)
————
P Threads (3)

b IGPU (NVIDIA Tegra X2)
¥ CUDA (NVIDIA Tegra X2, 0000
* Default stream (7)
* Memory
DtoA memcpy
¥ Kernels
» regular_fft
b vector_fft
b advectVelocity k
b nv_static_ 45 32 spRea
b _ nv_static_45_ 32_spRea
b diffuseProject_k
P nv static 45 32 spRea
b advectParticles_k

1 kermel group(s) hidden..

Nsight, by Sergey Mashchenko

16/22

Live demo

18/05/22 Nsight, by Sergey Mashchenko 17722

Reduction code

* The code adds up elements of a long vector on GPU.

* The first version uses a very slow method: serialized
summation using atomicAdd() function.

* The second version uses the proper way: parallel
summation using binary reduction.

18/05/22 Nsight, by Sergey Mashchenko 18722

18/05/22

Binary reduction

Xo | X, X, |X5 X, |[Xs [X; [X,
XO4 X15 X26 X37
I
X0426 X1537
XaII

Nsight, by Sergey Mashchenko

19/22

Staged copy/compute code

* The first version of the code first copies a long vector

to GPU, then carries
computations.

* The second version
copying data to GPU

out iIndependent per-element

nides some of the costs of
by running copying and

computing in paralle

, using two GPU streams.

18/05/22 Nsight, by Sergey Mashchenko 20/ 22

Staged copy/compute algorithm

One stream scenario:

Copy data I

Execute _
You need two streams for this:

Copy data T R N e

Exscute

18/05/22 Nsight, by Sergey Mashchenko 21/22

Thank you!

18/05/22 Nsight, by Sergey Mashchenko 22/22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

