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Part I 
 

Introduction to 
AI, Machine learning, and neural 

network 



Overview 
 What is AI? 

 What/how can a machine learn? 

 Machine learning methods with focus on deep 
learning 

 Caveats and pitfalls of machine learning 



Artificial Intelligence (AI) 
 What is AI 

 Def 1: Computer systems able to perform tasks that 
normally require human intelligence. 

 Def 2: intelligent machines that work and react like 
humans 

 Def 3 … : more on the internet… 



Artificial Intelligence (AI) 
 Are these in the domain of AI? 

 Computing 

 Database 

 Logical operations 

 … 



Artificial Intelligence (AI) 
Intelligent robot made by Boston Dynamics 

https://youtu.be/rVlhMGQgDkY 

 

AI system (my definition) 

 Is able to perform an intelligent task by learning from 
examples 

 We humans don’t know the explicit rules/instructions 
to perform the task 

 

https://youtu.be/rVlhMGQgDkY
https://youtu.be/rVlhMGQgDkY


Artificial Intelligence (AI) 
 

Speech Recognition 

Visual Perception 

Natural language understanding 

Machine Learning Knowledge representation 

Robotics 

Expert Systems 



Artificial Intelligence (AI) 
 History of AI 

 Brain vs computer 

• Memory 
• Information processing 

(Computing vs thinking) 
• Sensing 

(camera and microphone vs 
eyes and ears) 

• Responding 

Logic gates  
Bio-chemical 

operations 
??? 



Artificial Intelligence (AI) 
 What are minds? 

 What is thinking? 

 To what extent can computers have intelligence? 

Strong AI vs weak AI 

 



Artificial Intelligence (AI) 
 Computers don’t and won’t have  

 Passion, feeling, consciousness… 

 Inherent common sense 

 Motivation 

 Computers can be trained to do particular tasks (as 
good as humans or even better) 

 “Thinking is computing” 



How does Machine Learning work 
 What is learned by computer? 

A parameterized model used to perform a particular task. 

Task: to predict diabetes based on sugar intake x and 
hours of exercise y per day.  

y<b 

x>a 

x, y 

no 

no 
yes 

yes 

ND 

D 

ND 

Input: x, y 
Output: either D (Diabetes)  
               or       ND (not Diabetes) 
Parameters: a, b 



Machine Learning 
 How does a computer learn? 

Learns from (many) samples 

x 

y 

ND 
D 

a 

b 
y<b 

x>a 

x, y 

no 

no 
yes 

yes 

ND 

D 

ND 



Machine Learning 
 Learning becomes an optimization problem: 

Determine parameters (a, b) so that a pre-defined cost 
function (e.g., misclassification error) is minimized. 

 Training or learning is usually an iterative process 
where parameters are gradually changed to make the 
cost function smaller and smaller. 



Machine Learning 
 Basic concepts (cont’d) 

 Feature space  

 Decision boundary 

 

x 

y 

ND 
D 

a 

b 



Two categories of learning 
 Supervised learning  

Learn from annotated samples 

 

 

 

 

 

 

 

 

 Unsupervised learning 

Learn from samples without annotation 

Faces 

Non-faces 



Machine learning methods 
 Deep learning 

 Boosting  

 Support Vector Machine (SVM) 

 Naïve Bayes 

 Decision tree 

 Linear or logistic regression 

 K-nearest neighbours (KNN) 



Sample data 
 Basic concepts 

 Sample 

 Sample is defined as a vector of attributes (or features), each 
of which can be  

 Numerical 

 Categorical 

 Ordered 

 No order 

 Binary or Boolean 

 Label can be 

 Categorical (most often, binary) --- classification 

 Numerical --- regression 



Sample 
 Example of data sample 

 
Name Occupa

tion 
Smoking Sugar 

intake 
Hours of 
exercise 

… Glucose 
level 

Diabetes 

Peter Driver  Yes 100.0 5.5 … 80 No 

Nancy Teacher No 50.0 3 … 120 Yes 

… … … … … … … … 

Feature vector Annotation 



Performance measures 
 Basic concepts (cont’d) 

 Classification error 

 Binary classification 

 TP, TN, FP, FN  

 ROC curve 

 TPR = TP/(TP+FN), FPR =FP/(FP+TN)  



Performance measures 
 Basic concepts (cont’d) 

 Classification error 

 Multiclass classification 

 Confusion matrix 



Neural network and deep learning  
 Directed graph of neurons 



Neurons 
 Neurons 

 Linear weighted sum 

 Perceptron 

 Sigmoid 

 Rectified Linear Units (ReLu) 

 … 

 Layers: 
 Pooling  

 Convolution 

 Loss  

 … 

 



Linear weighted sum 
 𝑧 =  𝑤𝑗𝑥𝑗 = 𝒘

𝑡
𝑗 𝒙 

 



Perceptron 

 𝑧 =  
0, if  𝑤𝑗𝑥𝑗 ≤ 𝑇𝑗

1,       otherwise
 

 

 𝑧 =  
0, if 𝒘𝑡𝒙 + 𝑏 ≤ 0
1,       otherwise

 

 weights: 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑛)  

 bias: 𝑏 = −𝑇 

 



Sigmoid neuron 
𝜎 𝑧 =

1

1 + 𝑒−𝑧
 

where 𝑧 = 𝒘𝑡𝒙 + 𝑏 



Rectified Linear Units 
𝜎 𝑧 = max (0, 𝑧) 

where 𝑧 = 𝒘𝑡𝒙 + 𝑏 



Convolution layer 
 A set of learnable filters (or kernels) --- 2D array of 

weights 

 Each neuron (blue) of a filter has its receptive field 
(red) in the input image 

 Dot product between receptive field and a filter 



Pooling layer 
 Sub-sampling 

 

        Example of max pooling 



Architecture of neural network 
 



Train a neural network 
 Purpose: To determine the parameters of a given 

network so that it will produce desired outputs. 

 



How to achieve the training goal 
 Define a cost (objective) function to measure the 

performance of a NN, such as  

MSE =
1

𝑛
 𝑦𝑖 − 𝑔(𝒙𝑖)

2

𝑛

𝑖=1

 

   where 𝒙𝑖 and 𝑦𝑖 are the feature vector and label of the 
𝑖-th sample. 𝑔(𝒙𝑖) is the output of the NN. 

 𝑔(𝒙𝑖) depends on the parameters of the NN.  

 Gradient descent is used to find the values of these 
parameters that minimize the cost function. 



Gradient descent (1D function) 
𝑦 = 𝑓 𝑥 = 𝑥2 − 6𝑥 + 10 

 Starting 𝑥 = 6, we get 𝑦 = 10 

 𝑥 = 𝑥 ± ∆𝑥, where ∆𝑥 = 0.01, 
we get  
𝑦 = 9.9401 for 𝑥 = 5.99  

   and  

𝑦 = 10.0601 for 𝑥 = 6.01 

 𝑦′ = lim
∆𝑥→0

∆𝑦

∆𝑥
≈
0.0601

0.01
= 6.01 

where ∆𝑦 = 𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥) 

 Analytic 𝑦′ = 2𝑥 − 6 

x 

y 

6 

10 ∆𝑥 

∆𝑦 𝑦′ 



Gradient descent (2D function) 
𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 6𝑥 + 10 

 Starting 𝑥 = 6, 𝑦 = −2, we get 𝑧 = 14 

 Analytic: 
𝜕𝑧

𝜕𝑥
= 2𝑥 − 6,   

𝜕𝑧

𝜕𝑦
= 2𝑦  

 Gradient 𝛻𝑧 = (
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
) is the fastest ascending 

direction 

 Iteratively approaching with learning rate η = 0.01 
 Round #1: (𝑥, 𝑦) = (6,−2), we get 𝛻𝑧 = (6,−4) 

 Round #2: 𝑥, 𝑦 = 𝑥, 𝑦 − η𝛻𝑧 = (5.94,−1.96), we get 
𝛻𝑧 = (5.88,−3.92) 

 Round #3: …… 

 

x 

y 

z 



Train a neural network 
 Initialize the state of a neural network (by 

randomizing all the parameters) 

 Iterative process 

 Feed forward 

 Backpropagation (chain rule) 

 

f(x,y) 
g(q,z) 

x 

y 

z 

q 
p 

𝜕𝑝

𝜕𝑥
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑥
 

𝜕𝑝

𝜕𝑦
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑦
 

𝜕𝑝

𝜕𝑧
=
𝜕𝑝

𝜕𝑧
 



Chain rule of derivatives 
 



Wait a minute … 
 Questions 

 We want to minimize a cost function, not the output of 
NN 

 We want to tweak the parameters of NN, not the input 
data (x, y, z …) to do the minimization 

 Let change the roles … 
 Consider 𝑎, 𝑏, … , 𝑓 as variables in 𝑧 = 𝑓 𝑥, 𝑦 = 𝑎𝑥2 +
𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 

 The cost function C is a function of the output and 

ground truth so that we can compute 
𝜕𝐶

𝜕𝑎
,
𝜕𝐶

𝜕𝑏
,…, 
𝜕𝐶

𝜕𝑓
,  

 Apply gradient descent on 𝑎, 𝑏, … , 𝑓 the same way 

 

 



Training a neural network 
 Cost function 𝐶(𝒘, 𝒃) =

1

𝑛
 𝐶𝑖
𝑛
𝑖=1 = 𝑦𝑖 − 𝑔(𝒙𝑖)

2, 

where 𝒘, 𝒃 are the weights and biases of NN. 

 𝛻𝐶 =
1

𝑛
 𝛻𝐶𝑖
𝑛
𝑖=1 , 𝑛 is the number of training samples 

 𝛻𝐶 ≈
1

𝑚
 𝛻𝐶𝑖
𝑚
𝑖=1 , randomly divide training set into 

small subsets (mini-batches), each of which contains 
𝑚 ≪ 𝑛 samples. An epoch is one complete pass going 
through all the mini-batches. 

 Training with mini-batches is called stochastic 
gradient descent (SGD)  



Caveats and pitfalls 
 Feature selection 

 Relevance  
 Redundancy 

 Sample data 
 Mislabeling 
 Outliers 

 Overfitting 
 Small training set 
 Low-quality training data 
 Over-training 

 Confidence level of classification 
 Re-tune a trained model to operate on a different position 

on the ROC curve 



Part II 
 

Case Study: 
Recognition of hand-written digits 



Tasks 
 Write our own NN code 

 Use DL libraries (Tensorflow) 



Four elements in deep learning 
 Datasets (for training, testing …) 

 Design of a neural network 

 Cost function that training tries to minimize 

 Training method(solver or optimizer, such as SGD, 
AdaDelta, Adaptive Gradient, etc) 



Dataset of handwritten digits 
 Dataset (http://yann.lecun.com/exdb/mnist/) 

 60,000 training samples 

 10,000 testing samples 

 Each sample is 28x28 gray scale image with a label 
telling what digit it is. 

 The label (0, 1, …, 9) is vectorized as a “one-hot” vector, 
e.g., [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] represents 3. 

 checkdata.py 

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Dataset of handwritten digits 
 

One-hot vectorized label: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 



Architecture of neural network 
 Multilayer Perceptron (MLP) or fully connected NN 

 Input: 28x28=784 

 One hidden layer 

 Output: a vector of  

   10 elements  



Architecture of neural network 
 Multilayer perceptron (MLP) 

argmax 



Cost function 
 Some notations 

𝑤𝑗,𝑘
(𝑙)

 denotes the weight of the connection between the 𝑘𝑡ℎ 

neuron in the (𝑙 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ 

layer. Similarly, we define bias 𝑏𝑗
(𝑙)

, weighted sum+bias 𝑧𝑗
(𝑙)

, 

and activation 𝑎𝑗
(𝑙)
= 𝜎 𝑧𝑗

(𝑙)
 at the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ 

layer. 



Cost function 
 Given a input (𝒙, 𝒚) 

 Feedforward calculation  

    𝑧𝑗
(𝑙)
=  𝑤𝑗,𝑘

(𝑙)
𝑘 𝑎𝑘

(𝑙−1)
+ 𝑏𝑗
(𝑙)

 or 𝒛(𝑙) = 𝐰(𝑙)𝒂(𝑙−1) + 𝒃(𝑙) 

𝑎𝑗
(𝑙)
= 𝜎(𝑧𝑗

(𝑙)
) or 𝒂(𝑙) = 𝜎 𝒛(𝑙)  

When 𝑙 = 1, 𝑎𝑗
(1)
= 𝑥𝑗 

 Cost function (quadratic function, MSE) 

    𝐶 =
1

𝑚
 𝐶𝒙𝒙 ,   where 

𝐶𝒙 = 𝒂
𝐿 𝒙 − 𝒚

2
=  𝑎𝑗

(𝐿)
− 𝑦𝑗

2
10
𝑗=1 , 𝐿 is the number of 

layers of NN (𝐿 = 3 in this case).  

 

 



As if there is an extra node   

𝒂(𝟑) − 𝒚
2
 

𝑦 



Backpropagation 
 C depends (indirectly) on 𝑤𝑗,𝑘

(𝑙)
, 𝑏𝑗
(𝑙)

 where  

𝑙 ∈ 2, 3  

 𝑗, 𝑘 ∈  
1: 30 , [1: 784] , if 𝑙 = 2

1: 10 , [1: 30] , if 𝑙 = 3
 

 ∆𝐶 ≈  
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ∆𝑤𝑗,𝑘

(𝑙)
+  

𝜕𝐶

𝜕𝑏
𝑗
(𝑙) ∆𝑏𝑗

(𝑙)
 

 If we can calculate 
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ,   

𝜕𝐶

𝜕𝑏
𝑗
(𝑙), then we will 

know how to change each of these parameters 
𝑤𝑗,𝑘
(𝑙)
, 𝑏𝑗
(𝑙)

 to make C smaller. 



Backpropagation 
 Loop over 𝑚 samples, then calculate the average: 

    
𝜕𝐶

𝜕𝑤𝑗,𝑘
(𝑙) =

1

𝑚
 
𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙) 𝒙  ,    

𝜕𝐶

𝜕𝑏𝑗
(𝑙) =

1

𝑚
 
𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙) 𝒙  

 Let’s define 𝛿𝑗
(𝑙)
≡
𝜕𝐶𝒙

𝜕𝑧𝑗
(𝑙) be the error of neuron 𝑗 on layer 𝑙, or  

    𝜹(𝑙) = 𝛿1
(𝑙)
, 𝛿2
(𝑙)
, …
𝑡
 be the error of layer 𝑙. 

 Since 𝒛(𝑙+1) = 𝐰(𝑙+1)𝒂(𝑙) + 𝒃 𝑙+1 = 𝐰(𝑙+1)𝜎 𝒛(𝑙) + 𝒃(𝑙+1), we 
can get  

𝜹(𝑙) = 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)  

where ⊙ is Hadamard product operator (element-wise 
multiplication) 
 This means we can pass the error backward  

𝜹(𝐿) → 𝜹(𝐿−1) → ⋯ → 𝜹 2  



Backpropagation 
 Then what if we know 𝜹(𝑙) … 

𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)

 

𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝑎𝑘
(𝑙−1)

 

or 
𝜕𝐶𝒙
𝜕𝒃(𝑙)
= 𝜹(𝑙) 

𝜕𝐶𝒙
𝜕𝐰(𝑙)
= 𝜹(𝑙) 𝒂(𝑙−1)

𝑡
 



Backpropagation 
Backpropagation starts at layer 𝐿 = 3  

𝛿𝑗
(𝐿)
=
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
𝜎′ 𝑧𝑗

𝐿
 

where  
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
= 2 𝑎𝑗

(𝐿)
− 𝑦𝑗  

Or   

𝛿(𝐿) = 𝑎𝑗
(𝐿)
− 𝑦𝑗 ⊙𝜎′ 𝑧

(𝐿)  

     



Two passes  

Backpropagation 

𝒂 − 𝒚 2 

𝑦 

𝜹(2)        ⃪        𝜹 3  

            ↓ 
𝜕𝐶𝒙
𝜕𝐰(3)

,
𝜕𝐶𝒙
𝜕𝒃(3)

 

Feed forward 

            ↓ 
𝜕𝐶𝒙
𝜕𝐰(2)

,
𝜕𝐶𝒙
𝜕𝒃(2)

 



Write our own NN code 
 Assuming 30 neurons in the hidden layer 

Architecture: 
    self.num_layers = 3 
    self.sizes = [784, 30, 10] 
Parameters: 
    self.weights = [[30x784], [10x30]] 
    self.biases = [30, 10] 
 
We need to determine the values of these  
           30x784 + 10x30 + 30 + 10 = 23860 parameters  
through a training process. 

How? 
In each iteration of the training process 
• Feedforward 
• Backpropagation 



Training 
 train.py 

import mnist_loader 
import network  
 
# load reformatted data. 
training_data, validation_data, test_data = mnist_loader.load_data_wrapper() 
 
# define the NN 
net = network.Network([784, 30, 10]) 
 
# train with Stochastic Gradient Descent 
net.SGD(training_data, 30, 10, 3.0, test_data=test_data) 
 
NOTE: 
training_data is a list of 50000 tuples, each of which is ([784], [10]) 



Class “Network” (network.py) 
 __init__(self, sizes) initialize parameters with random 

numbers 

 feedforward(self, a) takes ‘a’ as input and return the 
output of the NN. 

 evaluate(self, test_data) evaluates the performance of 
the NN. 

 SGD(self, training_data, epochs, mini_batch_size, eta, 
test_data=None) 

 update_mini_batch(self, mini_batch, eta) 

 twopasses(self, x, y) 



Two helper functions 

def sigmoid(z): 
    """The sigmoid function.""" 
    return 1.0/(1.0+np.exp(-z)) 
 
def sigmoid_prime(z): 
    """Derivative of the sigmoid function.""" 
    return sigmoid(z)*(1-sigmoid(z)) 
 

𝜎 𝑧 =  
1

1 + 𝑒−𝑧
 

𝜎′ 𝑧 = 𝜎 𝑧 (1 − 𝜎 𝑧 ) 



Functions of Network 
def feedforward(self, x): 
        for b, w in zip(self.biases, self.weights): 
            x = sigmoid(np.dot(w, x)+b) 
        return x 
 
def evaluate(self, test_data): 
        test_results = [(np.argmax(self.feedforward(x)), y) \ 
                        for (x, y) in test_data] 
        return sum(int(x == y) for (x, y) in test_results) 
 

NOTE: 
self.weights = [[30,784], [10, 30]] 
self.biases = [30, 10] 
𝒙=[784] is passed in as argument 

In loop #1: 
• 𝒘𝑡 = [30, 784], 𝒃 = [30] 
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃)  → 𝒙=[30] 
 
In loop #2: 
•  𝒘𝑡 = [10, 30], 𝒃 = [10] 
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃) → 𝒙=[10] 
 



Functions of Network 
def SGD(self, training_data, epochs, mini_batch_size,  
           eta, test_data=None): 
        if test_data: n_test = len(test_data) 
        n = len(training_data) 
        for j in xrange(epochs): 
            random.shuffle(training_data) 
            mini_batches = [ 
                training_data[k:k+mini_batch_size] 
                for k in xrange(0, n, mini_batch_size)] 
            for mini_batch in mini_batches: 
                self.update_mini_batch(mini_batch, eta) 
            if test_data: 
                print "Epoch {0}: {1} / {2}".format( 
                    j, self.evaluate(test_data), n_test) 
            else: 
                print "Epoch {0} complete".format(j) 

NOTE: 
epochs=30, mini_batch_size = 10 
eta (or η)=3.0 learning rate 
 

Generate 5000 randomized 
mini-batches 
 

Update weights and biases by 
learning from each batch 
 
If test data is provided, then 
evaluate the performance of 
the current NN 
 



Functions of Network 
def update_mini_batch(self, mini_batch, eta): 
        nabla_b = [np.zeros(b.shape) for b in self.biases] 
        nabla_w = [np.zeros(w.shape) for w in self.weights] 
        for x, y in mini_batch: 
            delta_nabla_b, delta_nabla_w = self.twopasses(x, y) 
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] 
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] 
        self.weights = [w-(eta/len(mini_batch))*nw 
                        for w, nw in zip(self.weights, nabla_w)] 
        self.biases = [b-(eta/len(mini_batch))*nb 
                       for b, nb in zip(self.biases, nabla_b)] 

nabla_w=

𝜕𝐶

𝜕𝑤1,1
(2) ⋯

𝜕𝐶

𝜕𝑤1,784
(2)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤30,1
(2) ⋯

𝜕𝐶

𝜕𝑤30,784
(2)

,

𝜕𝐶

𝜕𝑤1,1
(3) ⋯

𝜕𝐶

𝜕𝑤1,30
(3)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤10,1
(3) ⋯

𝜕𝐶

𝜕𝑤10,30
(3)

 

 
nabla_b=

𝜕𝐶

𝜕𝑏1
(2) , … ,

𝜕𝐶

𝜕𝑏30
(2) ,

𝜕𝐶

𝜕𝑏1
(3) , … ,

𝜕𝐶

𝜕𝑏10
(3)  

𝐰, 𝒃 = 𝐰, 𝒃 + η
1

𝑚
 𝛻𝐶𝑖

𝑚

𝑖=1

 

 

𝛻𝐶𝑖  
 

 𝛻𝐶𝑖

𝑚

𝑖=1

 



Functions of Network 
def twopasses(self, x, y): 
        nabla_b = [np.zeros(b.shape) for b in self.biases] 
        nabla_w = [np.zeros(w.shape) for w in self.weights] 
        # feedforward 
        activation = x 
        activations = [x] # list to store all the activations, layer by layer 
        zs = [] # list to store all the z vectors, layer by layer 
        for b, w in zip(self.biases, self.weights): 
            z = np.dot(w, activation)+b 
            zs.append(z) 
            activation = sigmoid(z) 
            activations.append(activation) 
        # backward pass 
        delta = (activations[-1] - y) * sigmoid_prime(zs[-1]) 
        nabla_b[-1] = delta 
        nabla_w[-1] = np.dot(delta, activations[-2].transpose()) 
        for l in xrange(2, self.num_layers): 
            z = zs[-l] 
            sp = sigmoid_prime(z) 
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp 
            nabla_b[-l] = delta 
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) 
        return (nabla_b, nabla_w) 

𝛻𝐶𝑖  that depends on a 
single sample (x, y) 

Feedforward pass: 
𝑧 = 𝒘𝑡𝒙 + 𝑏 → zs[] 

𝜎 𝑧 =  
1

1+𝑒−𝑧
→ activations[] 

Backpropagation pass: 
delta= 𝛿(𝐿) =

𝜕𝐶𝒙

𝜕𝒂(𝐿)
⊙𝜎′ 𝑧(𝐿)  

Nabla_b[-1] =
𝜕𝐶𝒙

𝜕𝒃(𝐿)
= 𝛿(𝐿) 

Nabla_w[-1]= 
𝜕𝐶𝒙

𝜕𝐰(𝐿)
= 𝜹(𝐿) 𝒂(𝐿−1)

𝑡
 

delta = 𝜹(𝑙)= 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)  

Calculate nabla_w, nabla_b for layer 2 from 
𝜹(𝑙)  



Tweak around 
 Learning rate: 0.001, 1.0, 100.0, … 

 Size of mini-batches: 10, 50, 100, … 

 Number of neurons in the hidden layer: 15, 30, 100, … 

 Number of hidden layers: 1, 2, 5, … 



Use Tensorflow in recognition of 
handwritten digits 
 Introduction to Tensorflow 

 A warm-up 

 A 2-layer NN (~92% recognition rate) 

 A 3-layer NN (~94% recognition rate) 

 A much better NN (~99% recognition rate) 

 



Introduction to Tensorflow 
 Tensorflow APIs 

 Low-level APIs --- Tensorflow Core that gives you a fine 
control 

 High-level APIs --- built upon the Core, which are more 
convenient and efficient to program with 

 Tensor --- a multi-dimensional array which is the 
central unit of data structure, e.g., [batch, height, 
width, channel] for image data. 

 Session --- encapsulation of the control and the state 
of Tensorflow runtime. 



Introduction to Tensorflow 
 To perform a specific computational task, one needs to 

 Build a computational graph 

 Run the computational graph 

 Computational graph is a directed graph with edges 
connecting nodes specifying the data flow. A node 
could be 

 A constant (no input) 

 A variable 

 A placeholder (reserved for input data) 



A warm-up exercise (tf_warmup.py) 
 Problem: 

 There is a linear model 𝑦 = 𝑤 ∙ 𝑥 + 𝑏, where 𝑤, 𝑏 are 
parameters of the model 

 Given a set of training data 
𝑥𝑖 , 𝑦𝑖 𝑖 = 1, 0 , 2,−1 , 3,−2 ,… , we need to find 

the values of 𝑤, 𝑏 so that the model “best” fits into the 
data 

 The criteria of “best fit” is minimization of a loss 

function 𝐶 =
1

𝑛
 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖

2
𝑖  

 



A simple method (tf_mnist_2layers.py)  
 A two-layer fully-connected 

network 

 Input: 28x28=784 

 Output: a vector of  

   10 elements  

𝑦𝑖 = 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑗

 



A simple method (cont.) 
 Training 
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Softmax cross entropy 
 Softmax(𝑦1, 𝑦2, … , 𝑦𝑛)=

1

 𝑒𝑦𝑖𝑖
𝑒𝑦1 , 𝑒𝑦2 , … , 𝑒𝑦𝑛  turns a 

vector of outputs into a probability distribution 

 Cross entropy between a prediction probability 
distribution 𝒚 and a true distribution 𝒚′ is defined as 

𝐻𝒚′ 𝒚 = − 𝑦𝑖
′𝑙𝑜𝑔 𝑦𝑖

𝑖

 

    Since 0 ≤ 𝑦𝑖 , 𝑦𝑖
′ ≤ 1, so 𝐻𝑦′ 𝑦 ≥ 0 

 Tf.nn.softmax_cross_entropy_with_logits 
 𝒚_ =Softmax(𝒚) 

 𝐻𝒚′ 𝒚_  



A simple method (cont.) 
 Use trained model 

 

arg
m

ax 

x 
prediction 



What’s learned 



Add a hidden layer (tf_mnist_3layers_*.py) 
 



A much better NN  
 Multilayer convolutional network 
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Some functions in TF 
 tf.nn.conv2d(input, filter, strides, padding, …) 

 input: 4D tensor [batch, height, width, channels] 

 filter: 4D tensor [f_height, f_width, in_channels, 
out_channels] 

 strides: 4D tensor  

 padding: “SAME’ or ‘VALID” 
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Discussions 
 Generalization, overfitting, regularization 

 Difference between deep NN and traditional NN 

 Why deep NN works much better 

 



Generalization, overfitting, 
regularization 
 Goal of machine learning: Generalization, i.e., 

learning general rules/patterns from training data) 

 Pitfall: overfitting, i.e., a learned model performs 
much worse on unseen data 

 Mechanism to prevent overfitting: regularization 

 Dropout layer 

 Monitoring performance with evaluation data during 
training process 



Difference between deep NN and 
traditional NN 
 Deeper: more hidden layers 

 Combination of unsupervised and supervised learning 
(autoencoder, a generative NN) 

 Better generalization and regularization mechanisms 

 More advanced layers/neurons: convolutional, 
pooling, … 



Why is deep NN so successful? 
 It can approximate arbitrary functions well 

 Features are extracted in a hierarchical way 

 Features extracted in lower layers are more concrete and 
local  

 Features extracted in higher layers are more abstract and 
global 

 Deep NN and cheap learning 


