
SHARCNET
General Interest
Seminar Series

-­‐ Introduction to Parallel I/O

Isaac Ye
HPTC @York University

Introduction to Parallel I/O

Outline
• I/O Issues in large-scale computation

• Disk I/O problems

• Definition of I/O speed

• SHARCNET filesystems

• Overview of I/O software and hardware

• Parallel filesystem

• Best Practices for I/O

• Data formats

• I/O strategies (serial/parallel)

• MPI-IO

• Introduction to Parallel I/O libraries (NetCDF/HDF5/ADIOS)

2

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Issue - HPC I/O
• High Performance Computing (HPC) application requires Input/Output (I/O)

activities for

– Reading initial conditions or datasets for processing

– Writing numerical data from simulations for later analysis

– Checkpointing to files

• For many parallel programs, Input and Output (I/O) become a major bottleneck.

3

SHARCNET General Interest Seminar Series

Serial code

CPU Mem

Disk

Parallel code

CPU Mem

Disk

CPU Mem CPU Mem

Introduction to Parallel I/O

Issue - Goal
• Efficient I/O without stressing out the HPC system is challenging

– Load and store operations are more time-consuming than multiply operations

– Total Execution Time  
= Computation Time + Communication Time + I/O time

– Optimize all the components of the equation above to get best performance!!

4

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Disk access rates over time

5

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Disk access rates over time
1960-2014: top supercomputer speed increased by 11 orders of magnitude
Single HDD capacity in the same period grew by 6 orders (from 3.75MB in 1956)
Average internal drive access rate grew by 3-4 orders of magnitude

Figure by Rob Ross, Argonne National Laboratory

(SHARCNET/UOIT) winter 2011 3 / 37

Introduction to Parallel I/O

Memory / storage latency

6

SHARCNET General Interest Seminar Series

Figure by Jeff Richardson, datacenterjournal.com

http://datacenterjournal.com

Introduction to Parallel I/O

How to calculate I/O speed

7

SHARCNET General Interest Seminar Series

• IOPs = Input / Output operations per second (read/write/open/close/seek) ;
essentially an inverse of latency

• I/O Bandwidth = quantity you read / write

• Parallel (distributed) filesystems are optimized for efficient I/O by multiple users
on multiple machines/nodes, do not result in “supercomputing” performance

– disk-access time + communication over the network  
(limited bandwidth, many users)

Device Bandwidth(MB/s) IOPs

7200 rpm SATA HDD 100 100-300

SSD drive 250-500 < 4000

SHARCNET global /work 100 /stream 700

Introduction to Parallel I/O

SHARCNET filesystems

8

SHARCNET General Interest Seminar Series

• We have a hierarchy of parallel (/scratch, /work,
/home, /archive) and serial (/tmp) filesystems.

• Mostly based on Lustre

• All large filesystems feature many servers and
disks+large number of compute node

• Shown in the right: one of our smaller local
scratch filesystems with 192 disks

– local to a cluster, I/O data travel over the
network

• Global /work and /home are mounted on all
clusters through a wider-area network  
(slower access than /scratch)

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

SHARCNET filesystems

We have a hierarchy of parallel (/scratch, /work,
/home, /archive) and serial (/tmp) filesystems

Mostly based on Lustre (open-source)
• for detailed layout see http://bit.ly/K9lM08

All large filesystems feature many servers and
disks + large number of compute nodes

Pictured on the left: one of our smaller “local”
/scratch filesystems consisting of 192 disks

• local to a cluster, I/O data travel over the network

On the other hand, global /work and /home are
mounted on all clusters through a wider-area
network) slower access than /scratch

• but there are few exceptions, e.g. goblin

(SHARCNET/UOIT) winter 2011 6 / 37

Introduction to Parallel I/O

I/O Software + Hardware stack

9

SHARCNET General Interest Seminar Series

Application

High-end I/O
library

I/O Middleware

Parallel filesystem

I/O Hardware

HDF5, Parallel NetCDF, ADIOS
•maps application abstractions to

storage abstractions I/O in
terms of the data structures of
the code not bytes and blocks

•provides data portability
MPI-IO
•organizes access from many

processes, especially collective
I/O

•provides data sieving

GPFS, Lustre, PVFS
•maintains logical space and

provides efficient access to data

Introduction to Parallel I/O

Parallel filesystem - I
• Files can be striped across multiple drives for better performance
• ‘Lock’s used to manage concurrent file across in most parallel file system

– Files are pieced into ‘lock’ units (scattered across many drives)
– Client nodes obtain locks on units that they access before I/O occurs
– Enables caching on clients
– Locks are reclaimed from clients when others desire access

10

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Parallel filesystem - II
• Optimized for large shared files
• Poor performance under many small reads/writes (high IOPs)

• Do not store millions of small files
• Your use of it affects everybody!  

(Different from case with CPU and RAM which are not shared)
• Critical factors: how you read / write, file format, # of files in a directory and

how often per sec
• File system is shared over the ethernet network on a cluster: heavy I/O can

prevent the processes from communication
• File systems are LIMITED: bandwidth, IOPs, # of files, space and etc.

11

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Best Practices for I/O - I
• Make a plan for your data needs:

– How much will you generate
– How much do you need to save
– And where will you keep it?

• Note that /scratch is temporary storage for 4 months or less
• Monitor and control usage

– Minimize use of filesystem commands like ‘ls’ and ‘du’ in large directories
• Check your disk usage regularly with ‘quota’
• Warning!!

– more than 100K files in your space
– average data file size less than 100 MB for large output

• Do ‘housekeeping’ (gzip, tar, delete) regularly

12

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Do
• Write binary format files

==> faster I/O and less space
than ASCII format

• Use parallel I/O if writing
form many nodes

• Maximize size of files: large
block I/O optimal

• Minimize number of files
==> more responsive
filesystem

13

SHARCNET General Interest Seminar Series

• Write lots of ASCII files
• Many hundreds of files in a

single directory
• Many small files (< 10MB).

System is optimized for
large-block I/O

Best Practices for I/O - II

Don’t

Introduction to Parallel I/O

Data Formats - ASCII
(1) ASCII = American Standard Code for Information Interchange

• pros

– human readable, portable (architecture independent)

• cons

– inefficient storage  
(13 bytes per single precision float,  
 22 bytes per double precision,  
 plus delimiters), expensive for read/write

• fprintf() in C

• open(6,file=’test’,form=’formatted’);write(6,*) in F90

14

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Data Formats - Binary
(2) Binary

 • pros

– efficient storage  
(4 bytes per single precision float,  
8 bytes per double precision, no delimiters), efficient read / write

 • cons

– have to know the format to read, portability (endians)

 • fwrite() in C

 • open(6,file=’test’,form=’unformatted’); write(6)in F90

15

SHARCNET General Interest Seminar Series

Format /scratch /tmp (disk)
ASCII 173 s 260 s
Binary 6 s 20 s

Table. Writing 128M doubles on GPCS in SciNet

Introduction to Parallel I/O

Data Format - XML, Databases
(3) MetaData (XML) – can be wrapped around text or binary data

– encodes data about data: number and names of variables, their dimensions
and sizes, endians, owner, date, links, comments, etc.

(4) Databases – good for many small records

– very powerful and flexible storage approach

– data organization and analysis can be greatly simplified

– enhanced performance over seek / sort depending on usage

– open-sourcesoftware: SQLite(serverless), PostgreSQL, mySQL

16

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Data Format - Others
(5) Standard scientific dataset libraries – good for large arrays

– HDF5 = Hierarchical Data Format

– NetCDF = Network Common Data Format

– open standards and open-source libraries

– provide data portability across platforms and languages

– store data in binary with optional compression

– include data description

– optionally provide parallel I/O

17

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Using parallel I/O
• In large parallel calculations

your dataset is distributed across
many processors/nodes

• In this case using parallel
filesystem isn’t enough – you
must organize parallel I/O
yourself

• Data can be written as raw
binary, HDF5 and NetCDF.

18

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Using parallel I/O

In large parallel calculations
your dataset is distributed
across many
processors/nodes

In this case using parallel
filesystem isn’t enough – you
must organize parallel I/O
yourself

Data can be written as raw
binary, HDF5, NetCDF, pVTK,
etc.

(SHARCNET/UOIT) winter 2011 12 / 37

Introduction to Parallel I/O

Serial I/O (single cpu)
Pros:

• trivially simple for small I/O

• some I/O libraries not parallel

Cons:

• bandwidth limited by the rate one client can sustain

• may not have enough memory on a node to hold all data

• won’t scale (built-in bottleneck)

19

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Serial I/O by single processor

Pros:
• trivially simple for small I/O
• some I/O libraries not parallel

Cons:
• bandwidth limited by the rate one client can sustain
• may not have enough memory on a node to hold all data
• won’t scale (built-in bottleneck)

(SHARCNET/UOIT) winter 2011 13 / 37

Introduction to Parallel I/O

Serial I/O (N processors)
• Pros:

– no interprocess communication or coordination necessary

– possibly better scaling than single sequential I/O

• Cons:

– as process counts increase, lots of (small) files, won’t scale

– data often must be post-processed into one file

– uncoordinated I/O may swamp the filesystem (file locks!)

20

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Serial I/O by N processors

Pros:
• no interprocess communication or coordination necessary
• possibly better scaling than single sequential I/O

Cons:
• as process counts increase, lots of (small) files, won’t scale
• data often must be post-processed into one file
• uncoordinated I/O may swamp the file system (file locks!)

(SHARCNET/UOIT) winter 2011 14 / 37

Introduction to Parallel I/O

Parallel I/O (N processes to/from one file)
• Pros:

– only one file (good for visualization, data management, storage)

– data can be stored canonically

– avoiding post-processing will scale if done correctly

• Cons:

– uncoordinated I/O will swamp the filesystem (file locks!)

– requires more design and thought

21

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Parallel I/O: all processes to/from one file

Pros:
• only one file (good for visualization, data management, storage)
• data can be stored canonically, avoiding post-processing
• will scale if done correctly

Cons:
• uncoordinated I/O will swamp the file system (file locks!)
• requires more design and thought

(SHARCNET/UOIT) winter 2011 15 / 37

Introduction to Parallel I/O

Parallel I/O should be collective!
• Independent I/O operations specify only what a single process will do

– Collective I/O is coordinated access to storage by a group of processes

• functions are called by all processes participating in I/O

• allows filesystem to know more about access as a whole, more optimization in
lower software layers, better performance

22

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Parallel I/O should be collective!

Independent I/O operations specify only what a single process will do

Collective I/O is coordinated access to storage by a group of processes
• functions are called by all processes participating in I/O
• allows file system to know more about access as a whole, more optimization

in lower software layers, better performance

(SHARCNET/UOIT) winter 2011 16 / 37

Introduction to Parallel I/O

Parallel I/O techniques
• MPI-IO: parallel I/O part of the MPI-2 standard (1996)

– basics covered in this webinar

• HDF5 (Hierarchical Data Format), built on top of MPI-IO

• Parallel NetCDF (Network Common Data Format), built on top of MPI-IO

• Adaptable IO System (ADIOS), built on top of MPI-IO

– actively developed (OLCF, Sandia NL, GeorgiaTech) and used on largest
HPC systems (Jaguar, Blue Gene/P)

– external to the code XML file describing the various elements

– can work with HDF/NetCDF

23

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

MPI-IO
• Part of the MPI-2 standard

• ROMIO is the implementation of MPI-IO in OpenMPI (default in SHARCNET),
MPICH2

• Really only widely available scientific computing parallel I/O middleware

• MPI-IO exploits analogies with MPI

– writing , sending message

– reading , receiving message

– file access grouped via communicator: collective operations

– user defined MPI datatypes, e.g. for noncontiguous data layout

– all functionality through function calls

24

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Basic MPI-IO operations in C
int MPI_File_open (MPI_Comm comm, char* filename, int amode,  
 MPI_Info info, MPI_File* fh)

int MPI_File_seek (MPI_File fh, MPI_Offset offset, int to)

- updates individual file pointer

int MPI_File_set_view (MPI_File fh, MPI_Offset offset,  
 MPI_Datatype etype, MPI_Datatype filetype,  
 char* datarep, MPI_Info info)

- changes process’s view of data in file ,

- etype is the elementary datatype

 
int MPI_File_read (MPI_File fh, void* buf, int count,  
 MPI_Datatype datatype, MPI_Status* status)

int MPI_File_write (MPI_File fh, void* buf, int count,  
 MPI_Datatype datatype, MPI_Status* status)

int MPI_File_close (MPI_File* fh)

25

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

MPI_FILE_OPEN (integer comm, character[] filename, integer amode,  
 integer info, integer fh, integer ierr)

MPI_FILE_SEEK (integer fh, integer(kind=MPI_OFFSET_KIND) offset,  
 integer whence, integer ierr)

- updates individual file pointer

MPI_FILE_SET_VIEW (integer fh, integer(kind=MPI_OFFSET_KIND) offset,  
 integer etype, integer filetype,  
 character[] datarep, integer info, integer ierr)

- changes process’s view of data in file

- etype is the elementary datatype

MPI_FILE_READ (integer fh, type buf, integer count, integer datatype,  
 integer[MPI_STATUS_SIZE] status, integer ierr)

MPI_FILE_WRITE (integer fh, type buf, integer count, integer datatype,  
 integer[MPI_STATUS_SIZE] status, integer ierr)

MPI_FILE_CLOSE (integer fh)  

26

SHARCNET General Interest Seminar Series

Basic MPI-IO operations in F90

Introduction to Parallel I/O

Opening a file requires a …
• Communicator
• File name
• File handle, for all future reference to file
• File access mode ‘amode’, made up of combinations of:

• Combine it using bitwise or “|” in C or addition “+” in FORTRAN
• Info argument usually set to ‘MPI_INFO_NULL’

– http://www.open- mpi.org/doc/v1.4/man3/MPI_File_open.3.php

27

SHARCNET General Interest Seminar Series

Filesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Opening a file requires a ...
Communicator

File name

File handle, for all future reference to file

File access mode amode, made up of combinations of:
MPI_MODE_RDONLY read only
MPI_MODE_RDWR reading and writing
MPI_MODE_WRONLY write only
MPI_MODE_CREATE create file if it does not exist
MPI_MODE_EXCL error if creating file that exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file not to be opened elsewhere
MPI_MODE_SEQUENTIAL file to be accessed sequentially
MPI_MODE_APPEND position all file pointers to end

Info argument (details about file access pattern and other fine-grained
control), usually set to MPI_INFO_NULL, for more details see
http://www.open-mpi.org/doc/v1.4/man3/MPI_File_open.3.php

(SHARCNET/UOIT) winter 2011 21 / 37

http://mpi.org/doc/v1.4/man3/MPI_File_open.3.php

Introduction to Parallel I/O

Opening files

28

SHARCNET General Interest Seminar Series

MPI_FILE fh ;  
MPI_File_open (MPI_COMM_WORLD, "test.dat" ,MPI_MODE_RDONLY, 
 MPI_INFO_NULL,&fh);

... read some data here ...

MPI_File_close(&fh) ;

C example

integer :: fh,ierr  
call MPI_FILE_OPEN(MPI_COMM_WORLD,"test.dat", 
 MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

... read some data here ...

call MPI_FILE_CLOSE(fh, ierr)

F90 example

Introduction to Parallel I/O

Read / Write contiguous data

29

SHARCNET General Interest Seminar SeriesFilesystems Managing data Parallel I/O MPI-IO NetCDF HDF5 ADIOS Summary

Read/write contiguous data

Processes

P(0)q P(1)q P(2)q P(3)q .

.

view(0) q view(1) q view(2) q view(3) qq

One file

(SHARCNET/UOIT) winter 2011 23 / 37

Introduction to Parallel I/O

Read / Write contiguous data: example

30

SHARCNET General Interest Seminar Series

#include <stdio .h>  
#include <mpi.h>  
int main(int argc, char **argv) {

int rank, i; char a[10];  
MPI_Offset n = 10; MPI_File fh ; MPI_Status status ;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i=0; i<10; i++)  
a[i] = (char)(’0’ + rank); // e.g. on processor 3 creates a[0:9]=’3333333333’

MPI_File_open (MPI_COMM_WORLD, “data.out" , MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);

MPI_Offset displace = rank*n*sizeof(char); // start of the view for each processor
MPI_File_set_view (fh , displace , MPI_CHAR, MPI_CHAR, "native" ,MPI_INFO_NULL);  
// note that etype and filetype are the same

MPI_File_write(fh, a, n, MPI_CHAR, &status);

MPI_File_close(&fh) ;

MPI_Finalize () ;

return 0;
0000000000111111111122222222223333333333

Introduction to Parallel I/O

Summary: MPI-IO
• Requires no additional libraries

• Relatively easy to implement for users with MPI experience

• Writes raw data to file

– not portable across platforms

– hard to append new variables

– does not include data description

31

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

NetCDF = Network Common Data Form
• Format for storing large arrays, uses MPI-IO under the hood

• Libraries for C/C++, Fortran 77/90/95/2003, Python, Java, R, Ruby, etc.

• Data stored as binary

• Self-describing, metadata in the header (can be queried by utilities)

• Portable across different architectures

• Optional compression

• Uses MPI-IO, optimized for performance

• parallel NetCDF in SHARCNET http://bit.ly/KL6L5V

32

SHARCNET General Interest Seminar Series

http://bit.ly/KL6L5V

Introduction to Parallel I/O

Parallel NetCDF example

33

SHARCNET General Interest Seminar Series

#include <stdlib.h>
#include <stdio.h>
#include <netcdf.h>
#define FILE_NAME "simple_xy.nc" #define NDIMS 2
#define NX 3
#define NY 4
int main() {
int ncid, x_dimid, y_dimid, varid; int dimids[NDIMS];
int data_out[NX][NY];
int x, y, retval;
for (x = 0; x < NX; x++)
 for (y = 0; y < NY; y++)
 data_out[x][y] = x * NY + y;
retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid);
retval = nc_def_dim(ncid, "x", NX, &x_dimid);
retval = nc_def_dim(ncid, "y", NY, &y_dimid);
dimids[0] = x_dimid;
dimids[1] = y_dimid;
retval = nc_def_var(ncid, "data", NC_INT, NDIMS, dimids, &varid);
retval = nc_enddef(ncid);
retval = nc_put_var_int(ncid, varid, &data_out[0][0]);
retval = nc_close(ncid);
return 0;
}

Open/Create

Read/define dimensions

Define variables

Read/define attributes

Read/Write data

Close

Introduction to Parallel I/O

HDF5 = Hierarchical Data Format
• Self-describing file format for large datasets, uses MPI-IO under the hood
• Libraries for C/C++, Fortran 90, Java, Python, R

• More general than NetCDF, with object-oriented description of datasets, groups,
attributes, types, data spaces and property lists

• File content can be arranged into a Unix-like filesystem /path/to/resource

– data sets containing homogeneous multidimensional images/tables/arrays

– groups containing structures which can hold datasets and other groups

• Header information can be queried by utilities

• Optional compression (good for arrays with many similar elements)

• In SHARCNET we have both serial and parallel HDF5 (http://bit.ly/JLkKYo)

34

SHARCNET General Interest Seminar Series

http://bit.ly/JLkKYo

Introduction to Parallel I/O

ADIOS = Adaptable I/O System
• A high-performance library for scientific I/O, also based on MPI-IO Libraries for

C/C++, Fortran

• A data file and a separate external XML file describing data layout

• Allows a number of transport methods, including raw MPI-IO, POSIX (one-per-
process posix files), NetCDF, HDF5, MPI-AIO (asynchronous output = I/O while
computing)

• don’t need to change the code to switch the transport method, just edit the XML
file

• allows you to play with different I/O technologies without rewriting your code

• when using MPI-IO method, packs data into its own binary format

• Slowly gaining popularity, have not had any requests for it in SHARCNET yet

35

SHARCNET General Interest Seminar Series

Introduction to Parallel I/O

Summary: parallel I/O
• A wide choice of methods for parallel I/O

• The choice of a parallel library is largely dictated by the data storage format

– raw binary:MPI-IO

– large multidimensional arrays:NetCDF,HDF5(possiblyADIOS)–data  
portability, self-description

– data on unstructured grids,particles,polygons,tetrahedra:pVTK–with extra
work can also be stored with any of the above formats  

• Pay attention to the disk I/O bandwidth requirements of your code: ⇠ 100 200
MB/s rate is still a physical limit  

• Use common sense when organizing your data: few files as opposed to many,  
store as binary with compression, might not need to store everything but
only differences, etc.

36

SHARCNET General Interest Seminar Series

SHARCNET General Interest Seminar Series

Thank you!

37

