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Part I 
 

Introduction to 
AI, Machine learning, and neural 

network 



Overview 
 What is AI? 

 What/how can a machine learn? 

 Machine learning methods with focus on deep 
learning 

 Caveats and pitfalls of machine learning 



Artificial Intelligence (AI) 
 What is AI 

 Def 1: Computer systems able to perform tasks that 
normally require human intelligence. 

 Def 2: intelligent machines that work and react like 
humans 

 Def 3 … : more on the internet… 



Artificial Intelligence (AI) 
 Are these in the domain of AI? 

 Computing 

 Database 

 Logical operations 

 … 



Artificial Intelligence (AI) 
Intelligent robot made by Boston Dynamics 

https://youtu.be/rVlhMGQgDkY 

 

AI system (my definition) 

 Is able to perform an intelligent task by learning from 
examples 

 We humans don’t know the explicit rules/instructions 
to perform the task 

 

https://youtu.be/rVlhMGQgDkY
https://youtu.be/rVlhMGQgDkY


Artificial Intelligence (AI) 
 

Speech Recognition 

Visual Perception 

Natural language understanding 

Machine Learning Knowledge representation 

Robotics 

Expert Systems 



Artificial Intelligence (AI) 
 History of AI 

 Brain vs computer 

• Memory 
• Information processing 

(Computing vs thinking) 
• Sensing 

(camera and microphone vs 
eyes and ears) 

• Responding 

Logic gates  
Bio-chemical 

operations 
??? 



Artificial Intelligence (AI) 
 What are minds? 

 What is thinking? 

 To what extent can computers have intelligence? 

Strong AI vs weak AI 

 



Artificial Intelligence (AI) 
 Computers don’t and won’t have  

 Passion, feeling, consciousness… 

 Inherent common sense 

 Motivation 

 Computers can be trained to do particular tasks (as 
good as humans or even better) 

 “Thinking is computing” 



How does Machine Learning work 
 What is learned by computer? 

A parameterized model used to perform a particular task. 

Task: to predict diabetes based on sugar intake x and 
hours of exercise y per day.  

y<b 

x>a 

x, y 

no 

no 
yes 

yes 

ND 

D 

ND 

Input: x, y 
Output: either D (Diabetes)  
               or       ND (not Diabetes) 
Parameters: a, b 



Machine Learning 
 How does a computer learn? 

Learns from (many) samples 

x 

y 

ND 
D 

a 

b 
y<b 

x>a 

x, y 

no 

no 
yes 

yes 

ND 

D 

ND 



Machine Learning 
 Learning becomes an optimization problem: 

Determine parameters (a, b) so that a pre-defined cost 
function (e.g., misclassification error) is minimized. 

 Training or learning is usually an iterative process 
where parameters are gradually changed to make the 
cost function smaller and smaller. 



Machine Learning 
 Basic concepts (cont’d) 

 Feature space  

 Decision boundary 

 

x 

y 

ND 
D 

a 

b 



Two categories of learning 
 Supervised learning  

Learn from annotated samples 

 

 

 

 

 

 

 

 

 Unsupervised learning 

Learn from samples without annotation 

Faces 

Non-faces 



Machine learning methods 
 Deep learning 

 Boosting  

 Support Vector Machine (SVM) 

 Naïve Bayes 

 Decision tree 

 Linear or logistic regression 

 K-nearest neighbours (KNN) 



Sample data 
 Basic concepts 

 Sample 

 Sample is defined as a vector of attributes (or features), each 
of which can be  

 Numerical 

 Categorical 

 Ordered 

 No order 

 Binary or Boolean 

 Label can be 

 Categorical (most often, binary) --- classification 

 Numerical --- regression 



Sample 
 Example of data sample 

 
Name Occupa

tion 
Smoking Sugar 

intake 
Hours of 
exercise 

… Glucose 
level 

Diabetes 

Peter Driver  Yes 100.0 5.5 … 80 No 

Nancy Teacher No 50.0 3 … 120 Yes 

… … … … … … … … 

Feature vector Annotation 



Performance measures 
 Basic concepts (cont’d) 

 Classification error 

 Binary classification 

 TP, TN, FP, FN  

 ROC curve 

 TPR = TP/(TP+FN), FPR =FP/(FP+TN)  



Performance measures 
 Basic concepts (cont’d) 

 Classification error 

 Multiclass classification 

 Confusion matrix 



Neural network and deep learning  
 Directed graph of neurons 



Neurons 
 Neurons 

 Linear weighted sum 

 Perceptron 

 Sigmoid 

 Rectified Linear Units (ReLu) 

 … 

 Layers: 
 Pooling  

 Convolution 

 Loss  

 … 

 



Linear weighted sum 
 𝑧 =  𝑤𝑗𝑥𝑗 = 𝒘

𝑡
𝑗 𝒙 

 



Perceptron 

 𝑧 =  
0, if  𝑤𝑗𝑥𝑗 ≤ 𝑇𝑗

1,       otherwise
 

 

 𝑧 =  
0, if 𝒘𝑡𝒙 + 𝑏 ≤ 0
1,       otherwise

 

 weights: 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑛)  

 bias: 𝑏 = −𝑇 

 



Sigmoid neuron 
𝜎 𝑧 =

1

1 + 𝑒−𝑧
 

where 𝑧 = 𝒘𝑡𝒙 + 𝑏 



Rectified Linear Units 
𝜎 𝑧 = max (0, 𝑧) 

where 𝑧 = 𝒘𝑡𝒙 + 𝑏 



Convolution layer 
 A set of learnable filters (or kernels) --- 2D array of 

weights 

 Each neuron (blue) of a filter has its receptive field 
(red) in the input image 

 Dot product between receptive field and a filter 



Pooling layer 
 Sub-sampling 

 

        Example of max pooling 



Architecture of neural network 
 



Train a neural network 
 Purpose: To determine the parameters of a given 

network so that it will produce desired outputs. 

 



How to achieve the training goal 
 Define a cost (objective) function to measure the 

performance of a NN, such as  

MSE =
1

𝑛
 𝑦𝑖 − 𝑔(𝒙𝑖)

2

𝑛

𝑖=1

 

   where 𝒙𝑖 and 𝑦𝑖 are the feature vector and label of the 
𝑖-th sample. 𝑔(𝒙𝑖) is the output of the NN. 

 𝑔(𝒙𝑖) depends on the parameters of the NN.  

 Gradient descent is used to find the values of these 
parameters that minimize the cost function. 



Gradient descent (1D function) 
𝑦 = 𝑓 𝑥 = 𝑥2 − 6𝑥 + 10 

 Starting 𝑥 = 6, we get 𝑦 = 10 

 𝑥 = 𝑥 ± ∆𝑥, where ∆𝑥 = 0.01, 
we get  
𝑦 = 9.9401 for 𝑥 = 5.99  

   and  

𝑦 = 10.0601 for 𝑥 = 6.01 

 𝑦′ = lim
∆𝑥→0

∆𝑦

∆𝑥
≈
0.0601

0.01
= 6.01 

where ∆𝑦 = 𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥) 

 Analytic 𝑦′ = 2𝑥 − 6 

x 

y 

6 

10 ∆𝑥 

∆𝑦 𝑦′ 



Gradient descent (2D function) 
𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 6𝑥 + 10 

 Starting 𝑥 = 6, 𝑦 = −2, we get 𝑧 = 14 

 Analytic: 
𝜕𝑧

𝜕𝑥
= 2𝑥 − 6,   

𝜕𝑧

𝜕𝑦
= 2𝑦  

 Gradient 𝛻𝑧 = (
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
) is the fastest ascending 

direction 

 Iteratively approaching with learning rate η = 0.01 
 Round #1: (𝑥, 𝑦) = (6,−2), we get 𝛻𝑧 = (6,−4) 

 Round #2: 𝑥, 𝑦 = 𝑥, 𝑦 − η𝛻𝑧 = (5.94,−1.96), we get 
𝛻𝑧 = (5.88,−3.92) 

 Round #3: …… 

 

x 

y 

z 



Train a neural network 
 Initialize the state of a neural network (by 

randomizing all the parameters) 

 Iterative process 

 Feed forward 

 Backpropagation (chain rule) 

 

f(x,y) 
g(q,z) 

x 

y 

z 

q 
p 

𝜕𝑝

𝜕𝑥
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑥
 

𝜕𝑝

𝜕𝑦
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑦
 

𝜕𝑝

𝜕𝑧
=
𝜕𝑝

𝜕𝑧
 



Chain rule of derivatives 
 



Wait a minute … 
 Questions 

 We want to minimize a cost function, not the output of 
NN 

 We want to tweak the parameters of NN, not the input 
data (x, y, z …) to do the minimization 

 Let change the roles … 
 Consider 𝑎, 𝑏, … , 𝑓 as variables in 𝑧 = 𝑓 𝑥, 𝑦 = 𝑎𝑥2 +
𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 

 The cost function C is a function of the output and 

ground truth so that we can compute 
𝜕𝐶

𝜕𝑎
,
𝜕𝐶

𝜕𝑏
,…, 
𝜕𝐶

𝜕𝑓
,  

 Apply gradient descent on 𝑎, 𝑏, … , 𝑓 the same way 

 

 



Training a neural network 
 Cost function 𝐶(𝒘, 𝒃) =

1

𝑛
 𝐶𝑖
𝑛
𝑖=1 = 𝑦𝑖 − 𝑔(𝒙𝑖)

2, 

where 𝒘, 𝒃 are the weights and biases of NN. 

 𝛻𝐶 =
1

𝑛
 𝛻𝐶𝑖
𝑛
𝑖=1 , 𝑛 is the number of training samples 

 𝛻𝐶 ≈
1

𝑚
 𝛻𝐶𝑖
𝑚
𝑖=1 , randomly divide training set into 

small subsets (mini-batches), each of which contains 
𝑚 ≪ 𝑛 samples. An epoch is one complete pass going 
through all the mini-batches. 

 Training with mini-batches is called stochastic 
gradient descent (SGD)  



Caveats and pitfalls 
 Feature selection 

 Relevance  
 Redundancy 

 Sample data 
 Mislabeling 
 Outliers 

 Overfitting 
 Small training set 
 Low-quality training data 
 Over-training 

 Confidence level of classification 
 Re-tune a trained model to operate on a different position 

on the ROC curve 



Part II 
 

Case Study: 
Recognition of hand-written digits 



Tasks 
 Write our own NN code 

 Use DL libraries (Tensorflow) 



Four elements in deep learning 
 Datasets (for training, testing …) 

 Design of a neural network 

 Cost function that training tries to minimize 

 Training method(solver or optimizer, such as SGD, 
AdaDelta, Adaptive Gradient, etc) 



Dataset of handwritten digits 
 Dataset (http://yann.lecun.com/exdb/mnist/) 

 60,000 training samples 

 10,000 testing samples 

 Each sample is 28x28 gray scale image with a label 
telling what digit it is. 

 The label (0, 1, …, 9) is vectorized as a “one-hot” vector, 
e.g., [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] represents 3. 

 checkdata.py 

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Dataset of handwritten digits 
 

One-hot vectorized label: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 



Architecture of neural network 
 Multilayer Perceptron (MLP) or fully connected NN 

 Input: 28x28=784 

 One hidden layer 

 Output: a vector of  

   10 elements  



Architecture of neural network 
 Multilayer perceptron (MLP) 

argmax 



Cost function 
 Some notations 

𝑤𝑗,𝑘
(𝑙)

 denotes the weight of the connection between the 𝑘𝑡ℎ 

neuron in the (𝑙 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ 

layer. Similarly, we define bias 𝑏𝑗
(𝑙)

, weighted sum+bias 𝑧𝑗
(𝑙)

, 

and activation 𝑎𝑗
(𝑙)
= 𝜎 𝑧𝑗

(𝑙)
 at the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ 

layer. 



Cost function 
 Given a input (𝒙, 𝒚) 

 Feedforward calculation  

    𝑧𝑗
(𝑙)
=  𝑤𝑗,𝑘

(𝑙)
𝑘 𝑎𝑘

(𝑙−1)
+ 𝑏𝑗
(𝑙)

 or 𝒛(𝑙) = 𝐰(𝑙)𝒂(𝑙−1) + 𝒃(𝑙) 

𝑎𝑗
(𝑙)
= 𝜎(𝑧𝑗

(𝑙)
) or 𝒂(𝑙) = 𝜎 𝒛(𝑙)  

When 𝑙 = 1, 𝑎𝑗
(1)
= 𝑥𝑗 

 Cost function (quadratic function, MSE) 

    𝐶 =
1

𝑚
 𝐶𝒙𝒙 ,   where 

𝐶𝒙 = 𝒂
𝐿 𝒙 − 𝒚

2
=  𝑎𝑗

(𝐿)
− 𝑦𝑗

2
10
𝑗=1 , 𝐿 is the number of 

layers of NN (𝐿 = 3 in this case).  

 

 



As if there is an extra node   

𝒂(𝟑) − 𝒚
2
 

𝑦 



Backpropagation 
 C depends (indirectly) on 𝑤𝑗,𝑘

(𝑙)
, 𝑏𝑗
(𝑙)

 where  

𝑙 ∈ 2, 3  

 𝑗, 𝑘 ∈  
1: 30 , [1: 784] , if 𝑙 = 2

1: 10 , [1: 30] , if 𝑙 = 3
 

 ∆𝐶 ≈  
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ∆𝑤𝑗,𝑘

(𝑙)
+  

𝜕𝐶

𝜕𝑏
𝑗
(𝑙) ∆𝑏𝑗

(𝑙)
 

 If we can calculate 
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ,   

𝜕𝐶

𝜕𝑏
𝑗
(𝑙), then we will 

know how to change each of these parameters 
𝑤𝑗,𝑘
(𝑙)
, 𝑏𝑗
(𝑙)

 to make C smaller. 



Backpropagation 
 Loop over 𝑚 samples, then calculate the average: 

    
𝜕𝐶

𝜕𝑤𝑗,𝑘
(𝑙) =

1

𝑚
 
𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙) 𝒙  ,    

𝜕𝐶

𝜕𝑏𝑗
(𝑙) =

1

𝑚
 
𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙) 𝒙  

 Let’s define 𝛿𝑗
(𝑙)
≡
𝜕𝐶𝒙

𝜕𝑧𝑗
(𝑙) be the error of neuron 𝑗 on layer 𝑙, or  

    𝜹(𝑙) = 𝛿1
(𝑙)
, 𝛿2
(𝑙)
, …
𝑡
 be the error of layer 𝑙. 

 Since 𝒛(𝑙+1) = 𝐰(𝑙+1)𝒂(𝑙) + 𝒃 𝑙+1 = 𝐰(𝑙+1)𝜎 𝒛(𝑙) + 𝒃(𝑙+1), we 
can get  

𝜹(𝑙) = 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)  

where ⊙ is Hadamard product operator (element-wise 
multiplication) 
 This means we can pass the error backward  

𝜹(𝐿) → 𝜹(𝐿−1) → ⋯ → 𝜹 2  



Backpropagation 
 Then what if we know 𝜹(𝑙) … 

𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)

 

𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝑎𝑘
(𝑙−1)

 

or 
𝜕𝐶𝒙
𝜕𝒃(𝑙)
= 𝜹(𝑙) 

𝜕𝐶𝒙
𝜕𝐰(𝑙)
= 𝜹(𝑙) 𝒂(𝑙−1)

𝑡
 



Backpropagation 
Backpropagation starts at layer 𝐿 = 3  

𝛿𝑗
(𝐿)
=
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
𝜎′ 𝑧𝑗

𝐿
 

where  
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
= 2 𝑎𝑗

(𝐿)
− 𝑦𝑗  

Or   

𝛿(𝐿) = 𝑎𝑗
(𝐿)
− 𝑦𝑗 ⊙𝜎′ 𝑧

(𝐿)  

     



Two passes  

Backpropagation 

𝒂 − 𝒚 2 

𝑦 

𝜹(2)        ⃪        𝜹 3  

            ↓ 
𝜕𝐶𝒙
𝜕𝐰(3)

,
𝜕𝐶𝒙
𝜕𝒃(3)

 

Feed forward 

            ↓ 
𝜕𝐶𝒙
𝜕𝐰(2)

,
𝜕𝐶𝒙
𝜕𝒃(2)

 



Write our own NN code 
 Assuming 30 neurons in the hidden layer 

Architecture: 
    self.num_layers = 3 
    self.sizes = [784, 30, 10] 
Parameters: 
    self.weights = [[30x784], [10x30]] 
    self.biases = [30, 10] 
 
We need to determine the values of these  
           30x784 + 10x30 + 30 + 10 = 23860 parameters  
through a training process. 

How? 
In each iteration of the training process 
• Feedforward 
• Backpropagation 



Training 
 train.py 

import mnist_loader 
import network  
 
# load reformatted data. 
training_data, validation_data, test_data = mnist_loader.load_data_wrapper() 
 
# define the NN 
net = network.Network([784, 30, 10]) 
 
# train with Stochastic Gradient Descent 
net.SGD(training_data, 30, 10, 3.0, test_data=test_data) 
 
NOTE: 
training_data is a list of 50000 tuples, each of which is ([784], [10]) 



Class “Network” (network.py) 
 __init__(self, sizes) initialize parameters with random 

numbers 

 feedforward(self, a) takes ‘a’ as input and return the 
output of the NN. 

 evaluate(self, test_data) evaluates the performance of 
the NN. 

 SGD(self, training_data, epochs, mini_batch_size, eta, 
test_data=None) 

 update_mini_batch(self, mini_batch, eta) 

 twopasses(self, x, y) 



Two helper functions 

def sigmoid(z): 
    """The sigmoid function.""" 
    return 1.0/(1.0+np.exp(-z)) 
 
def sigmoid_prime(z): 
    """Derivative of the sigmoid function.""" 
    return sigmoid(z)*(1-sigmoid(z)) 
 

𝜎 𝑧 =  
1

1 + 𝑒−𝑧
 

𝜎′ 𝑧 = 𝜎 𝑧 (1 − 𝜎 𝑧 ) 



Functions of Network 
def feedforward(self, x): 
        for b, w in zip(self.biases, self.weights): 
            x = sigmoid(np.dot(w, x)+b) 
        return x 
 
def evaluate(self, test_data): 
        test_results = [(np.argmax(self.feedforward(x)), y) \ 
                        for (x, y) in test_data] 
        return sum(int(x == y) for (x, y) in test_results) 
 

NOTE: 
self.weights = [[30,784], [10, 30]] 
self.biases = [30, 10] 
𝒙=[784] is passed in as argument 

In loop #1: 
• 𝒘𝑡 = [30, 784], 𝒃 = [30] 
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃)  → 𝒙=[30] 
 
In loop #2: 
•  𝒘𝑡 = [10, 30], 𝒃 = [10] 
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃) → 𝒙=[10] 
 



Functions of Network 
def SGD(self, training_data, epochs, mini_batch_size,  
           eta, test_data=None): 
        if test_data: n_test = len(test_data) 
        n = len(training_data) 
        for j in xrange(epochs): 
            random.shuffle(training_data) 
            mini_batches = [ 
                training_data[k:k+mini_batch_size] 
                for k in xrange(0, n, mini_batch_size)] 
            for mini_batch in mini_batches: 
                self.update_mini_batch(mini_batch, eta) 
            if test_data: 
                print "Epoch {0}: {1} / {2}".format( 
                    j, self.evaluate(test_data), n_test) 
            else: 
                print "Epoch {0} complete".format(j) 

NOTE: 
epochs=30, mini_batch_size = 10 
eta (or η)=3.0 learning rate 
 

Generate 5000 randomized 
mini-batches 
 

Update weights and biases by 
learning from each batch 
 
If test data is provided, then 
evaluate the performance of 
the current NN 
 



Functions of Network 
def update_mini_batch(self, mini_batch, eta): 
        nabla_b = [np.zeros(b.shape) for b in self.biases] 
        nabla_w = [np.zeros(w.shape) for w in self.weights] 
        for x, y in mini_batch: 
            delta_nabla_b, delta_nabla_w = self.twopasses(x, y) 
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] 
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] 
        self.weights = [w-(eta/len(mini_batch))*nw 
                        for w, nw in zip(self.weights, nabla_w)] 
        self.biases = [b-(eta/len(mini_batch))*nb 
                       for b, nb in zip(self.biases, nabla_b)] 

nabla_w=

𝜕𝐶

𝜕𝑤1,1
(2) ⋯

𝜕𝐶

𝜕𝑤1,784
(2)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤30,1
(2) ⋯

𝜕𝐶

𝜕𝑤30,784
(2)

,

𝜕𝐶

𝜕𝑤1,1
(3) ⋯

𝜕𝐶

𝜕𝑤1,30
(3)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤10,1
(3) ⋯

𝜕𝐶

𝜕𝑤10,30
(3)

 

 
nabla_b=

𝜕𝐶

𝜕𝑏1
(2) , … ,

𝜕𝐶

𝜕𝑏30
(2) ,

𝜕𝐶

𝜕𝑏1
(3) , … ,

𝜕𝐶

𝜕𝑏10
(3)  

𝐰, 𝒃 = 𝐰, 𝒃 + η
1

𝑚
 𝛻𝐶𝑖

𝑚

𝑖=1

 

 

𝛻𝐶𝑖  
 

 𝛻𝐶𝑖

𝑚

𝑖=1

 



Functions of Network 
def twopasses(self, x, y): 
        nabla_b = [np.zeros(b.shape) for b in self.biases] 
        nabla_w = [np.zeros(w.shape) for w in self.weights] 
        # feedforward 
        activation = x 
        activations = [x] # list to store all the activations, layer by layer 
        zs = [] # list to store all the z vectors, layer by layer 
        for b, w in zip(self.biases, self.weights): 
            z = np.dot(w, activation)+b 
            zs.append(z) 
            activation = sigmoid(z) 
            activations.append(activation) 
        # backward pass 
        delta = (activations[-1] - y) * sigmoid_prime(zs[-1]) 
        nabla_b[-1] = delta 
        nabla_w[-1] = np.dot(delta, activations[-2].transpose()) 
        for l in xrange(2, self.num_layers): 
            z = zs[-l] 
            sp = sigmoid_prime(z) 
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp 
            nabla_b[-l] = delta 
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) 
        return (nabla_b, nabla_w) 

𝛻𝐶𝑖  that depends on a 
single sample (x, y) 

Feedforward pass: 
𝑧 = 𝒘𝑡𝒙 + 𝑏 → zs[] 

𝜎 𝑧 =  
1

1+𝑒−𝑧
→ activations[] 

Backpropagation pass: 
delta= 𝛿(𝐿) =

𝜕𝐶𝒙

𝜕𝒂(𝐿)
⊙𝜎′ 𝑧(𝐿)  

Nabla_b[-1] =
𝜕𝐶𝒙

𝜕𝒃(𝐿)
= 𝛿(𝐿) 

Nabla_w[-1]= 
𝜕𝐶𝒙

𝜕𝐰(𝐿)
= 𝜹(𝐿) 𝒂(𝐿−1)

𝑡
 

delta = 𝜹(𝑙)= 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)  

Calculate nabla_w, nabla_b for layer 2 from 
𝜹(𝑙)  



Tweak around 
 Learning rate: 0.001, 1.0, 100.0, … 

 Size of mini-batches: 10, 50, 100, … 

 Number of neurons in the hidden layer: 15, 30, 100, … 

 Number of hidden layers: 1, 2, 5, … 



Use Tensorflow in recognition of 
handwritten digits 
 Introduction to Tensorflow 

 A warm-up 

 A 2-layer NN (~92% recognition rate) 

 A 3-layer NN (~94% recognition rate) 

 A much better NN (~99% recognition rate) 

 



Introduction to Tensorflow 
 Tensorflow APIs 

 Low-level APIs --- Tensorflow Core that gives you a fine 
control 

 High-level APIs --- built upon the Core, which are more 
convenient and efficient to program with 

 Tensor --- a multi-dimensional array which is the 
central unit of data structure, e.g., [batch, height, 
width, channel] for image data. 

 Session --- encapsulation of the control and the state 
of Tensorflow runtime. 



Introduction to Tensorflow 
 To perform a specific computational task, one needs to 

 Build a computational graph 

 Run the computational graph 

 Computational graph is a directed graph with edges 
connecting nodes specifying the data flow. A node 
could be 

 A constant (no input) 

 A variable 

 A placeholder (reserved for input data) 



A warm-up exercise (tf_warmup.py) 
 Problem: 

 There is a linear model 𝑦 = 𝑤 ∙ 𝑥 + 𝑏, where 𝑤, 𝑏 are 
parameters of the model 

 Given a set of training data 
𝑥𝑖 , 𝑦𝑖 𝑖 = 1, 0 , 2,−1 , 3,−2 ,… , we need to find 

the values of 𝑤, 𝑏 so that the model “best” fits into the 
data 

 The criteria of “best fit” is minimization of a loss 

function 𝐶 =
1

𝑛
 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖

2
𝑖  

 



A simple method (tf_mnist_2layers.py)  
 A two-layer fully-connected 

network 

 Input: 28x28=784 

 Output: a vector of  

   10 elements  

𝑦𝑖 = 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑗

 



A simple method (cont.) 
 Training 
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Softmax cross entropy 
 Softmax(𝑦1, 𝑦2, … , 𝑦𝑛)=

1

 𝑒𝑦𝑖𝑖
𝑒𝑦1 , 𝑒𝑦2 , … , 𝑒𝑦𝑛  turns a 

vector of outputs into a probability distribution 

 Cross entropy between a prediction probability 
distribution 𝒚 and a true distribution 𝒚′ is defined as 

𝐻𝒚′ 𝒚 = − 𝑦𝑖
′𝑙𝑜𝑔 𝑦𝑖

𝑖

 

    Since 0 ≤ 𝑦𝑖 , 𝑦𝑖
′ ≤ 1, so 𝐻𝑦′ 𝑦 ≥ 0 

 Tf.nn.softmax_cross_entropy_with_logits 
 𝒚_ =Softmax(𝒚) 

 𝐻𝒚′ 𝒚_  



A simple method (cont.) 
 Use trained model 
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What’s learned 



Add a hidden layer (tf_mnist_3layers_*.py) 
 



A much better NN  
 Multilayer convolutional network 
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Some functions in TF 
 tf.nn.conv2d(input, filter, strides, padding, …) 

 input: 4D tensor [batch, height, width, channels] 

 filter: 4D tensor [f_height, f_width, in_channels, 
out_channels] 

 strides: 4D tensor  

 padding: “SAME’ or ‘VALID” 
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Discussions 
 Generalization, overfitting, regularization 

 Difference between deep NN and traditional NN 

 Why deep NN works much better 

 



Generalization, overfitting, 
regularization 
 Goal of machine learning: Generalization, i.e., 

learning general rules/patterns from training data) 

 Pitfall: overfitting, i.e., a learned model performs 
much worse on unseen data 

 Mechanism to prevent overfitting: regularization 

 Dropout layer 

 Monitoring performance with evaluation data during 
training process 



Difference between deep NN and 
traditional NN 
 Deeper: more hidden layers 

 Combination of unsupervised and supervised learning 
(autoencoder, a generative NN) 

 Better generalization and regularization mechanisms 

 More advanced layers/neurons: convolutional, 
pooling, … 



Why is deep NN so successful? 
 It can approximate arbitrary functions well 

 Features are extracted in a hierarchical way 

 Features extracted in lower layers are more concrete and 
local  

 Features extracted in higher layers are more abstract and 
global 

 Deep NN and cheap learning 


