
Programming with Wt
A C++ library for developing stateful and highly
interactive web applications
A R M I N S O B H A N I (A S O B H A N I @ S H A R C N E T. C A)

S H A R C N E T

U N I V E R S I T Y O F O N TA R I O I N S T I T U T E O F T E C H N O L O G Y

J U N E 2 4 , 2 0 1 5

Outline
• Library Overview

• A typical web application developed using Wt

• Installation

• Hello World!

• Signals and Slots

• Interactive Hello World

• Widget Gallery

• Wt Variants

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 2

Library Overview

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 3

What is Wt (‘witty’)
 C++ library and application server for developing web applications

 Free and open source (http://www.webtoolkit.eu/)

 Widget-centric rather than page-centric web toolkit

 Brings desktop programming model to web development

 Similar in concept to Qt and wxWindows

 Supports fallback mechanism for maximum browser compatibility

 Mature, robust, feature reach, well documented and well supported

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 4

http://www.webtoolkit.eu/

Wt Features
at a Glance

Core Library

 Supports major browsers (Firefox/Gecko, Internet
Explorer, Safari, Chrome, Konqueror, Opera and
web crawlers)

 Develop and deploy on Unix/Linux/Mac or
Microsoft Windows (Visual Studio) environments

 Equal behavior with or without support for
JavaScript or Ajax

 Efficient rendering and (sub-) millisecond latency

 Integrated Unicode support and pervasive
localization

 Support for browser history navigation
(back/forward buttons and bookmarks)

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 5

Wt Features
at a Glance

Event Handling

 Type safe signal/slot API for responding to events

 Listens for keyboard, mouse, focus, scroll or
drag’n’drop events

 Automatically synchronizes form field data from
browser to server and tracks server-side changes
to be rendered in browser

 Integrate with JavaScript libraries

 Timed events and server-initiated updates
("server push")

 Uses plain HTML CGI, Ajax or WebSockets

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 6

Wt Features
at a Glance

Native Painting System

 Unified 2D painting API which uses the browsers
native (vector) graphics support (inline VML,
inline SVG, or HTML5 canvas), or renders to
common image formats (PNG, GIF, ...) or vector
formats (SVG, PDF)

 Unified GL-based 3D painting API which uses
WebGL in the browser or server-side OpenGL
(fallback)

 Rich set of 2D and 3D charting widgets

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 7

Wt Features
at a Glance

Built-in Security

 Kernel-level memory protection

 Supports encryption and server authentication using Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) through
HTTPS

 Enables continuous use of HTTPS through low bandwidth
requirements (fine-grained Ajax)

 Built-in Cross-Site Scripting (XSS) prevention

 Not vulnerable to Cross-site Request Forgery (CSRF)

 Not vulnerable to breaking the application logic by skipping to a
particular URL

 Session hijacking mitigation and risk prevention

 DoS mitigation

 A built-in authentication module implements best practices for
authentication, and supports third party identity providers
using OAuth 2.0, and (later) OpenID Connect

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 8

Wt Features
at a Glance

Object Relational Mapping Library (Wt::Dbo)

 Maps Many-to-One and Many-to-Many relations to STL-
compatible collections

 Provides schema generation (aka DDL: data definition
language) and CRUD operations (aka DML: data
manipulation language)

 Each session tracks dirty objects and provides a first-
level cache

 Flexible querying which can query individual fields,
objects, or tuples of any of these (using Boost.Tuple)

 Comes with Sqlite3, Firebird, MariaDB/MySQL and
PostgreSQL backends

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 9

Wt Features
at a Glance

Unit Testing

 Event handling code constructs and manipulates
a widget tree, which can easily be inspected by
test code

 Wt::Test::WTestEnvironment allows application to
be instantiated and events to be simulated in
absence of a browser

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 10

Wt Features
at a Glance

Deployment

 Built-in httpd (libwthttp)

 Simple, high-performance web application server (multi-
threaded, asynchronous I/O) based on the C++ asio library

 Supports the HTTP(S) and WebSocket(S) protocols

 Supports response chunking and compression

 Single process (convenient for development and debugging),
and embeddable in an existing application

 Available for both UNIX and Win32 platforms

 FastCGI (libfcgi)

• Integrates with most common web servers (apache, lighttpd)

• Different session-to-process mapping strategies

• Available only for UNIX platforms

 ISAPI

• Integrates with Microsoft IIS server

• Uses the ISAPI asynchronous API for maximum performance

• Available for the Win32 platform

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 11

Wt Licensing
OPEN SOURCE

GNU General Public License (GPL)

The source code must be available to
anyone who you give the application
to install the application on its own
server.

COMMERCIAL

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 12

Sample Public Web Application
Developed using Wt

http://pele.bsc.es

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 13

Installation

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 14

Installation

System Requirements (Mandatory)

 CMake cross-platform make utility
(>= 2.6 is preferred)

 boost C++ library (>= 1.41 is preferred)

 Boost.Date_Time

 Boost.Regex

 Boost.Program_options

 Boost.Signals

 Boost.Random

 Boost.System

 Boost.Thread

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 15

Installation

System Requirements (Optional)

 OpenSSL
For HTTPS protocol by the web client
(Http::Client) and web server (wthttp connector)

 Libharu
Rendering support for PDF documents

 GraphicsMagick
For outputs to raster images like PNG or GIF

 Pango
For text rendering of TrueType fonts in
WPdfImage and WRasterImage

 PostgreSQL, MySQL, and Firebird
For the ORM library (Wt::Dbo)

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 16

Installation

System Requirements (Connectors)

 FastCGI (Unix only)

• Apache 1 or 2, or any web server which supports
the FastCGI protocol

• Apache mod_fastcgi

 Built-in http deamon, wthttpd

• libz (for compression-over-HTTP)

• OpenSSL (for HTTPS support)

 ISAPI (Win32 only)

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 17

Installation

Unix

 Ubuntu

$ sudo apt-get install witty witty-dev witty-doc witty-dbg

witty-examples

 Others (Linux, MacOS)

$ git clone git://github.com/kdeforche/wt.git

$ cd wt

$ mkdir build

$ cd build

$ cmake ../

$ ccmake .

$ make

$ sudo make install

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 18

Installation

Windows

 Binary builds:

http://sourceforge.net/projects/witty/files/wt/

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 19

Hello World!

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 20

Qt
Hello World!

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 21

#include <QApplication>

#include <QPushButton>

int main(int argc, char **argv)

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

Wt

hello.cpp

#include <Wt/WApplication>

#include <Wt/WPushButton>

using namespace Wt;

class HelloApplication : public WApplication

{

public:

HelloApplication(const WEnvironment& env);

};

HelloApplication::HelloApplication(const WEnvironment& env)

: WApplication(env)

{

root()->addWidget(new WPushButton("Hello World!"));

}

WApplication* createApplication(const WEnvironment& env)

{

return new HelloApplication(env);

}

int main(int argc, char** argv)

{

return WRun(argc, argv, &createApplication);

}

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 22

Wt

Compiling / Linking

$ g++ hello.cpp -o hello -lwt -lwthttp

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 23

Wt

Program Options

$./hello --help

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 24

Wt

Running

$./hello --docroot . --http-address

0.0.0.0 --http-port 8080

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 25

Interactive Hello
World

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 26

Signals and Slots
SIGNAL

Message that an object can send

Some WPushButton signals:

clicked

doubleClicked

checked

unChecked

SLOT

Function used to respond to a
signal

It can be a/an:

Ordinary function

Member function

C++11’s Lamda

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 27

Connecting Signals to Slots
In order to respond to a signal, a slot must be connected to a signal:

• Simple Wt-way:

button->clicked().connect(this, &HelloApplication::greet);

• Using boost::bind():
nameEdit_->enterPressed().connect

(boost::bind(&HelloApplication::greet, this));

• Using C++11 Lambda:
button->clicked().connect(std::bind([=]

{ greeting->setText("Hello there, " + nameEdit->text()); }));

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 28

Wt
Signals/Slots

#include <Wt/WApplication>

#include <Wt/WPushButton>

#include <Wt/WLineEdit>

#include <Wt/WBreak>

#include <Wt/WText>

using namespace Wt;

class HelloApplication : public WApplication

{

public:

HelloApplication(const WEnvironment& env);

private:

WLineEdit* nameEdit_;

WText* greeting_;

void greet();

};

WApplication* createApplication(const WEnvironment& env)

{

return new HelloApplication(env);

}

int main(int argc, char** argv)

{

return WRun(argc, argv, &createApplication);

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 29

Wt
Signals/Slots

Wt and boost::bind() Version

HelloApplication::HelloApplication(const WEnvironment& env)

: WApplication(env)

{

setTitle("Hello World");

root()->addWidget(new WText("Your name, please ? "));

nameEdit_ = new WLineEdit(root());

nameEdit_->setFocus();

WPushButton* button = new WPushButton("Greet me.", root());

button->setMargin(5, Left);

root()->addWidget(new WBreak());

greeting_ = new WText(root());

button->clicked().connect(this, &HelloApplication::greet);

nameEdit_->enterPressed().connect

(boost::bind(&HelloApplication::greet, this));

}

void HelloApplication::greet()

{

greeting_->setText("Hello there, " + nameEdit_->text());

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 30

Wt
Signals/Slots

Compiling / Linking

$ g++ hello2.cpp -o hello2 -lwt –lwthttp

-lboost_signals-mt

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 31

Wt
Signals/Slots

C++11 Lambda 101

 Lambdas allow ad hoc functions to be

declared at block scope

 Lambda is a function object (functor)

 Simplified syntax

[...] (...) ->retTypeopt {...}

 Captures

 [=] outer scope is passed by value

 [&] outer scope is passed by reference

 Examples

 [] { return 42; }

 [] () -> float { return 3.14f; }

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 32

Wt
Signals/Slots

#include <Wt/WApplication>

#include <Wt/WPushButton>

#include <Wt/WLineEdit>

#include <Wt/WBreak>

#include <Wt/WText>

using namespace Wt;

class HelloApplication : public WApplication

{

public:

HelloApplication(const WEnvironment& env);

};

WApplication* createApplication(const WEnvironment& env)

{

return new HelloApplication(env);

}

int main(int argc, char** argv)

{

return WRun(argc, argv, &createApplication);

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 33

Wt
Signals/Slots

Lambda Version

HelloApplication::HelloApplication(const WEnvironment& env)

: WApplication(env)

{

setTitle("Hello World");

root()->addWidget(new WText("Your name, please ? "));

WLineEdit* nameEdit = new WLineEdit(root());

nameEdit->setFocus();

WPushButton* button = new WPushButton("Greet me.", root());

button->setMargin(5, Left);

root()->addWidget(new WBreak());

WText* greeting = new WText(root());

auto greet = [=]

{ greeting->setText("Hello there, " + nameEdit->text()); };

nameEdit->enterPressed().connect(std::bind(greet));

button->clicked().connect(std::bind(greet));

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 34

Wt
Signals/Slots

Compiling / Linking

$ g++ -std=c++11 hello3.cpp -o hello3 -lwt

–lwthttp -lboost_signals-mt

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 35

Widget Gallery

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 39

Wt Variants

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 40

Native Variants / Bindings

JWt – a native Java version of Wt
http://www.webtoolkit.eu/jwt

WtRuby – Ruby bindings to Wt
http://github.com/rdale/wtruby/tr
ee/master

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 41

http://www.webtoolkit.eu/jwt
http://github.com/rdale/wtruby/tree/master

