
Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

1/39

COCOlloquia
Reduction of computational errors
or The pursuit of correctness
Ge Baolai, Western University | Paul Preney, University of Windsor
SHARCNET | Compute Ontario
Digital Research Alliance of Canada | Alliance de recherche numérique du Canada

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

2/39Outline
 Examples and remedies
 Case study 1: MPI sum
 Case study 2: OpenMP sum
 Case study 3: Multithreading (not included in this talk)
 Future work/topics
 Reference

Keywords: floating point number and accuracy, Kahan compensated summation, reduction, MPI, OpenMP.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

3/39

Examples

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

4/39Examples
Example 1: Rounding error. The number 0.01 can’t be represented exactly but approximated in base-2
number systems used on computers, so, if our input data contain numbers such as 0.01, we immediately have
an error. How much is this error? The following C code shows the result

#include <stdio.h>

int main()
{
 float x = 0.01;

 printf("0.01=%20.18f\n", x);
}

0.01=0.009999999776482582

Let’s see how this approximation comes from.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

5/39Examples
Example 1: (cont’d). We use the following julia code to see the binary representation of 0.01 in single
precision: 1 sign bit, 8 bit exponent and 23 bit fraction

julia> x=Float32(0.01f0)

0.01f0

julia> bitstring(x)

"00111100001000111101011100001010"

We convert this by hand, with the math

Exponent minus bias: e = 26 + 25 + 24 + 23 − 127

Fraction: f = 2−2+2−6+2−7+2−8+2−9+2−11+2−13+2−14+2−15+2−20+2−22

Normalized form: (1 + f)2e = 0.009999999776482582

Error: 0.01 − 0.009999999776482582 = 2.23517418 × 10−10

This kind of errors are inevitable. Keep in mind, however, they can be accumulated and magnified.

s exponent mantissa
IEEE 754 floating point number representation for the binary form
(1+f)× 2e in single precision: 1 sign bit, 8 bits for exponent and 23
bits for fraction.

8 231

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

6/39Examples
Example 2: Rounding errors in input/output data. Often we use the output from one program and read it in as
the input for another. If we are not careful with the format of data stored, we will bring in errors. In the following
a is written to a text file a.dat and then read into b, we see errors

 a(out) b(in) err
 0.315349 0.315349 -8.9407e-08
 0.907212 0.907212 4.76837e-07
 0.510926 0.510926 4.76837e-07
 0.86706 0.86706 1.78814e-07
 0.634931 0.634931 -1.19209e-07
 0.119563 0.119563 -2.23517e-07
 0.31076 0.31076 4.76837e-07
 0.854888 0.854888 -1.78814e-07
 0.446859 0.446859 -2.68221e-07
 0.810167 0.810167 5.96046e-08

 fp = fopen("a.dat","w+");
 for (int i=0; i<10; i++)
 fprintf(fp,"%f\n", a[i]);
 fclose(fp);

 fp = fopen("a.dat","r");
 printf("%10s%10s%15s\n", "a(out)", "b(in)", "err");
 for (int i=0; i<10; i++) {
 fscanf(fp,"%f", &b[i]);
 err[i] = a[i] - b[i];
 printf("%10g%10g%15g\n", a[i], b[i], err[i]);
 }
 fclose(fp);

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

7/39Examples
Example 2: (cont’d). One remedy is to save the data in full precision with maximum digits defined by the
standards. These are defined in float.h in C and limits in C++

 a(out) b(in) err
 0.315348923 0.315348923 0
 0.907212496 0.907212496 0
 0.510926485 0.510926485 0
 0.867060184 0.867060184 0
 0.634930909 0.634930909 0
 0.119562775 0.119562775 0
 0.310760468 0.310760468 0
 0.854887843 0.854887843 0
 0.446858734 0.446858734 0
 0.810167074 0.810167074 0

 fp = fopen("a.dat","w+");
 for (int i=0; i<10; i++)
 fprintf(fp,"%.*g\n", FLT_DECIMAL_DIG, a[i]);
 fclose(fp);

 fp = fopen("a.dat","r");
 printf("%10s%10s%15s\n", "a(out)", "b(in)", "err");
 for (int i=0; i<10; i++) {
 fscanf(fp,"%f", &b[i]);
 err[i] = a[i] - b[i];
 printf("%10g%10g%15g\n", a[i], b[i], err[i]);
 }
 fclose(fp);

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

8/39Examples
Example 2: (cont’d). Another way is to save the data in full precision using hex decimal format, supported with
%a specifier in C, hexfloat() in C++ and EX edit descriptor in Fortran 2018 (currently supported only by the
intel compiler).

 a(out) b(in) err
 0x1.42ead4p-2 0x1.42ead4p-2 0
 0x1.d07e28p-1 0x1.d07e28p-1 0
 0x1.059828p-1 0x1.059828p-1 0
 0x1.bbef5p-1 0x1.bbef5p-1 0
 0x1.4515aap-1 0x1.4515aap-1 0
 0x1.e9baa8p-4 0x1.e9baa8p-4 0
 0x1.3e37fep-2 0x1.3e37fep-2 0
 0x1.b5b3dcp-1 0x1.b5b3dcp-1 0
 0x1.c99556p-2 0x1.c99556p-2 0
 0x1.9ece38p-1 0x1.9ece38p-1 0

 fp = fopen("a.dat","w+");
 for (int i=0; i<10; i++)
 fprintf(fp,"%a\n", a[i]);
 fclose(fp);

 fp = fopen("a.dat","r");
 printf("%10s%10s%10s\n", "a(out)", "b(in)", "err");
 for (int i=0; i<10; i++) {
 fscanf(fp,"%a", &b[i]);
 err[i] = a[i] - b[i];
 printf("%10g%10g%10g\n", a[i], b[i], err[i]);
 }
 fclose(fp);

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

9/39Examples
Example 2: (cont’d). Remarks

 Saving data in maximum number of digits is the simplest way to preserve the accuracy of data. One must
pay attention to the format for the portability between languages.

 Hex decimal form keeps the exact representation of data, it is hence more reliable. However, it may not
be generally portable between languages, for instance, Fortran code can’t read the data output in
hexfloat by C/C++, and vice versa.

 C/C++ uses normalized form, Fortran doesn’t (as of 2018 standard).
 The EX descriptor in Fortran for hex decimal isn’t yet supported as of GCC 14.
 Binary form or more network portable forms are encouraged to be used for data I/O.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

10/39Examples
Example 3: Incorrect odometer1. The following C code shows a surprise
#include <stdio.h>
int main() {
 float meters = 0.0f;
 int iterations = 100000000;
 for (int i = 0; i < iterations; i++) {
 meters += 0.01;
 }
 printf("Expected: %f km\n", 0.01 * iterations / 1000);
 printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$./a.out
Expected: 1000.000000 km
Got: 262.144012 km

1. https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

11/39Examples
Example 3: Incorrect odometer1(cont’d). The cause is during additions, two operands are out of range. A
simple fix is to use double precision

1. https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

#include <stdio.h>
int main() {
 float meters = 0.0f;
 int iterations = 100000000;
 for (int i = 0; i < iterations; i++) {
 meters += 0.01;
 }
 printf("Expected: %f km\n", 0.01 * iterations / 1000);
 printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$./a.out
Expected: 1000.000000 km
Got: 262.144012 km

#include <stdio.h>
int main() {
 double meters = 0.0f;
 int iterations = 100000000;
 for (int i = 0; i < iterations; i++) {
 meters += 0.01;
 }
 printf("Expected: %f km\n", 0.01 * iterations / 1000);
 printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$./a.out
Expected: 1000.000000 km
Got: 1000.000001 km

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

12/39Examples
Example 3: Incorrect odometer1(cont’d). Yet another way, still using float, but more complex – Kahan sum

1. https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

#include <stdio.h>
int main() {
 float meters = 0.0f;
 int iterations = 100000000;
 for (int i = 0; i < iterations; i++) {
 meters += 0.01;
 }
 printf("Expected: %f km\n", 0.01 * iterations / 1000);
 printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$./a.out
Expected: 1000.000000 km
Got: 262.144012 km

#include <stdio.h>
int main() {
 float meters = 0.0f;
 int iterations = 100000000;
 volatile float c = 0.0f, t, y; // To avoid compiler optimization
 for (int i = 0; i < iterations; i++) {
 y = 0.01f - c;
 t = meters + y;
 c = (t - meters) - y; // ≡ 0 algebraically
 meters = t; // ≡ meters + 0.01f algebraically
 }
 printf("Expected: %f km\n", 0.01 * iterations / 1000);
 printf("Got: %f km \n", meters / 1000);
}

$ gcc error.c
$./a.out
Expected: 1000.000000 km
Got: 1000.000000 km

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

13/39Examples
Example 4: Solving an ill-conditioned problem A*x = b, where

We construct the right hand side (RHS) b by multiplying matrix A by a unit vector.

We now make changes first in b and then in A and examine the solutions in MATLAB

1) Change b by less than 0.001, keep A the same

2) Change the elements in A by less than 0.001, keep b the same

Small changes in the input lead to large changes in the output.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

14/39Examples
Example 4: Solving an ill-conditioned problem A*x = b (cont’d). We see two solutions, corresponding to the
tiny differences in the RHS and the matrix representation:

This raises the questions, especially when we face real problems:
 How do we know the solution we have obtained is correct?
 How reliable is the computed solution, if we have a small change in the input and we see a large change

in the output?
 etc.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

15/39Examples
Example 5: Solving system of linear equations H*x = b with Hilbert matrix, with

For example, for n=6*

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

16/39Examples
Example 5: Solving system of linear equations H*x = b with Hilbert matrix (cont’d). Hilbert matrix is ill-
conditioned, solving the linear system with an ill-conditioned matrix becomes problematic when n is large.

We construct the RHS b by multiplying
H by a unit vector x, i.e. b = H*x.

We then solve H*x = b and see if we
get the solution the same, or “close” to
the the unit vector.

Note: One may see in the literature the advice that Hilbert
matrix is not a good test matrix because it is ill-
conditioned. We use it intentionally for the purpose of
testing the features of MPLAPACK.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

17/39Examples
Example 5: Solving system of linear equations H*x = b with Hilbert matrix (cont’d). Hilbert matrix is ill-
conditioned, solving the linear system via LU decomposition may become problematic when n becomes large.

Solving H * x = b of
size 10

Solution:
 [1]
 1
 0.9999999
 1.000003
 0.9999758
 1.000116
 0.999682
 1.000522
 0.9994947
 1.000266
 0.9999415

Solving H * x = b of
size 11

Solution:
 [1]
 1
 0.9999982
 1.000047
 0.9994746
 1.003154
 0.9888376
 1.02444
 0.9665197
 1.027928
 0.9870307
 1.00257

Solving H * x = b of
size 13

Solution:
 [1]
 0.9999999
 1.000013
 0.9994794
 1.0088
 0.9199938
 1.438536
 -0.5437174
 4.60748
 -4.656326
 6.882018
 -2.890713
 2.481753
 0.7526833

Solving H * x = b of
size 50

Solution:
 [1]
 1.000001
 0.999892
 1.004564
 0.9173155
 1.790654
 -3.380056
 15.46936
 -26.46469
 25.66145
 1.871251
 -15.6143
 15.50733
 -30.80703
 22.92981
 52.54445
 -54.27587
 ,,, ,,,

When n>=12, one will get warning: the matrix is singular to machine precision.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

18/39Examples
Example 5: Solving system of linear equations H*x = b with Hilbert matrix, revisited. The RHS b is built by
multiplying H by a unit vector x. The solution, however, deviates wildly when n gets bigger.

Solving H * x = b of size 10

Solution:
 [1]
 1
 0.9999999
 1.000003
 0.9999758
 1.000116
 0.999682
 1.000522
 0.9994947
 1.000266
 0.9999415
||dx||_2/||x||_2 = 0.00026777989621392767

Solving H * x = b of size 12

Solution:
 [1]
 1
 0.9999867
 1.000421
 0.9942459
 1.042286
 0.8138542
 1.519414
 0.05870534
 2.104559
 0.1904543
 1.336781
 0.9392925
||dx||_2/||x||_2 = 0.51517152763376584

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

19/39Examples
Example 5: Solving system of linear equations H*x = b with Hilbert matrix (cont’d)

 The inverse of Hilbert matrix has a closed form containing integer values. But when n >= 12, some of its
values fall beyond what can be represented exactly in IEEE double precision.

 This means one can’t get accurate answer by the multiplication of the inverse matrix and the right RHS.

The following is output of the 9th to 13th columns of the inverse of an Hilbert matrix of order 13 in julia*

 1891439550//1 -1849407560//1 1160082924//1 -421848336//1 67603900//1
 -285985659960//1 282454972800//1 -178652770296//1 65418941952//1 -10546208400//1
 10724462248500//1 -10680328659000//1 6802547792040//1 -2505779115840//1 406029023400//1
 -174769014420000//1 175266931840000//1 -112296027043200//1 41577371996160//1 -6767150390000//1
 1542672646515000//1 -1556276461740000//1 1002242041360560//1 -372734643481200//1 60904353510000//1
 -8251094840788800//1 8366542258314240//1 -5412107023347024//1 2020660279013376//1 -331319683094400//1
 28450997395460640//1 -28977867717598800//1 18818568211899456//1 -7050482856248832//1 1159618890830400//1
 -65321167489578000//1 66791723910912000//1 -43525940081944320//1 16357726068203520//1 -2697888848054400//1
 100863567447142500//1 -103492384705710000//1 67651337791837800//1 -25495049614114080//1 4215451325085000//1
 -103492384705710000//1 106518477825760000//1 -69822862214785680//1 26379357625420800//1 -4371579151940000//1
 67651337791837800//1 -69822862214785680//1 45883595169716304//1 -17374404181470336//1 2885242240280400//1
 -25495049614114080//1 26379357625420800//1 -17374404181470336//1 6592659294154752//1 -1096868950850400//1
 4215451325085000//1 -4371579151940000//1 2885242240280400//1 -1096868950850400//1 182811491808400//1

* This matrix is generated in julia with SpecialMatrices package. The values are represented in Rational format.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

20/39Examples
Example 5: Using MPLAPACK for size n=13 with precision of around 30 digits, we are able to compute the
solution with a relative error in the order of magnitude of 10-14.

Solving H * x = b with size 13

sol:
+1.0000000000000000000019833737841857494393889254788727991192509581e+00
+9.9999999999999999969242948730919752968953432873454178776142717289e-01
+1.0000000000000000117738894868829409690023263331778447524696845639e+00
+9.9999999999999980482308732723047657239344617743593409759294762806e-01
+1.0000000000000017478000875727512234659815082267170939766534262794e+00
+9.9999999999999053604236152396519010801404747532380490099204045640e-01
+1.0000000000000329819971730344280395815656306243408600267644562032e+00
+9.9999999999992356977521657943478950632608591484138707528809414393e-01
+1.0000000000001189860591369017227118683853904575954407447490462912e+00
+9.9999999999987702381277727144025979229541132918715740627874782875e-01
+1.0000000000000809103848263016443933566861115827148172915256330029e+00
+9.9999999999996932995554366055196135877841182573019827780095789005e-01
+1.0000000000000050978832457269717364766462322147851017362400402599e+00
||dx||_2/||x||_2 = 5.8055680326398419e-14

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

21/39

MPI reduction for sum

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

22/39MPI reduction for sum
Example 6: Calculate the summation of an array

Our test: Generate an array a of N random numbers (uniformly distributed on [0,1]) in single precision (so
easy to see the effect), then calculate the sum with a loop in the following pseudo code:

s = 0;

for i in 1 to N

 s += a[i];

end

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

23/39MPI reduction for sum
Example 6: Summation of an array (cont’d). We first
calculate the sum in two ways:

1) Sequential

s = 0;
for i=1:N
 s += a[i];
end

2) Alternating

s = 0;
for i=odd numbers
 s += a[i];
end
for i=even numbers
 s += a[i];
end

We know with floating point arithmetic, we lose the
associativity. Looking at two answers

Sum of a (seq): 500156.750000

Sum of a (alt): 500148.468750

Which one is more close to the truth? How significant
is the difference to your work?

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

24/39MPI reduction for sum
Example 6: Summation of an array (cont’d). We
calculate the sum in two ways:

1) Sequential

s = 0;
for i=1:N
 s += a[i];
end

2) Alternating

s = 0;
for i=odd numbers
 s += a[i];
end
for i=even numbers
 s += a[i];
end

We know with floating point arithmetic, we lose the
associativity. Looking at two answers

Sum of a (seq): 500156.750000

Sum of a (alt): 500148.468750

Which one is more close to the truth?

To see the answer “close to the truth”, we perform the
summation in double precision and get

Sum of a (in double precision): 500144.934192

This is what we trust (as an accuracy of more digits is
guaranteed by IEEE standard).

Can we get the same accuracy with single precision?

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

25/39MPI reduction for sum
Example 6: Summation of an array (cont’d). We calculate the sum in single precision using the Kahan
summation. We chose the Kahan-Babuška-Neumaier algorithm

s = 0.0, c = 0.0;
for i=1:N
 t = s + a[i];
 if (|s| >= |a[i]|)
 c += (s - t) + a[i]; // Algebraically c ≡ 0, but in floating point arithmetic it is not
 else
 c += (a[i] - t) + s; // Algebraically c ≡ 0, but in floating point arithmetic it is not
 s = t;
end
s += c;

We get the answer

Sum of a (Kahan-Babuška-Neumaier compensated): 500144.937500

compared with the answer in double precision

Sum of a (in double precision): 500144.934192

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

26/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a

distributed across p processes

The procedure
 Each rank computes the local sum si, i=1, ,p… .
 An MPI reduce is called on the local sum to get aggregated global sum.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

27/39MPI reduction for sum
Example 7: Using reduce to get sum across processes with MPI

 Each process holds one value.

+ + ... +

...

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

28/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a

distributed across p processes. The results with N=1,000,000

 Number of processes Summation

1 500156.75

2 500136.53

4 500144.43

8 500143.71

16 500145.28

64 500144.84

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

29/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a

distributed across p processes with Kahan-Babuška-Neumaier compensation algorithm

The procedure
 Each rank computes the local sum si, i=1, ,p… with KBN algorithm
 An MPI reduce with a customized sum operation with KBN procedure is called on the local sum to get

aggregated global sum.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

30/39MPI reduction for sum
Example 7: Using reduce to get sum across processes with MPI

 Take two values from each process: the local sum and the compensation to feed KBN procedure
 Need a customized sum operator to perform the sum

+ + ... +

...

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

31/39MPI reduction for sum
Example 7: (cont’d). We use MPI_Reduce() with
customized sum operation
MPI_Reduce(

 const void *sendbuf, // Local values

 void *recvbuf, int count, // Global results

 int count, // Number of elements

 MPI_Datatype datatype, // Data type

 MPI_Op op, // Aggregation operation

 int root, // Root rank

 MPI_Comm comm // Communicator

)

Customized sum function (called by MPI_Reduce())
void my_sum(
 void *invec, // invec[0] contains the local sum
 void *inoutvec, // inoutvec[0] contains the (partial) global sum
 // and inoutvec[1] carries the running global
 // compensation
 int *n, // *n = 2, only relevant to inoutvec
 MPI_Datatype *pdt // MPI type, not used
)
{
 … …
}

In the calling routine, we place

MPI_Type_contiguous(1,MPI_FLOAT,&dtype);
MPI_Type_commit(&dtype);
MPI_Op_create(my_sum,&my_sum_op);
MPI_Reduce(&lsum,&gsum,2,dtype,my_sum_op,0,comm)1;

1. Compared with the regular call MPI_Reduce(&lsum,&gsum[0],1, MPI_FLOAT,MPI_SUM,0,comm);

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

32/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a

distributed across p processes Kahan-Babuška-Neumaier compensation algorithm. The results with
N=1,000,000

 Number of processes Summation

1 500144.93

2 500144.93

4 500144.93

8 500144.93

16 500144.96

64 500144.93

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

33/39MPI reduction for sum
Example 7: Calculate the summation of an N element array a

distributed across p processes Kahan-Babuška-Neumaier compensation algorithm. The results with
N=1,000,000

 Number of processes Summation

1 500144.93

2 500144.93

4 500144.93

8 500144.93

16 500144.96

64 500144.93
More

 co
ns

iste
nt

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

34/39

OpenMP reduction for sum

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

35/39OpenMP reduction for sum
We only show a segment of the C code that resembles the workflow of the MPI code

#pragma omp parallel num_threads(num_threads)
{
 float lsum = 0.0f;
 volatile float c = 0.0f, t = 0.0f;
 #pragma omp for private(t) nowait // Calculate the local sum Kahan-Babuška-Neumaier compensated sum within a thread
 for (int i = 0; i < N; i++) {
 t = lsum + a[i];
 if (fabs(lsum) >= fabs(a[i]))
 c += (lsum - t) + a[i];
 else
 c += (a[i] - t) + lsum;
 lsum = t;
 }
 lsum += c;

 #pragma omp atomic // Aggregate local sums to obtain the global sum
 sum += lsum;
}

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

36/39OpenMP reduction for sum
Example 8: Calculate the summation of an N element array a

using threads Kahan-Babuška-Neumaier compensation algorithm. The results with N=1,000,000 are show
below. They are now always identical.

 Number of threads Summation

1 500144.93

2 500144.93

4 500144.93

6 500144.93

8 500144.96

12 500144.93

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

37/39

Future topics

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

38/39Future topics
Follow-up work/topics

 Explorations of floating point number operation examples.
 Compensated summations in reduce operations in multithreaded codes.
 Compensated summations in reduce operations on GPUs.

Compute Ontario colloquium: Reducing errors, Ge B. & P. Preney, Feb 26, 2025

39/39References
1. 中田真秀 (NAKATA Maho), MPLAPACK, https://github.com/nakatamaho/mplapack.
2. David Bailey, MPFUN2020, https://www.davidhbailey.com/dhbsoftware/.
3. Julia, a language for scientific and high performance computing, https://docs.julialang.org/en/v1/.
4. Implementation of Kahan summation for MPI reductions https://github.com/jeffhammond/KahanMPI.
5. R. W. Robey, J. M. Robey, R. Aulwes, “In search of numerical consistency in parallel programming”,

Parallel Computing, Vol 37, p. 217-229, 2011.
6. IEEE-754 Floating Point Converter, https://www.h-schmidt.net/FloatConverter/IEEE754.html.

https://github.com/nakatamaho/mplapack
https://www.davidhbailey.com/dhbsoftware/
https://docs.julialang.org/en/v1/
https://github.com/jeffhammond/KahanMPI
https://www.h-schmidt.net/FloatConverter/IEEE754.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

