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Introduction to Parallel I/O

Outline
• I/O Issues in large-scale computation

• Disk I/O problems

• Definition of I/O speed

• SHARCNET filesystems

• Overview of I/O software and hardware

• Parallel filesystem

• Best Practices for I/O

• Data formats

• I/O strategies (serial/parallel)

• MPI-IO

• Introduction to Parallel I/O libraries (NetCDF/HDF5/ADIOS)
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Introduction to Parallel I/O

Issue - HPC I/O
• High Performance Computing (HPC) application requires Input/Output (I/O) 

activities for

– Reading initial conditions or datasets for processing

– Writing numerical data from simulations for later analysis

– Checkpointing to files

• For many parallel programs, Input and Output (I/O) become a major bottleneck.
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Introduction to Parallel I/O

Issue - Goal
• Efficient I/O without stressing out the HPC system is challenging  

– Load and store operations are more time-consuming than multiply operations  

– Total Execution Time  
= Computation Time + Communication Time + I/O time 

– Optimize all the components of the equation above to get best performance!! 
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Introduction to Parallel I/O

Disk access rates over time
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Disk access rates over time
1960-2014: top supercomputer speed increased by 11 orders of magnitude
Single HDD capacity in the same period grew by 6 orders (from 3.75MB in 1956)
Average internal drive access rate grew by 3-4 orders of magnitude

Figure by Rob Ross, Argonne National Laboratory
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Introduction to Parallel I/O

Memory / storage latency
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Figure by Jeff Richardson, datacenterjournal.com

http://datacenterjournal.com
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How to calculate I/O speed
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• IOPs = Input / Output operations per second (read/write/open/close/seek) ; 
essentially an inverse of latency

• I/O Bandwidth = quantity you read / write

• Parallel (distributed) filesystems are optimized for efficient I/O by multiple users 
on multiple machines/nodes, do not result in “supercomputing” performance

– disk-access time + communication over the network  
(limited bandwidth, many users) 

Device Bandwidth(MB/s) IOPs

7200 rpm SATA HDD 100 100-300

SSD drive 250-500 < 4000

SHARCNET global /work 100 /stream 700
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SHARCNET filesystems
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• We have a hierarchy of parallel (/scratch, /work, 
/home, /archive) and serial (/tmp) filesystems.

• Mostly based on Lustre

• All large filesystems feature many servers and 
disks+large number of compute node

• Shown in the right: one of our smaller local 
scratch filesystems with 192 disks

– local to a cluster, I/O data travel over the 
network

• Global /work and /home are mounted on all 
clusters through a wider-area network  
(slower access than /scratch)

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

SHARCNET filesystems

We have a hierarchy of parallel (/scratch, /work,
/home, /archive) and serial (/tmp) filesystems

Mostly based on Lustre (open-source)
• for detailed layout see http://bit.ly/K9lM08

All large filesystems feature many servers and
disks + large number of compute nodes

Pictured on the left: one of our smaller “local”
/scratch filesystems consisting of 192 disks

• local to a cluster, I/O data travel over the network

On the other hand, global /work and /home are
mounted on all clusters through a wider-area
network ) slower access than /scratch

• but there are few exceptions, e.g. goblin
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Introduction to Parallel I/O

I/O Software + Hardware stack
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Application

High-end I/O 
library

I/O Middleware

Parallel filesystem

I/O Hardware

HDF5, Parallel NetCDF, ADIOS
•maps application abstractions to 

storage abstractions I/O in 
terms of the data structures of 
the code not bytes and blocks

•provides data portability
MPI-IO
•organizes access from many 

processes, especially collective 
I/O

•provides data sieving

GPFS, Lustre, PVFS
•maintains logical space and 

provides efficient access to data
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Parallel filesystem - I
• Files can be striped across multiple drives for better performance 
• ‘Lock’s used to manage concurrent file across in most parallel file system 

– Files are pieced into ‘lock’ units (scattered across many drives) 
– Client nodes obtain locks on units that they access before I/O occurs 
– Enables caching on clients 
– Locks are reclaimed from clients when others desire access
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Introduction to Parallel I/O

Parallel filesystem - II
• Optimized for large shared files 
• Poor performance under many small reads/writes (high IOPs) 

• Do not store millions of small files 
• Your use of it affects everybody!  

(Different from case with CPU and RAM which are not shared) 
• Critical factors: how you read / write, file format, # of files in a directory and 

how often per sec 
• File system is shared over the ethernet network on a cluster: heavy I/O can 

prevent the processes from communication 
• File systems are LIMITED: bandwidth, IOPs, # of files, space and etc.
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Introduction to Parallel I/O

Best Practices for I/O - I
• Make a plan for your data needs: 

– How much will you generate 
– How much do you need to save 
– And where will you keep it? 

• Note that /scratch is temporary storage for 4 months or less 
• Monitor and control usage 

– Minimize use of filesystem commands like ‘ls’ and ‘du’ in large directories 
• Check your disk usage regularly with ‘quota’ 
• Warning!! 

– more than 100K files in your space 
– average data file size less than 100 MB for large output 

• Do ‘housekeeping’ (gzip, tar, delete) regularly
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Introduction to Parallel I/O

Do
• Write binary format files 

==> faster I/O and less space 
than ASCII format 

• Use parallel I/O if writing 
form many nodes 

• Maximize size of files: large 
block I/O optimal 

• Minimize number of files 
==> more responsive 
filesystem
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• Write lots of ASCII files 
• Many hundreds of files in a 

single directory 
• Many small files (< 10MB). 

System is optimized for 
large-block I/O

Best Practices for I/O - II

Don’t



Introduction to Parallel I/O

Data Formats - ASCII
(1) ASCII = American Standard Code for Information Interchange 

• pros     

– human readable, portable (architecture independent) 

• cons     

– inefficient storage  
(13 bytes per single precision float,   
 22 bytes per double precision,  
 plus delimiters), expensive for read/write 

• fprintf() in C      

• open(6,file=’test’,form=’formatted’);write(6,*) in F90      
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Introduction to Parallel I/O

Data Formats - Binary
(2) Binary  

 • pros      

– efficient storage  
(4 bytes per single precision float,  
8 bytes per double precision, no delimiters), efficient read / write  

 • cons      

– have to know the format to read, portability (endians)  

 • fwrite() in C       

 • open(6,file=’test’,form=’unformatted’); write(6)in F90      
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Format /scratch /tmp (disk)
ASCII 173 s 260 s
Binary 6 s 20 s

Table. Writing 128M doubles on GPCS in SciNet
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Data Format - XML, Databases
(3) MetaData (XML) – can be wrapped around text or binary data  

– encodes data about data: number and names of variables, their dimensions 
and sizes, endians, owner, date, links, comments, etc.  

(4) Databases – good for many small records  

– very powerful and flexible storage approach 

– data organization and analysis can be greatly simplified 

– enhanced performance over seek / sort depending on usage 

– open-sourcesoftware: SQLite(serverless), PostgreSQL, mySQL 
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Introduction to Parallel I/O

Data Format - Others
(5) Standard scientific dataset libraries – good for large arrays  

– HDF5 = Hierarchical Data Format 

– NetCDF = Network Common Data Format 

– open standards and open-source libraries 

– provide data portability across platforms and languages  

– store data in binary with optional compression 

– include data description 

– optionally provide parallel I/O 
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Introduction to Parallel I/O

Using parallel I/O
• In large parallel calculations 

your dataset is distributed across 
many processors/nodes  

• In this case using parallel 
filesystem isn’t enough – you 
must organize parallel I/O 
yourself  

• Data can be written as raw 
binary, HDF5 and NetCDF.
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Using parallel I/O

In large parallel calculations
your dataset is distributed
across many
processors/nodes

In this case using parallel
filesystem isn’t enough – you
must organize parallel I/O
yourself

Data can be written as raw
binary, HDF5, NetCDF, pVTK,
etc.
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Introduction to Parallel I/O

Serial I/O (single cpu)
Pros: 

• trivially simple for small I/O  

• some I/O libraries not parallel  

Cons: 

• bandwidth limited by the rate one client can sustain 

• may not have enough memory on a node to hold all data  

• won’t scale (built-in bottleneck) 
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Serial I/O by single processor

Pros:
• trivially simple for small I/O
• some I/O libraries not parallel

Cons:
• bandwidth limited by the rate one client can sustain
• may not have enough memory on a node to hold all data
• won’t scale (built-in bottleneck)
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Introduction to Parallel I/O

Serial I/O (N processors)
• Pros: 

– no interprocess communication or coordination necessary  

– possibly better scaling than single sequential I/O  

• Cons: 

– as process counts increase, lots of (small) files, won’t scale  

– data often must be post-processed into one file 

– uncoordinated I/O may swamp the filesystem (file locks!)
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Serial I/O by N processors

Pros:
• no interprocess communication or coordination necessary
• possibly better scaling than single sequential I/O

Cons:
• as process counts increase, lots of (small) files, won’t scale
• data often must be post-processed into one file
• uncoordinated I/O may swamp the file system (file locks!)
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Introduction to Parallel I/O

Parallel I/O (N processes to/from one file)
• Pros: 

– only one file (good for visualization, data management, storage)  

– data can be stored canonically 

– avoiding post-processing will scale if done correctly  

• Cons: 

– uncoordinated I/O will swamp the filesystem (file locks!)  

– requires more design and thought 
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Parallel I/O: all processes to/from one file

Pros:
• only one file (good for visualization, data management, storage)
• data can be stored canonically, avoiding post-processing
• will scale if done correctly

Cons:
• uncoordinated I/O will swamp the file system (file locks!)
• requires more design and thought
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Introduction to Parallel I/O

Parallel I/O should be collective!
• Independent I/O operations specify only what a single process will do  

– Collective I/O is coordinated access to storage by a group of processes  

• functions are called by all processes participating in I/O  

• allows filesystem to know more about access as a whole, more optimization in 
lower software layers, better performance 
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Parallel I/O should be collective!

Independent I/O operations specify only what a single process will do

Collective I/O is coordinated access to storage by a group of processes
• functions are called by all processes participating in I/O
• allows file system to know more about access as a whole, more optimization

in lower software layers, better performance
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Introduction to Parallel I/O

Parallel I/O techniques
• MPI-IO: parallel I/O part of the MPI-2 standard (1996)  

– basics covered in this webinar 

• HDF5 (Hierarchical Data Format), built on top of MPI-IO  

• Parallel NetCDF (Network Common Data Format), built on top of MPI-IO  

• Adaptable IO System (ADIOS), built on top of MPI-IO  

– actively developed (OLCF, Sandia NL, GeorgiaTech) and used on largest 
HPC systems (Jaguar, Blue Gene/P)  

– external to the code XML file describing the various elements  

– can work with HDF/NetCDF 
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Introduction to Parallel I/O

MPI-IO
• Part of the MPI-2 standard  

• ROMIO is the implementation of MPI-IO in OpenMPI (default in SHARCNET), 
MPICH2  

• Really only widely available scientific computing parallel I/O middleware  

• MPI-IO exploits analogies with MPI 

– writing , sending message 

– reading , receiving message 

– file access grouped via communicator: collective operations 

– user defined MPI datatypes, e.g. for noncontiguous data layout 

– all functionality through function calls
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Introduction to Parallel I/O

Basic MPI-IO operations in C
int MPI_File_open ( MPI_Comm comm, char* filename, int amode,  
                                   MPI_Info info, MPI_File* fh)  

int MPI_File_seek ( MPI_File fh, MPI_Offset offset, int to)  

- updates individual file pointer  

int MPI_File_set_view ( MPI_File fh, MPI_Offset offset,  
                                          MPI_Datatype etype, MPI_Datatype filetype,  
                                         char* datarep, MPI_Info info)  

- changes process’s view of data in file , 

- etype is the elementary datatype 

 
int MPI_File_read ( MPI_File fh, void* buf, int count,  
                                   MPI_Datatype datatype, MPI_Status* status)  

int MPI_File_write (MPI_File fh, void* buf, int count,  
                                   MPI_Datatype datatype, MPI_Status* status)  

int MPI_File_close ( MPI_File* fh) 

25

SHARCNET General Interest Seminar Series



Introduction to Parallel I/O

MPI_FILE_OPEN (integer comm, character[] filename, integer amode,  
                                   integer info, integer fh, integer ierr)  

MPI_FILE_SEEK (integer fh, integer(kind=MPI_OFFSET_KIND) offset,  
                                  integer whence, integer ierr)  

- updates individual file pointer  

MPI_FILE_SET_VIEW (integer fh, integer(kind=MPI_OFFSET_KIND) offset,  
                                            integer etype, integer filetype,  
                                            character[] datarep, integer info, integer ierr) 

- changes process’s view of data in file  

- etype is the elementary datatype 

MPI_FILE_READ (integer fh, type buf, integer count, integer datatype,  
                                   integer[MPI_STATUS_SIZE] status, integer ierr)  

MPI_FILE_WRITE (integer fh, type buf, integer count, integer datatype,  
                                     integer[MPI_STATUS_SIZE] status, integer ierr)  

MPI_FILE_CLOSE (integer fh)  

26

SHARCNET General Interest Seminar Series

Basic MPI-IO operations in F90
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Opening a file requires a …
• Communicator 
• File name 
• File handle, for all future reference to file 
• File access mode ‘amode’, made up of combinations of: 

• Combine it using bitwise or “|” in C or addition “+” in FORTRAN 
• Info argument usually set to ‘MPI_INFO_NULL’ 

– http://www.open- mpi.org/doc/v1.4/man3/MPI_File_open.3.php
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Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Opening a file requires a ...
Communicator

File name

File handle, for all future reference to file

File access mode amode, made up of combinations of:
MPI_MODE_RDONLY read only
MPI_MODE_RDWR reading and writing
MPI_MODE_WRONLY write only
MPI_MODE_CREATE create file if it does not exist
MPI_MODE_EXCL error if creating file that exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file not to be opened elsewhere
MPI_MODE_SEQUENTIAL file to be accessed sequentially
MPI_MODE_APPEND position all file pointers to end

Info argument (details about file access pattern and other fine-grained
control), usually set to MPI_INFO_NULL, for more details see
http://www.open-mpi.org/doc/v1.4/man3/MPI_File_open.3.php
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Opening files
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MPI_FILE fh ;  
MPI_File_open (MPI_COMM_WORLD, "test.dat" ,MPI_MODE_RDONLY, 
               MPI_INFO_NULL,&fh ); 

... read some data here ...  

MPI_File_close(&fh ) ;

C example

integer :: fh,ierr  
call MPI_FILE_OPEN(MPI_COMM_WORLD,"test.dat", 
                   MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)  

... read some data here ...  

call MPI_FILE_CLOSE(fh, ierr ) 

F90 example
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Read / Write contiguous data
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Read/write contiguous data

Processes

P(0)q P(1)q P(2)q P(3)q .

# # # # .

view(0) q view(1) q view(2) q view(3) qq

One file
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Introduction to Parallel I/O

Read / Write contiguous data: example
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#include <stdio .h>  
#include <mpi.h>  
int main(int argc, char **argv) {  

int rank, i; char a[10];  
MPI_Offset n = 10; MPI_File fh ; MPI_Status status ;  

MPI_Init(&argc, &argv);  

MPI_Comm_rank(MPI_COMM_WORLD, &rank);  

for (i=0; i<10; i++)  
a[i] = (char)( ’0’ + rank); // e.g. on processor 3 creates a[0:9]=’3333333333’  

MPI_File_open (MPI_COMM_WORLD, “data.out" , MPI_MODE_CREATE|MPI_MODE_WRONLY, 
MPI_INFO_NULL, &fh);  

MPI_Offset displace = rank*n*sizeof(char); // start of the view for each processor 
MPI_File_set_view (fh , displace , MPI_CHAR, MPI_CHAR, "native" ,MPI_INFO_NULL);  
// note that etype and filetype are the same  

MPI_File_write(fh, a, n, MPI_CHAR, &status);  

MPI_File_close(&fh ) ;  

MPI_Finalize ( ) ;  

return 0;
0000000000111111111122222222223333333333 
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Summary: MPI-IO
• Requires no additional libraries  

• Relatively easy to implement for users with MPI experience 

• Writes raw data to file 

– not portable across platforms 

– hard to append new variables 

–  does not include data description 
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Introduction to Parallel I/O

NetCDF = Network Common Data Form
• Format for storing large arrays, uses MPI-IO under the hood  

• Libraries for C/C++, Fortran 77/90/95/2003, Python, Java, R, Ruby, etc. 
 

• Data stored as binary  

• Self-describing, metadata in the header (can be queried by utilities) 
 

• Portable across different architectures 

• Optional compression 

• Uses MPI-IO, optimized for performance  

• parallel NetCDF in SHARCNET http://bit.ly/KL6L5V 
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Parallel NetCDF example
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#include <stdlib.h> 
#include <stdio.h> 
#include <netcdf.h> 
#define FILE_NAME "simple_xy.nc" #define NDIMS 2 
#define NX 3 
#define NY 4 
int main() { 
int ncid, x_dimid, y_dimid, varid; int dimids[NDIMS]; 
int data_out[NX][NY]; 
int x, y, retval; 
for (x = 0; x < NX; x++) 
     for (y = 0; y < NY; y++) 
          data_out[x][y] = x * NY + y; 
retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid);  
retval = nc_def_dim(ncid, "x", NX, &x_dimid);  
retval = nc_def_dim(ncid, "y", NY, &y_dimid); 
dimids[0] = x_dimid; 
dimids[1] = y_dimid; 
retval = nc_def_var(ncid, "data", NC_INT, NDIMS, dimids, &varid);  
retval = nc_enddef(ncid); 
retval = nc_put_var_int(ncid, varid, &data_out[0][0]); 
retval = nc_close(ncid); 
return 0;  
}

Open/Create 

Read/define dimensions 

Define variables 

Read/define attributes 

Read/Write data 

Close 
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HDF5 = Hierarchical Data Format
• Self-describing file format for large datasets, uses MPI-IO under the hood  
• Libraries for C/C++, Fortran 90, Java, Python, R  

• More general than NetCDF, with object-oriented description of datasets, groups, 
attributes, types, data spaces and property lists  

• File content can be arranged into a Unix-like filesystem /path/to/resource 

– data sets containing homogeneous multidimensional images/tables/arrays  

– groups containing structures which can hold datasets and other groups  

• Header information can be queried by utilities 

• Optional compression (good for arrays with many similar elements)  

• In SHARCNET we have both serial and parallel HDF5 (http://bit.ly/JLkKYo)
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ADIOS = Adaptable I/O System
• A high-performance library for scientific I/O, also based on MPI-IO Libraries for 

C/C++, Fortran 

• A data file and a separate external XML file describing data layout  

• Allows a number of transport methods, including raw MPI-IO, POSIX (one-per-
process posix files), NetCDF, HDF5, MPI-AIO (asynchronous output = I/O while 
computing)  

• don’t need to change the code to switch the transport method, just edit the XML 
file  

• allows you to play with different I/O technologies without rewriting your code 

• when using MPI-IO method, packs data into its own binary format  

• Slowly gaining popularity, have not had any requests for it in SHARCNET yet

35

SHARCNET General Interest Seminar Series



Introduction to Parallel I/O

Summary: parallel I/O
• A wide choice of methods for parallel I/O  

• The choice of a parallel library is largely dictated by the data storage format  

– raw binary:MPI-IO  

–  large multidimensional arrays:NetCDF,HDF5(possiblyADIOS)–data  
portability, self-description  

– data on unstructured grids,particles,polygons,tetrahedra:pVTK–with extra 
work can also be stored with any of the above formats  

• Pay attention to the disk I/O bandwidth requirements of your code: ⇠ 100 200 
MB/s rate is still a physical limit  

• Use common sense when organizing your data: few files as opposed to many,  
store as binary with compression, might not need to store everything but 
only differences, etc. 
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Thank you!
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