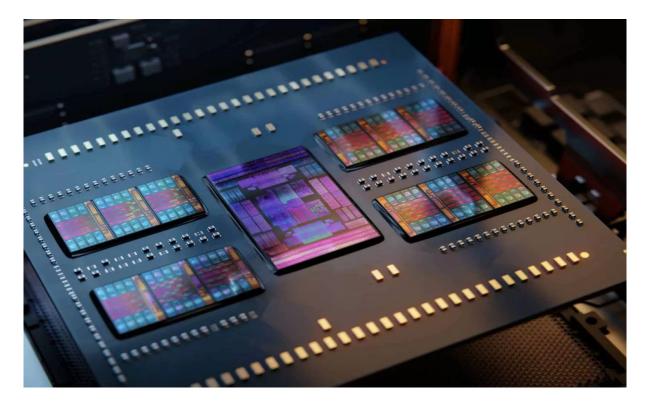
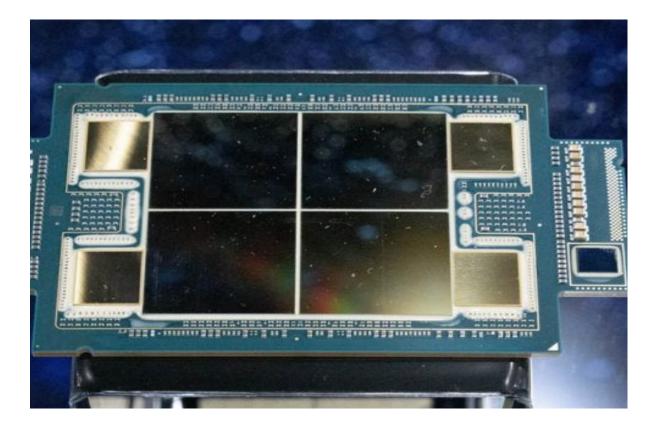
Performance:

Current and coming systems

plan


Discuss currently installed hardware

Simpler theoretical numbers (cores, clocks, memory) and microbenchmarks


Consider a simple but real application benchmark

Some guesses about next-generation hardware

AMD Glamour Shot

Intel Glamour Shot

Survey of currently used HW

Cluster	model	codename	cores	clock	L3 cache	mem bw
Gra,Cdr	E5-2683 v4	Broadwell	16	2.2-2.9	40M	76.8
Cdr	Ptnm 8160	Skylake	24	2.1-3.7	33M	128
Nia	Gold 6148	Skylake	20	2.4-3.7	27.5M	128
Gra	Gold 6238	Cascade	22	2.1-3.7	30M	140.7
Cdr	Gold 6260	Cascade	24	2.1-3.7	30M	140.7
N∨I	7532	Rome	32	2.4-3.3 GHz	256M	204.8
N∨I	7413	Milan	24	2.65-3.6	128M	204.8

More about scaling

codename	cores	clock	L3 cache	mem bw	l3/core	bw/core	bw/(core*clock)
Broadwell	16	2.2-2.9	40M	76.8	2.5	4.8	2.2
Skylake	24	2.1-3.7	33M	128	1.4	5.3	2.5
Cascade	22	2.1-3.7	30M	140.7	1.4	6.4	3.0
Rome	32	2.4-3.3	256M	204.8	8	6.4	2.7

Some of why

codename	date	cores	clock	L3 cache	Core process	power
Broadwell	1q16	16	2.2-2.9	40M	14	120
Skylake	3q17	24	2.1-3.7	33M	14	140
Cascade	2q19	22	2.1-3.7	30M	14	140
Rome	1q20	32	2.4-3.3	256M	7	200

More about scaling

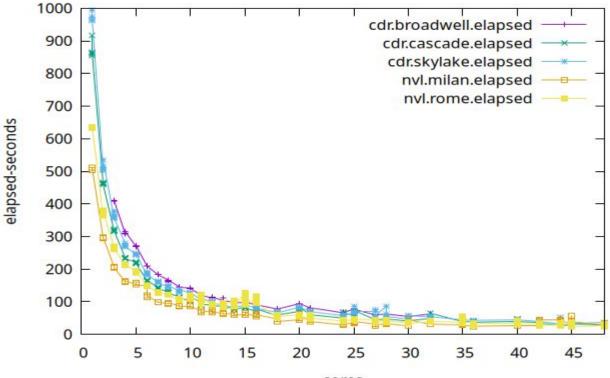
codename	theoretical mem bw	theoretical bw/core	Thrash (memset)	Stream triad	triad/core
Broadwell	76.8	4.8	5.6	94	2.9
Skylake	128	5.3	6.7	140	2.9
Cascade	140.7	6.4	6.7	150	3.4
Rome	204.8	6.4	14	217	3.4

More about scaling

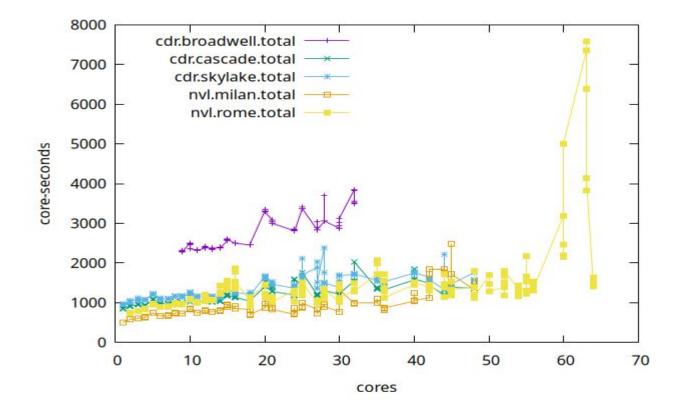
codename	theoretica I mem bw	theoretical bw/core	cores	Thrash (memset)	Stream triad dual socket	triad/core
Broadwell	76.8	4.8	16	5.6	94	2.9
Skylake	128	5.3	24	6.7	140	2.9
Cascade	140.7	6.4	22	6.7	150	3.4
Rome	204.8	6.4	32	14	217	3.4
Intel next	307.2	5.5	56	?	?	?
Intel next HBM	1220	22	56	?	?	?
AMD next	460.8	5.8	96	?	2.3x Rome?	?

Application benchmark

Standard GROMACS benchMEM


Run on a single whole-node

Run from 1..ncpus threads


Caveats:

- No MPI
- No competition, so low-thread performance is overestimated

Elapsed time

Core-seconds

Where are we

Current clusters were commissioned about 6 years ago.

There have been some upgrades since then.

We are on the verge of some important new changes.

Systems continue to be torn between CPU and GPU.

Also torn between compact and memory-intensive.

Our CPUs haven't changed a lot recently

Intel has been stuck

- Minor changes in core density
- Minor changes in memory clock
- Minor improvements in instruction set (eg avx512)
- Modest improvements in power/performance

AMD has reinvented itself

- Serious advantages from TSMC
- Chiplets
- Advanced memory

AMD advantages

Consuming 5 nm fab capacity from TSMC

- Compared to 10nm from Intel
- Not literally a 2x difference (4x density)
- Intel bet against EUV, now playing catchup

Chiplets are a significant advantage

- Very large chips are a yield problem
- Ability to leverage multiple processes
- Stacking HBM and cache

Intel definitely not out of the game

						4t	h Gen I	Intel	Xeon S	calabl	e Lau	inch S	KUs						
Family	Model	Cores	Base (GHz)	All Core Turbo (GHz)	Max Turbo (GHz)	Cache (MB)	TDP (W)	Max Sockets	Max DDR5	UPI	DSA	QAT	DLB	IAA	SGX Max (GB)	Price	On Demand	Die
Platinum	8480+	56	2.0	3.0	- 1	3.8	105.0	350	2	4800	4	1	1	1	1	512	10710	Yes	XCC
Platinum	8470	52	2.0	3.0		3.8	105.0	350	2	4800	4	1	0	0	0	512	9359	Yes	XCC
Platinum	8468	48	2.1	3.1		3.8	105.0	350	2	4800	4	1	0	0	0	512	7214	Yes	XCC
Platinum	8460Y+	40	2.0	2.8		3.7	105.0	300	2	4800	4	1	1	1	1	128	5558	Yes	XCC
Platinum	8462Y+	32	2.8	3.6		4.1	60.0	300	2	4800	3	1	1	1	1	128	5945	Yes	XCC
Gold	6448Y	32	2.1	3.0	_	4.0	60.0	225	2	4800	3	1	0	0	0	128	3583	Yes	MCC
Gold	6442Y	24	2.6	3.3		4.1	60.0	225	2	4800	3	1	0	0	0	128	2878	Yes	MCC
Gold	6444Y	16	3.6	4.0		4.1	45.0	270	2	4800	3	1	0	0	0	128	3622	Yes	MCC
Gold	6426Y	16	2.5	3.3		4.1	37.5	185	2	4800	3	1	0	0	0	128	1517	Yes	MCC
Gold	6434	8	3.7	4.1		4.1	22.5	195	2	4800	3	1	0	0	0	128	2607	Yes	MCC
Gold	5415+	8	2.9	3.6		4.1	22.5	150	2	4800	3	1	1	1	1	128	1066	Yes	MCC
Platinum	8452Y	36	2.0	2.8		3.2	67.5	300	2	4800	4	1	0	0	0	128	3995	Yes	MCC
Gold	6438Y+	32	2.1	2.8		4.0	60.0	205	2	4800	3	1	1	1	1	128	3141	Yes	MCC
Gold	6430	32	2.0	2.6		3.4	60.0	270	2	4400	3	1	0	0	0	128	2128	Yes	MCC
Gold	5420+	28	2.0	2.7		4.1	52.5	205	2	4400	3	1	1	1	1	128	1848	Yes	MCC
Gold	5418Y	24	2.0	2.8		3.8	45.0	185	2	4400	3	1	0	0	0	128	1483	Yes	MCC
Silver	4416+	20	2.0	2.9		3.9	37.5	165	2	4400	2	1	1	1	1	64	1176	Yes	MCC
Silver	4410Y	12	2.0	2.8		3.9	30.0	150	2	4400	2	1	0	0	0	64	563	Yes	MCC
Platinum	8470Q	52	2.1	3.2		3.8	105.0	350	2	4800	4	1	0	0	0	512	9410	Yes	XCC
Gold	6458Q	32	3.1	4.0		4.0	60.0	350	2	4800	3	1	0	0	0	128	6416	Yes	MCC
Gold	6414U	32	2.0	2.6		3.4	60.0	250	1	4800	0	1	0	0	0	512	2296	Yes	XCC
Gold	5412U	24	2.1	2.9		3.9	45.0	185	1	4400	0	1	0	0	0	128	1113	Yes	MCC
Bronze	3408U	8	1.8	1.9		1.9	22.5	125	1	4000	0	1	0	0	0	64	415	No	MCC
Silver	4410T	10	2.7	3.4		4.0	26.3	150	2	4000	2	1	0	0	0	64	624	Yes	MCC
Platinum	8490H	60	1.9	2.9		3.5	112.5	350	8	4800	4	4	4	4	4	512	17000	No	XCC
Platinum	8468H	48	2.1	3.0		3.8	105.0	330	8	4800	4	4	4	4	4	512	13923	No	XCC
Platinum	8460H	40	2.2	3.1		3.8	105.0	330	8	4800	4	4	0	0	4	512	10710	No	XCC
Platinum	8454H	32	2.1	2.7		3.4	82.5	270	8	4800	4	4	4	4	4	512	6540	No	XCC
Platinum	8450H	28	2.0	2.6		3.5	75.0	250	8	4800	4	4	0	0	4	512	4708	No	XCC
Platinum	8444H	16	2.9	3.2		4.0	45.0	270	8	4800	4	4	0	0	4	512	4234	No	XCC
Gold	6448H	32	2.4	3.2		4.1	60.0	250	4	4800	3	1	2	2	1	512	3658	No	MCC
Gold	6418H	24	2.1	2.9		4.0	60.0	185	4	4800	3	1	0	0	1	512	2065	No	MCC
Gold	6416H	18	2.2	2.9		4.2	45.0	165	4	4800	3	1	0	0	1	512	1444	No	MCC
Gold	6434H	8	3.7	4.1		4.1	22.5	195	4	4800	3	1	0	0	1	512	3070	No	MCC
Platinum	8470N	52	1.7	2.7		3.6	97.5	300	2	4800	4	4	4	4	0	128	9520	Yes	XCC
Platinum	8471N	52	1.8	2.8		3.6	97.5	300	1 1	4800	4	4	4	4	0	128	5171	Yes	XCC
Gold	6438N	32	2.0	2.7		3.6	60.0	205	2	4800	3	1	2	2	0	128	3351	Yes	MCC
Gold	6428N	32	1.8	2.5		3.8	60.0	185	2	4000	3	1	2	2	0	128	3200	Yes	MCC
Gold	6421N	32	1.8	2.6		3.6	60.0	185	1	4400	3	1	2	2	0	128	2368	Yes	MCC
Gold	5418N	24	1.8	2.6		3.8	45.0	165	2	4000	3	1	2	2	0	128	1664	Yes	MCC
Gold	5411N	24	1.9	2.8		3.9	45.0	165	1	4400	3	1	2	2	0	128	1232	Yes	MCC
Platinum	8468V	48	2.4	2.9		3.8	97.5	330	2	4800	3	1	1	1	1	128	7121	Yes	XCC
Platinum	8458P	44	2.7	3.2		3.8	82.5	350	2	4800	3	1	1	1	1	512	6759	Yes	XCC
Platinum	8461V	48	2.2	2.8		3.7	97.5	300	1	4800	0	1	1	1	1	128	4491	Yes	XCC
Gold	6438M	32	2.2	2.8		3.9	60.0	205	2	4800	3	1	0	0	1	128	3273	Yes	MCC
Gold	6454S	32	2.2	2.8		3.4	60.0	270	2	4800	4	4	4	4	0	128	3157	Yes	XCC
Gold	5416S	16	2.0	2.8		4.0	30.0	150	2	4400	3	1	2	2	0	128	944	Yes	MCC
Max	9480	56	1.9	2.6		3.5	112.5	350	2	4800	4	4	0	0	0	512	12980	No	XCC
Max	9470	52	2.0	2.7		3.5	105.0	350	2	4800	4	4	0	0	0	512	11590	No	XCC
Max	9468	48	2.1	2.6		3.5	105.0	350	2	4800	4	4	0	0	0	512	9900	No	XCC
Max	9460	40	2.2	2.7		3.5	97.5	350	2	4800	3	4	0	0	0	128	8750	No	XCC
Max	9462	32	2.7	3.1		3.5	75.0	350	2	4800	3	4	0	0	0	128	7995	No	XCC

© 2023 ServeTheHome.con

Intel Sapphire Rapids vs AMD Genoa

- Intel: Up to 56 cores, 112.4M cache, 350W TDP 2.0 / 3.0 / 3.8 GHz (base, allcores, fewcores)
- Intel "Max": HBM version similar but lower clock: 2.7 / 3.1 / 3.5, but 20% higher price
- AMD: Genoa up to 96 cores, 384MB cache, 360W, 2.4 3.7
- Genoa-X maybe 1152MB stacked cache
- Bergamo (Zen4c): up to 128c/socket (probably reduced L3)

How's our timing?

Let's assume we're close to getting federal approval

Then we need provincial match

Eventually there would be some call to vendors (RFP, etc)

These have taken 1-2 years in the past (writing RFP to running jobs)

Perhaps we can expect less delay since we're not starting from scratch

Still hard to tell whether Genoa and Sapphire Rapids are the target

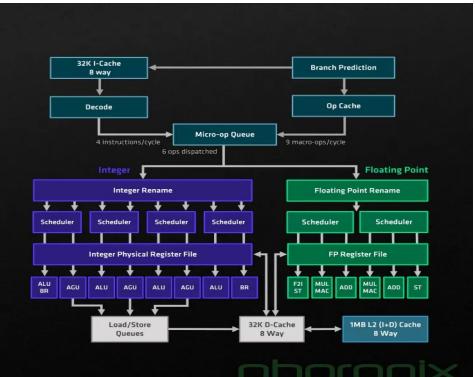
Intel cores

Performance

x86 Core

New

A Step Function in CPU Architecture Performance For the Next Decade of Compute


A significant IPC boost at high power efficiency

Zen4 architecture

"Zen 4" Microarchitecture Overview

- Based on "Zen 3" Microarchitecture
- Branch Prediction Improvements
 - Predict 2 taken branches per cycle
 - Larger L1 BTB
 - Larger L2 BTB
- Larger Op Cache
- Larger Instruction Retire Queue
- Larger Int/FP register file
- Deeper buffers throughout the core
- Power efficient AVX-512 support in the Floating-Point Unit
 - On 256b data-path
- Load/Store improvements
 - Fewer port conflicts
 - Larger L2 DTLB
- L2 Cache 1M, 8-way
- Large shared L3 cache

Does "general purpose" exist anymore?

- We have quite a few GPU consumers
- We also have quote a few low-memory users (100M/core)
- We also have at least some very high memory users
 - Big shared-memory/parallel users
 - Unruly/dynamic pipelines
- Do we need some non-MPI-tuned clusters?
 - 256 cores/node oughta be good enough for anyone!
 - Different world from our original 32c/node installs
- Still need IO
 - Only some users care about node-local though

Face off

https://wccftech.com/intel-4th-gen-xeon-cpus-official-sapphire-rapids-up-to-60-cores-8-socket-scalability-350w-tdp-17000-usd/

https://www.tomshardware.com/news/intel-sapphire-rapids-with-hbm-is-2x-faster-than-amds-milan-x

Hbm part about 1.2 GB/s for 64g vs 307.2 for 8x8x4.8

307.2/56=5.5

Amd 12x8x5.2=500

5.2 gb/s/core (96)

How timing effects product

We're not going to buy current products (AMD Milan, Intel Sapphire Ridge introduced this week).

- Intel in-package HBM?
 - But AMD has 12-channel memory
- AMD stacked cache (-X chips)
 - Which workloads benefit?
- Emphasis on cores? (AMD 128c/package)
 - Advantage to more scalable codes?