
Programming with Wt
A C++ library for developing stateful and highly
interactive web applications
A R M I N S O B H A N I (A S O B H A N I @ S H A R C N E T. C A)

S H A R C N E T

U N I V E R S I T Y O F O N TA R I O I N S T I T U T E O F T E C H N O L O G Y

J U N E 2 4 , 2 0 1 5

Outline
• Library Overview

• A typical web application developed using Wt

• Installation

• Hello World!

• Signals and Slots

• Interactive Hello World

• Widget Gallery

• Wt Variants

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 2

Library Overview

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 3

What is Wt (‘witty’)
 C++ library and application server for developing web applications

 Free and open source (http://www.webtoolkit.eu/)

 Widget-centric rather than page-centric web toolkit

 Brings desktop programming model to web development

 Similar in concept to Qt and wxWindows

 Supports fallback mechanism for maximum browser compatibility

 Mature, robust, feature reach, well documented and well supported

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 4

http://www.webtoolkit.eu/

Wt Features
at a Glance

Core Library

 Supports major browsers (Firefox/Gecko, Internet
Explorer, Safari, Chrome, Konqueror, Opera and
web crawlers)

 Develop and deploy on Unix/Linux/Mac or
Microsoft Windows (Visual Studio) environments

 Equal behavior with or without support for
JavaScript or Ajax

 Efficient rendering and (sub-) millisecond latency

 Integrated Unicode support and pervasive
localization

 Support for browser history navigation
(back/forward buttons and bookmarks)

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 5

Wt Features
at a Glance

Event Handling

 Type safe signal/slot API for responding to events

 Listens for keyboard, mouse, focus, scroll or
drag’n’drop events

 Automatically synchronizes form field data from
browser to server and tracks server-side changes
to be rendered in browser

 Integrate with JavaScript libraries

 Timed events and server-initiated updates
("server push")

 Uses plain HTML CGI, Ajax or WebSockets

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 6

Wt Features
at a Glance

Native Painting System

 Unified 2D painting API which uses the browsers
native (vector) graphics support (inline VML,
inline SVG, or HTML5 canvas), or renders to
common image formats (PNG, GIF, ...) or vector
formats (SVG, PDF)

 Unified GL-based 3D painting API which uses
WebGL in the browser or server-side OpenGL
(fallback)

 Rich set of 2D and 3D charting widgets

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 7

Wt Features
at a Glance

Built-in Security

 Kernel-level memory protection

 Supports encryption and server authentication using Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) through
HTTPS

 Enables continuous use of HTTPS through low bandwidth
requirements (fine-grained Ajax)

 Built-in Cross-Site Scripting (XSS) prevention

 Not vulnerable to Cross-site Request Forgery (CSRF)

 Not vulnerable to breaking the application logic by skipping to a
particular URL

 Session hijacking mitigation and risk prevention

 DoS mitigation

 A built-in authentication module implements best practices for
authentication, and supports third party identity providers
using OAuth 2.0, and (later) OpenID Connect

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 8

Wt Features
at a Glance

Object Relational Mapping Library (Wt::Dbo)

 Maps Many-to-One and Many-to-Many relations to STL-
compatible collections

 Provides schema generation (aka DDL: data definition
language) and CRUD operations (aka DML: data
manipulation language)

 Each session tracks dirty objects and provides a first-
level cache

 Flexible querying which can query individual fields,
objects, or tuples of any of these (using Boost.Tuple)

 Comes with Sqlite3, Firebird, MariaDB/MySQL and
PostgreSQL backends

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 9

Wt Features
at a Glance

Unit Testing

 Event handling code constructs and manipulates
a widget tree, which can easily be inspected by
test code

 Wt::Test::WTestEnvironment allows application to
be instantiated and events to be simulated in
absence of a browser

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 10

Wt Features
at a Glance

Deployment

 Built-in httpd (libwthttp)

 Simple, high-performance web application server (multi-
threaded, asynchronous I/O) based on the C++ asio library

 Supports the HTTP(S) and WebSocket(S) protocols

 Supports response chunking and compression

 Single process (convenient for development and debugging),
and embeddable in an existing application

 Available for both UNIX and Win32 platforms

 FastCGI (libfcgi)

• Integrates with most common web servers (apache, lighttpd)

• Different session-to-process mapping strategies

• Available only for UNIX platforms

 ISAPI

• Integrates with Microsoft IIS server

• Uses the ISAPI asynchronous API for maximum performance

• Available for the Win32 platform

 Core Library

 Event Handling

 Native Painting System

 Built-in Security

 Object Relational
Mapping Library

 Unit Testing

 Deployment

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 11

Wt Licensing
OPEN SOURCE

GNU General Public License (GPL)

The source code must be available to
anyone who you give the application
to install the application on its own
server.

COMMERCIAL

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 12

Sample Public Web Application
Developed using Wt

http://pele.bsc.es

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 13

Installation

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 14

Installation

System Requirements (Mandatory)

 CMake cross-platform make utility
(>= 2.6 is preferred)

 boost C++ library (>= 1.41 is preferred)

 Boost.Date_Time

 Boost.Regex

 Boost.Program_options

 Boost.Signals

 Boost.Random

 Boost.System

 Boost.Thread

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 15

Installation

System Requirements (Optional)

 OpenSSL
For HTTPS protocol by the web client
(Http::Client) and web server (wthttp connector)

 Libharu
Rendering support for PDF documents

 GraphicsMagick
For outputs to raster images like PNG or GIF

 Pango
For text rendering of TrueType fonts in
WPdfImage and WRasterImage

 PostgreSQL, MySQL, and Firebird
For the ORM library (Wt::Dbo)

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 16

Installation

System Requirements (Connectors)

 FastCGI (Unix only)

• Apache 1 or 2, or any web server which supports
the FastCGI protocol

• Apache mod_fastcgi

 Built-in http deamon, wthttpd

• libz (for compression-over-HTTP)

• OpenSSL (for HTTPS support)

 ISAPI (Win32 only)

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 17

Installation

Unix

 Ubuntu

$ sudo apt-get install witty witty-dev witty-doc witty-dbg

witty-examples

 Others (Linux, MacOS)

$ git clone git://github.com/kdeforche/wt.git

$ cd wt

$ mkdir build

$ cd build

$ cmake ../

$ ccmake .

$ make

$ sudo make install

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 18

Installation

Windows

 Binary builds:

http://sourceforge.net/projects/witty/files/wt/

• System Requirements
 Mandatory

 Optional

 Connectors

• Unix

• Windows

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 19

Hello World!

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 20

Qt
Hello World!

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 21

#include <QApplication>

#include <QPushButton>

int main(int argc, char **argv)

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

Wt

hello.cpp

#include <Wt/WApplication>

#include <Wt/WPushButton>

using namespace Wt;

class HelloApplication : public WApplication

{

public:

HelloApplication(const WEnvironment& env);

};

HelloApplication::HelloApplication(const WEnvironment& env)

: WApplication(env)

{

root()->addWidget(new WPushButton("Hello World!"));

}

WApplication* createApplication(const WEnvironment& env)

{

return new HelloApplication(env);

}

int main(int argc, char** argv)

{

return WRun(argc, argv, &createApplication);

}

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 22

Wt

Compiling / Linking

$ g++ hello.cpp -o hello -lwt -lwthttp

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 23

Wt

Program Options

$./hello --help

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 24

Wt

Running

$./hello --docroot . --http-address

0.0.0.0 --http-port 8080

• hello.cpp

• Compiling / Linking

• Program Options

• Running

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 25

Interactive Hello
World

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 26

Signals and Slots
SIGNAL

Message that an object can send

Some WPushButton signals:

clicked

doubleClicked

checked

unChecked

SLOT

Function used to respond to a
signal

It can be a/an:

Ordinary function

Member function

C++11’s Lamda

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 27

Connecting Signals to Slots
In order to respond to a signal, a slot must be connected to a signal:

• Simple Wt-way:

button->clicked().connect(this, &HelloApplication::greet);

• Using boost::bind():
nameEdit_->enterPressed().connect

(boost::bind(&HelloApplication::greet, this));

• Using C++11 Lambda:
button->clicked().connect(std::bind([=]

{ greeting->setText("Hello there, " + nameEdit->text()); }));

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 28

Wt
Signals/Slots

#include <Wt/WApplication>

#include <Wt/WPushButton>

#include <Wt/WLineEdit>

#include <Wt/WBreak>

#include <Wt/WText>

using namespace Wt;

class HelloApplication : public WApplication

{

public:

HelloApplication(const WEnvironment& env);

private:

WLineEdit* nameEdit_;

WText* greeting_;

void greet();

};

WApplication* createApplication(const WEnvironment& env)

{

return new HelloApplication(env);

}

int main(int argc, char** argv)

{

return WRun(argc, argv, &createApplication);

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 29

Wt
Signals/Slots

Wt and boost::bind() Version

HelloApplication::HelloApplication(const WEnvironment& env)

: WApplication(env)

{

setTitle("Hello World");

root()->addWidget(new WText("Your name, please ? "));

nameEdit_ = new WLineEdit(root());

nameEdit_->setFocus();

WPushButton* button = new WPushButton("Greet me.", root());

button->setMargin(5, Left);

root()->addWidget(new WBreak());

greeting_ = new WText(root());

button->clicked().connect(this, &HelloApplication::greet);

nameEdit_->enterPressed().connect

(boost::bind(&HelloApplication::greet, this));

}

void HelloApplication::greet()

{

greeting_->setText("Hello there, " + nameEdit_->text());

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 30

Wt
Signals/Slots

Compiling / Linking

$ g++ hello2.cpp -o hello2 -lwt –lwthttp

-lboost_signals-mt

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 31

Wt
Signals/Slots

C++11 Lambda 101

 Lambdas allow ad hoc functions to be

declared at block scope

 Lambda is a function object (functor)

 Simplified syntax

[...] (...) ->retTypeopt {...}

 Captures

 [=] outer scope is passed by value

 [&] outer scope is passed by reference

 Examples

 [] { return 42; }

 [] () -> float { return 3.14f; }

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 32

Wt
Signals/Slots

#include <Wt/WApplication>

#include <Wt/WPushButton>

#include <Wt/WLineEdit>

#include <Wt/WBreak>

#include <Wt/WText>

using namespace Wt;

class HelloApplication : public WApplication

{

public:

HelloApplication(const WEnvironment& env);

};

WApplication* createApplication(const WEnvironment& env)

{

return new HelloApplication(env);

}

int main(int argc, char** argv)

{

return WRun(argc, argv, &createApplication);

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 33

Wt
Signals/Slots

Lambda Version

HelloApplication::HelloApplication(const WEnvironment& env)

: WApplication(env)

{

setTitle("Hello World");

root()->addWidget(new WText("Your name, please ? "));

WLineEdit* nameEdit = new WLineEdit(root());

nameEdit->setFocus();

WPushButton* button = new WPushButton("Greet me.", root());

button->setMargin(5, Left);

root()->addWidget(new WBreak());

WText* greeting = new WText(root());

auto greet = [=]

{ greeting->setText("Hello there, " + nameEdit->text()); };

nameEdit->enterPressed().connect(std::bind(greet));

button->clicked().connect(std::bind(greet));

}

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 34

Wt
Signals/Slots

Compiling / Linking

$ g++ -std=c++11 hello3.cpp -o hello3 -lwt

–lwthttp -lboost_signals-mt

• hello2.cpp
 Additional Headers

 New Members

 Wt Connect

 boost:bind()

 Compiling / Linking

• hello3.cpp
 C++11 Lambda 101

 Additional Headers

 Lambda in Action

 Compiling / Linking

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 35

Widget Gallery

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 39

Wt Variants

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 40

Native Variants / Bindings

JWt – a native Java version of Wt
http://www.webtoolkit.eu/jwt

WtRuby – Ruby bindings to Wt
http://github.com/rdale/wtruby/tr
ee/master

June 24, 2015 PROGRAMMING WITH WT - ARMIN SOBHANI 41

http://www.webtoolkit.eu/jwt
http://github.com/rdale/wtruby/tree/master

