
SHARCNET: Tyler Collins

Cython: A First Look

SHARCNET: General Interest Webinar

Tyler Collins
HPC Analyst, Brock University



SHARCNET: Tyler Collins

Outline: Today’s Aim

● Introduce Cython

● Get everyone on the same page and explain some core concepts

● Live demo

● Quick recap

● Question period

Hopefully at the end of this talk, you will use Cython in your own projects!

This webinar and its materials can be found on GitHub, here:

https://github.com/Andesha/sharcnet-cython

2

https://github.com/Andesha/sharcnet-cython


SHARCNET: Tyler Collins

Some Python Commentary

● Python sure is awesome - but awesome isn’t free!

● Even other languages have this narrative:
○ “There are no zero cost abstractions!” - Chandler Carruth, 2019

● “Each abstraction must provide more benefit than cost"
○ From the same talk as above

● What happens when you really need your Python to be faster?
○ You suffer presumably...

3

https://www.youtube.com/watch?v=rHIkrotSwcc


SHARCNET: Tyler Collins

What is Cython?

● Superset of Python

● Recover the C-like performance we gave away

● Python is compiled into C/C++, and then called as per usual
○ No barriers

By using annotations and hints - we can generate good C/C++ code to call from Python that is orders of 

magnitude faster than vanilla Python!

4



SHARCNET: Tyler Collins 5



SHARCNET: Tyler Collins

Getting on the Same Page

Just for so we are all working from similar assumptions there will be some quick notes on the following:

● Types and type systems

● Compiled vs Interpreted

● Complexity

We’ll be doing a bunch of sweeping generalizations - try not to cringe if you’re an expert!

6



SHARCNET: Tyler Collins

Useful Definitions: Types and Type Systems

● What’s a type?
○ A known representation of data that has associated operations
○ Integer, string, boolean, etc

● Dynamically typed
○ Verify at run time (on the fly)
○ Can see a lot of runtime errors
○ Runtime overhead due to figuring things out
○ Pretty easy to write though!

● Statically typed
○ Variables and functions have “signatures” which define what types they operate on
○ Mixing and matching between types is not strictly allowed (mostly)
○ Advantages include things like syntax/grammar checking and error catching

7



SHARCNET: Tyler Collins

Useful Definitions: Compiled vs Interpreted

We all know compiled is faster… but why?

Short answer:

● Compiled code is running natively on a machine from a static source (perhaps a binary)
○ Can be highly optimized for known patterns or systems

● Interpreters require layers of execution before results are seen
○ Interpret to some bytecode, possibly more steps
○ Overhead for access variables
○ All of this must be done on the fly - slowly!

8



SHARCNET: Tyler Collins

Useful Definitions: Complexity

● Not comparing formally as something like: O(n)
● However… what’s list access look like in Python?

○ Make sure the variable indexing the list is numeric
○ Determine if it’s within bounds
○ If negative, do some wrap around magic
○ Sometimes even more!

● What does array access look like in something like C?
○ Read the memory based on some offset
○ … that’s it (mostly)

● Often there is large complexity overhead that is abstracted away for you in Python

9



SHARCNET: Tyler Collins

How Does Cython Work?

We give back some of our abstractions!

● Compilation
○ Sometimes we can take advantage of specific system optimizations too!

● Annotation of types
○ You’ll be surprised how much this helps

● Complexity
○ Recall: what’s in a list anyway? Shouldn’t there be something better?

10



SHARCNET: Tyler Collins

Live Demo

Some quick details

● Reference material is on GitHub here: 
○ https://github.com/Andesha/sharcnet-cython

● We will be using Jupyter lab
○ The starting notebook and a completed notebook are on GitHub

● If we have time, we’ll explore compiling code on Compute Canada systems

● Our test case will be a prime sieve!

11

https://github.com/Andesha/sharcnet-cython


SHARCNET: Tyler Collins

Practical Example: Prime Sieving

Canonical example is the Sieve of Eratosthenes

Example procedure:

1. Create a list of integers 2 -> N

2. Start at 2, all factors of it are marked in the list as non-prime (false)

3. Go to next true index

4. Mark all factors of it in the list as false

5. Go to step 3

6. All remaining true indices are prime numbers

12

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes


SHARCNET: Tyler Collins

Practical Example: Prime Sieving
Taken from: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

SKopp at German Wikipedia / CC BY-SA 
(http://creativecommons.org/licenses/by-sa/3.0/)

13



SHARCNET: Tyler Collins 14

DEMO TIME - WHAT COULD GO WRONG? :)



SHARCNET: Tyler Collins

Post Demo Discussion

Hopefully at this point, you are convinced!

Some external links for standard questions:

● Main documentation, here
○ This is where you find your type definitions and more

● Another Cython example using prime numbers, here

● Type memory views, here
○ Includes details on NxN arrays and different kinds of numpy interactions

● Compute Canada Python documentation, here
○ Remember our systems are slightly different!

15

https://cython.readthedocs.io/en/latest/index.html
https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html#primes
https://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html
https://docs.computecanada.ca/wiki/Python


SHARCNET: Tyler Collins

Takeaways

● Python is super convenient, but sacrifices speed to get there

● We can recover a lot of this speed with Cython

● There’s some awesome tools out there to help you profile your code

● Compiling for use on the Compute Canada systems is easy

Thanks very much!

Questions?

16


