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Example 1: Rounding error. The number 0.01 can’t be represented exactly but approximated in base-2 
number systems used on computers, so, if our input data contain numbers such as 0.01, we immediately have 
an error. How much is this error? The following C code shows the result

#include <stdio.h>

int main()
{
    float x = 0.01;

    printf("0.01=%20.18f\n", x);
}

0.01=0.009999999776482582

Let’s see how this approximation comes from.
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Example 1: (cont’d). We use the following julia code to see the binary representation of 0.01 in single 
precision: 1 sign bit, 8 bit exponent and 23 bit fraction

julia> x=Float32(0.01f0)

0.01f0

julia> bitstring(x)

"00111100001000111101011100001010"

We convert this by hand, with the math

Exponent minus bias: e = 26 + 25 + 24 + 23 − 127 

Fraction: f = 2−2+2−6+2−7+2−8+2−9+2−11+2−13+2−14+2−15+2−20+2−22  

Normalized form: (1 + f)2e = 0.009999999776482582 

Error: 0.01 − 0.009999999776482582 = 2.23517418 × 10−10 

This kind of errors are inevitable. Keep in mind, however, they can be accumulated and magnified.

s exponent mantissa
IEEE 754 floating point number representation for the binary form 
(1+f)× 2e  in single precision: 1 sign bit, 8 bits for exponent and 23 
bits for fraction.

8 231
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Example 2: Rounding errors in input/output data. Often we use the output from one program and read it in as 
the input for another. If we are not careful with the format of data stored, we will bring in errors. In the following 
a is written to a text file a.dat and then read into b, we see errors

    a(out)     b(in)            err
  0.315349  0.315349    -8.9407e-08
  0.907212  0.907212    4.76837e-07
  0.510926  0.510926    4.76837e-07
   0.86706   0.86706    1.78814e-07
  0.634931  0.634931   -1.19209e-07
  0.119563  0.119563   -2.23517e-07
   0.31076   0.31076    4.76837e-07
  0.854888  0.854888   -1.78814e-07
  0.446859  0.446859   -2.68221e-07
  0.810167  0.810167    5.96046e-08

    fp = fopen("a.dat","w+");
    for (int i=0; i<10; i++)
        fprintf(fp,"%f\n", a[i]);
    fclose(fp);

    fp = fopen("a.dat","r");
    printf("%10s%10s%15s\n", "a(out)", "b(in)", "err");
    for (int i=0; i<10; i++) {
        fscanf(fp,"%f", &b[i]);
        err[i] = a[i] - b[i];
        printf("%10g%10g%15g\n", a[i], b[i], err[i]);
    }
    fclose(fp);
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Example 2: (cont’d). One remedy is to save the data in full precision with maximum digits defined by the 
standards. These are defined in float.h in C and limits in C++ 

         a(out)          b(in)       err
    0.315348923    0.315348923         0
    0.907212496    0.907212496         0
    0.510926485    0.510926485         0
    0.867060184    0.867060184         0
    0.634930909    0.634930909         0
    0.119562775    0.119562775         0
    0.310760468    0.310760468         0
    0.854887843    0.854887843         0
    0.446858734    0.446858734         0
    0.810167074    0.810167074         0

    fp = fopen("a.dat","w+");
    for (int i=0; i<10; i++)
        fprintf(fp,"%.*g\n", FLT_DECIMAL_DIG, a[i]);
    fclose(fp);

    fp = fopen("a.dat","r");
    printf("%10s%10s%15s\n", "a(out)", "b(in)", "err");
    for (int i=0; i<10; i++) {
        fscanf(fp,"%f", &b[i]);
        err[i] = a[i] - b[i];
        printf("%10g%10g%15g\n", a[i], b[i], err[i]);
    }
    fclose(fp);
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Example 2: (cont’d). Another way is to save the data in full precision using hex decimal format, supported with 
%a specifier in C, hexfloat() in C++ and EX edit descriptor in Fortran 2018 (currently supported only by the 
intel compiler).

         a(out)          b(in)       err
  0x1.42ead4p-2  0x1.42ead4p-2         0
  0x1.d07e28p-1  0x1.d07e28p-1         0
  0x1.059828p-1  0x1.059828p-1         0
   0x1.bbef5p-1   0x1.bbef5p-1         0
  0x1.4515aap-1  0x1.4515aap-1         0
  0x1.e9baa8p-4  0x1.e9baa8p-4         0
  0x1.3e37fep-2  0x1.3e37fep-2         0
  0x1.b5b3dcp-1  0x1.b5b3dcp-1         0
  0x1.c99556p-2  0x1.c99556p-2         0
  0x1.9ece38p-1  0x1.9ece38p-1         0

    fp = fopen("a.dat","w+");
    for (int i=0; i<10; i++)
        fprintf(fp,"%a\n", a[i]);
    fclose(fp);

    fp = fopen("a.dat","r");
    printf("%10s%10s%10s\n", "a(out)", "b(in)", "err");
    for (int i=0; i<10; i++) {
        fscanf(fp,"%a", &b[i]);
        err[i] = a[i] - b[i];
        printf("%10g%10g%10g\n", a[i], b[i], err[i]);
    }
    fclose(fp);
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Example 2: (cont’d). Remarks

 Saving data in maximum number of digits is the simplest way to preserve the accuracy of data. One must 
pay attention to the format for the portability between languages.

 Hex decimal form keeps the exact representation of data, it is hence more reliable. However, it may not 
be generally portable between languages, for instance, Fortran code can’t read the data output in 
hexfloat by C/C++, and vice versa.

 C/C++ uses normalized form, Fortran doesn’t (as of 2018 standard).
 The EX descriptor in Fortran for hex decimal isn’t yet supported as of GCC 14.
 Binary form or more network portable forms are encouraged to be used for data I/O.
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Example 3: Incorrect odometer1. The following C code shows a surprise
#include <stdio.h>
int main() {
    float meters = 0.0f;
    int iterations = 100000000;
    for (int i = 0; i < iterations; i++) {
        meters += 0.01;
    }
    printf("Expected: %f km\n", 0.01 * iterations / 1000 );
    printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$ ./a.out
Expected: 1000.000000 km
Got: 262.144012 km 

1. https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/
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Example 3: Incorrect odometer1(cont’d). The cause is during additions, two operands are out of range. A 
simple fix is to use double precision 

1. https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

#include <stdio.h>
int main() {
    float meters = 0.0f;
    int iterations = 100000000;
    for (int i = 0; i < iterations; i++) {
        meters += 0.01;
    }
    printf("Expected: %f km\n", 0.01 * iterations / 1000 );
    printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$ ./a.out
Expected: 1000.000000 km
Got: 262.144012 km 

#include <stdio.h>
int main() {
    double meters = 0.0f;
    int iterations = 100000000;
    for (int i = 0; i < iterations; i++) {
        meters += 0.01;
    }
    printf("Expected: %f km\n", 0.01 * iterations / 1000 );
    printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$ ./a.out
Expected: 1000.000000 km
Got: 1000.000001 km 



Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025 

12/39Examples
Example 3: Incorrect odometer1(cont’d). Yet another way, still using float, but more complex – Kahan sum 

1. https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

#include <stdio.h>
int main() {
    float meters = 0.0f;
    int iterations = 100000000;
    for (int i = 0; i < iterations; i++) {
        meters += 0.01;
    }
    printf("Expected: %f km\n", 0.01 * iterations / 1000 );
    printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$ ./a.out
Expected: 1000.000000 km
Got: 262.144012 km 

#include <stdio.h>
int main() {
    float meters = 0.0f;
    int iterations = 100000000;
    volatile float c = 0.0f, t, y; // To avoid compiler optimization
    for (int i = 0; i < iterations; i++) {
        y = 0.01f - c;
        t = meters + y;
        c = (t - meters) - y; // ≡ 0 algebraically
        meters = t; // ≡ meters + 0.01f algebraically
    }
    printf("Expected: %f km\n", 0.01 * iterations / 1000 );
    printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$ ./a.out
Expected: 1000.000000 km
Got: 1000.000000 km 
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Example 4: Solving an ill-conditioned problem A*x = b, where

We construct the right hand side (RHS) b by multiplying matrix A by a unit vector. 

We now make changes first in b and then in A and examine the solutions in MATLAB

1) Change b by less than 0.001, keep A the same

2) Change the elements in A by less than 0.001, keep b the same

Small changes in the input lead to large changes in the output.
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Example 4: Solving an ill-conditioned problem A*x = b (cont’d). We see two solutions, corresponding to the 
tiny differences in the RHS and the matrix representation:

This raises the questions, especially when we face real problems:
 How do we know the solution we have obtained is correct?
 How reliable is the computed solution, if we have a small change in the input and we see a large change 

in the output?
 etc.
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Example 5: Solving system of linear equations H*x = b with Hilbert matrix, with

For example, for n=6*



Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025 

16/39Examples
Example 5: Solving system of linear equations H*x = b with Hilbert matrix (cont’d). Hilbert matrix is ill-
conditioned, solving the linear system with an ill-conditioned matrix becomes problematic when n is large.

We construct the RHS b by multiplying
H by a unit vector x, i.e. b = H*x.

We then solve H*x = b and see if we 
get the solution the same, or “close” to 
the the unit vector.

Note: One may see in the literature the advice that Hilbert 
matrix is not a good test matrix because it is ill-
conditioned. We use it intentionally for the purpose of 
testing the features of MPLAPACK.
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Example 5: Solving system of linear equations H*x = b with Hilbert matrix (cont’d). Hilbert matrix is ill-
conditioned, solving the linear system via LU decomposition may become problematic when n becomes large.

Solving H * x = b of 
size 10

Solution:
          [ 1 ]
              1
      0.9999999
       1.000003
      0.9999758
       1.000116
       0.999682
       1.000522
      0.9994947
       1.000266
      0.9999415

Solving H * x = b of 
size 11

Solution:
          [ 1 ]
              1
      0.9999982
       1.000047
      0.9994746
       1.003154
      0.9888376
        1.02444
      0.9665197
       1.027928
      0.9870307
        1.00257

Solving H * x = b of 
size 13

Solution:
          [ 1 ]
      0.9999999
       1.000013
      0.9994794
         1.0088
      0.9199938
       1.438536
     -0.5437174
        4.60748
      -4.656326
       6.882018
      -2.890713
       2.481753
      0.7526833

Solving H * x = b of 
size 50

Solution:
          [ 1 ]
       1.000001
       0.999892
       1.004564
      0.9173155
       1.790654
      -3.380056
       15.46936
      -26.46469
       25.66145
       1.871251
       -15.6143
       15.50733
      -30.80703
       22.92981
       52.54445
      -54.27587
        ,,, ,,,

When n>=12, one will get warning: the matrix is singular to machine precision.
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Example 5: Solving system of linear equations H*x = b with Hilbert matrix, revisited. The RHS b is built by 
multiplying H by a unit vector x. The solution, however, deviates wildly when n gets bigger.

Solving H * x = b of size 10

Solution:
          [ 1 ]
              1
      0.9999999
       1.000003
      0.9999758
       1.000116
       0.999682
       1.000522
      0.9994947
       1.000266
      0.9999415
||dx||_2/||x||_2 = 0.00026777989621392767

Solving H * x = b of size 12

Solution:
          [ 1 ]
              1
      0.9999867
       1.000421
      0.9942459
       1.042286
      0.8138542
       1.519414
     0.05870534
       2.104559
      0.1904543
       1.336781
      0.9392925
||dx||_2/||x||_2 = 0.51517152763376584
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Example 5: Solving system of linear equations H*x = b with Hilbert matrix (cont’d)

 The inverse of Hilbert matrix has a closed form containing integer values. But when n >= 12, some of its 
values fall beyond what can be represented exactly in IEEE double precision. 

 This means one can’t get accurate answer by the multiplication of the inverse matrix and the right RHS.

The following is output of the 9th to 13th columns of the inverse of an Hilbert matrix of order 13 in julia*

          1891439550//1          -1849407560//1          1160082924//1          -421848336//1           67603900//1
       -285985659960//1         282454972800//1       -178652770296//1         65418941952//1       -10546208400//1
      10724462248500//1      -10680328659000//1       6802547792040//1      -2505779115840//1       406029023400//1
    -174769014420000//1      175266931840000//1    -112296027043200//1      41577371996160//1     -6767150390000//1
    1542672646515000//1    -1556276461740000//1    1002242041360560//1    -372734643481200//1     60904353510000//1
   -8251094840788800//1     8366542258314240//1   -5412107023347024//1    2020660279013376//1   -331319683094400//1
   28450997395460640//1   -28977867717598800//1   18818568211899456//1   -7050482856248832//1   1159618890830400//1
  -65321167489578000//1    66791723910912000//1  -43525940081944320//1   16357726068203520//1  -2697888848054400//1
  100863567447142500//1  -103492384705710000//1   67651337791837800//1  -25495049614114080//1   4215451325085000//1
 -103492384705710000//1   106518477825760000//1  -69822862214785680//1   26379357625420800//1  -4371579151940000//1
   67651337791837800//1   -69822862214785680//1   45883595169716304//1  -17374404181470336//1   2885242240280400//1
  -25495049614114080//1    26379357625420800//1  -17374404181470336//1    6592659294154752//1  -1096868950850400//1
    4215451325085000//1    -4371579151940000//1    2885242240280400//1   -1096868950850400//1    182811491808400//1

* This matrix is generated in julia with SpecialMatrices package. The values are represented in Rational format.
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Example 5: Using MPLAPACK for size n=13 with precision of around 30 digits, we are able to compute the 
solution with a relative error in the order of magnitude of 10-14.

Solving H * x = b with size 13

sol:
+1.0000000000000000000019833737841857494393889254788727991192509581e+00
+9.9999999999999999969242948730919752968953432873454178776142717289e-01
+1.0000000000000000117738894868829409690023263331778447524696845639e+00
+9.9999999999999980482308732723047657239344617743593409759294762806e-01
+1.0000000000000017478000875727512234659815082267170939766534262794e+00
+9.9999999999999053604236152396519010801404747532380490099204045640e-01
+1.0000000000000329819971730344280395815656306243408600267644562032e+00
+9.9999999999992356977521657943478950632608591484138707528809414393e-01
+1.0000000000001189860591369017227118683853904575954407447490462912e+00
+9.9999999999987702381277727144025979229541132918715740627874782875e-01
+1.0000000000000809103848263016443933566861115827148172915256330029e+00
+9.9999999999996932995554366055196135877841182573019827780095789005e-01
+1.0000000000000050978832457269717364766462322147851017362400402599e+00
||dx||_2/||x||_2 = 5.8055680326398419e-14
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MPI reduction for sum
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Example 6: Calculate the summation of an array 

Our test: Generate an array a of N  random numbers (uniformly distributed on [0,1]) in single precision (so 
easy to see the effect), then calculate the sum with a loop in the following pseudo code:

s = 0;

for i in 1 to N

    s += a[i];

end
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Example 6: Summation of an array (cont’d). We first 
calculate the sum in two ways:

1) Sequential

s = 0;
for i=1:N
    s += a[i];
end

2) Alternating

s = 0;
for i=odd numbers
    s += a[i];
end
for i=even numbers
    s += a[i];
end

We know with floating point arithmetic, we lose the 
associativity. Looking at two answers

Sum of a (seq): 500156.750000

Sum of a (alt): 500148.468750

Which one is more close to the truth? How significant 
is the difference to your work?



Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025 

24/39MPI reduction for sum
Example 6: Summation of an array (cont’d). We 
calculate the sum in two ways:

1) Sequential

s = 0;
for i=1:N
    s += a[i];
end

2) Alternating

s = 0;
for i=odd numbers
    s += a[i];
end
for i=even numbers
    s += a[i];
end

We know with floating point arithmetic, we lose the 
associativity. Looking at two answers

Sum of a (seq): 500156.750000

Sum of a (alt): 500148.468750

Which one is more close to the truth? 

To see the answer “close to the truth”, we perform the 
summation in double precision and get

Sum of a (in double precision): 500144.934192

This is what we trust (as an accuracy of more digits is 
guaranteed by IEEE standard).

Can we get the same accuracy with single precision?
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Example 6: Summation of an array (cont’d). We calculate the sum in single precision using the Kahan 
summation. We chose the Kahan-Babuška-Neumaier algorithm

s = 0.0, c = 0.0;
for i=1:N
    t = s + a[i];
    if (|s| >= |a[i]|)
        c += (s - t) + a[i]; // Algebraically c ≡ 0, but in floating point arithmetic it is not
    else
        c += (a[i] - t) + s; // Algebraically c ≡ 0, but in floating point arithmetic it is not
    s = t;
end
s += c;

We get the answer

Sum of a (Kahan-Babuška-Neumaier compensated): 500144.937500

compared with the answer in double precision

Sum of a (in double precision): 500144.934192
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Example 7: Calculate the summation of an N element array a 

distributed across p processes

The procedure
 Each rank computes the local sum si,  i=1, ,p… .
 An MPI reduce is called on the local sum to get aggregated global sum.
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Example 7: Using reduce to get sum across processes with MPI

 Each process holds one value.

+ + ... +

...
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Example 7: Calculate the summation of an N element array a 

distributed across p processes. The results with N=1,000,000

 Number of processes Summation 

1 500156.75

2 500136.53

4 500144.43

8 500143.71

16 500145.28

64 500144.84
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Example 7: Calculate the summation of an N element array a 

distributed across p processes with Kahan-Babuška-Neumaier compensation algorithm

The procedure
 Each rank computes the local sum si,  i=1, ,p…  with KBN algorithm
 An MPI reduce with a customized sum operation with KBN procedure is called on the local sum to get 

aggregated global sum.
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Example 7: Using reduce to get sum across processes with MPI

 Take two values from each process: the local sum and the compensation to feed KBN procedure
 Need a customized sum operator to perform the sum

+ + ... +

...
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Example 7: (cont’d). We use MPI_Reduce() with 
customized sum operation
MPI_Reduce(

    const void *sendbuf, // Local values

    void *recvbuf, int count, // Global results

    int count, // Number of elements

    MPI_Datatype datatype, // Data type

    MPI_Op op, // Aggregation operation

    int root, // Root rank

    MPI_Comm comm // Communicator

)

Customized sum function (called by MPI_Reduce())
void my_sum(
    void *invec, // invec[0] contains the local sum
    void *inoutvec, // inoutvec[0] contains the (partial) global sum
 // and inoutvec[1] carries the running global
 // compensation
    int *n, // *n = 2, only relevant to inoutvec
    MPI_Datatype *pdt   // MPI type, not used
)
{
    … …
}

In the calling routine, we place

MPI_Type_contiguous(1,MPI_FLOAT,&dtype);
MPI_Type_commit(&dtype);
MPI_Op_create(my_sum,&my_sum_op);
MPI_Reduce(&lsum,&gsum,2,dtype,my_sum_op,0,comm)1;

1. Compared with the regular call MPI_Reduce(&lsum,&gsum[0],1, MPI_FLOAT,MPI_SUM,0,comm);



Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025 

32/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a 

distributed across p processes Kahan-Babuška-Neumaier compensation algorithm. The results with 
N=1,000,000

 Number of processes Summation 

1 500144.93

2 500144.93

4 500144.93

8 500144.93

16 500144.96

64 500144.93
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33/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a 

distributed across p processes Kahan-Babuška-Neumaier compensation algorithm. The results with 
N=1,000,000

 Number of processes Summation 

1 500144.93

2 500144.93

4 500144.93

8 500144.93

16 500144.96

64 500144.93
More
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OpenMP reduction for sum
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35/39OpenMP reduction for sum
We only show a segment of the C code that resembles the workflow of the MPI code

#pragma omp parallel num_threads(num_threads)
{
    float lsum = 0.0f;
    volatile float c = 0.0f, t = 0.0f;
    #pragma omp for private(t) nowait // Calculate the local sum Kahan-Babuška-Neumaier compensated sum within a thread
    for (int i = 0; i < N; i++) {
        t = lsum + a[i];
        if (fabs(lsum) >= fabs(a[i]))
            c += (lsum - t) + a[i];
        else
            c += (a[i] - t) + lsum;
            lsum = t;
    }
    lsum += c;

    #pragma omp atomic // Aggregate local sums to obtain the global sum
    sum += lsum;
}
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36/39OpenMP reduction for sum
Example 8: Calculate the summation of an N element array a 

using threads Kahan-Babuška-Neumaier compensation algorithm. The results with N=1,000,000 are show 
below. They are now always identical.

 Number of threads Summation 

1 500144.93

2 500144.93

4 500144.93

6 500144.93

8 500144.96

12 500144.93
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Future topics
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38/39Future topics
Follow-up work/topics

 Explorations of floating point number operation examples.
 Compensated summations in reduce operations in multithreaded codes.
 Compensated summations in reduce operations on GPUs.
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