Deep Learning for Beginners

Weiguang Guan guanw@sharcnet.ca

Code & data: guanw.sharcnet.ca/ss2017-deeplearning.tar.gz

SHARCNET"

Outline

- Part I: Introduction
 - Overview of machine learning and AI
 - Introduction to neural network and deep learning (DL)
- Part II: Case study Recognition of handwritten digits
 - Write our own DL code
 - Use a DL library

Reference

- "Deep Learning Tutorial" by Yann LeCun, <u>http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf</u>
- "Deep Learning Tutorial" by Yoshua Bengio, <u>http://deeplearning.net/tutorial/deeplearning.pdf</u>
- "Neural Networks and Deep Learning" by Michael Nielsen, <u>http://neuralnetworksanddeeplearning.com</u>

ONTARIO SUMMER SCHOOL ON HIPC 2017

Part I

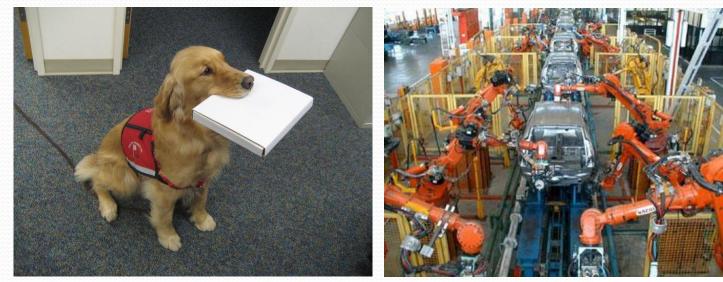
Introduction to AI, Machine learning, and neural network

Overview

- What is AI?
- What/how can a machine learn?
- Machine learning methods with focus on deep learning
- Caveats and pitfalls of machine learning

- What is AI
 - Def 1: Computer systems able to perform tasks that normally require human intelligence.
 - Def 2: intelligent machines that work and react like humans
 - Def 3 ... : more on the internet...

- Are these in the domain of AI?
 - Computing
 - Database
 - Logical operations



Intelligent robot made by Boston Dynamics <u>https://youtu.be/rVlhMGQgDkY</u>

AI system (my definition)

- Is able to perform an intelligent task by learning from examples
- We humans don't know the explicit rules/instructions to perform the task

Speech Recognition

Natural language understanding

Robotics

Artificial Intelligence

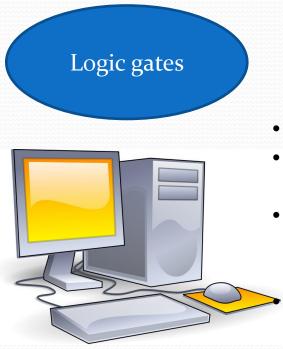
Machine Learning

Knowledge representation

Visual Perception

Expert Systems

- History of AI
- Brain vs computer



- Memory
- Information processing (Computing vs thinking)
- Sensing

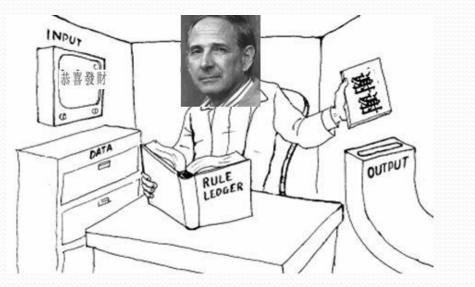
 (camera and microphone vs eyes and ears)

 Responding

Bio-chemical operations ???

- What are minds?
- What is thinking?
- To what extent can computers have intelligence?

Strong AI vs weak AI



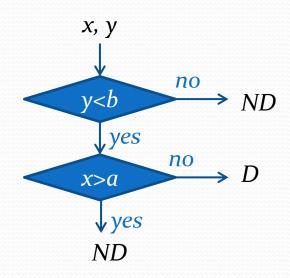
Chinese room

- Computers don't and won't have
 - Passion, feeling, consciousness...
 - Inherent common sense
 - Motivation
- Computers can be trained to do particular tasks (as good as humans or even better)
- "Thinking is computing"

How does Machine Learning work

• What is learned by computer?

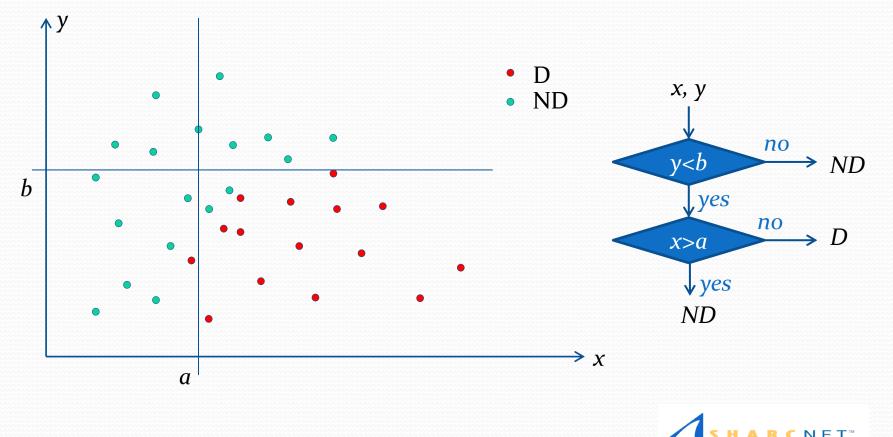
A parameterized model used to perform a particular task. Task: to predict diabetes based on sugar intake *x* and hours of exercise *y per day*.



Input: *x*, *y* Output: either D (Diabetes) or ND (not Diabetes) Parameters: *a*, *b*

Machine Learning

• How does a computer learn? Learns from (many) samples

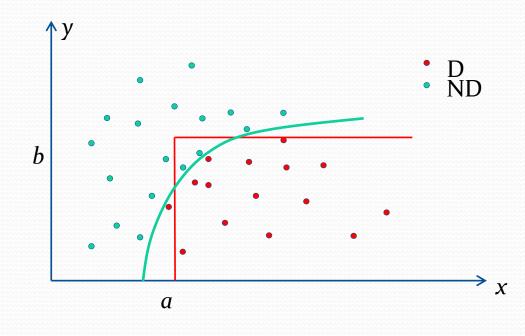


Machine Learning

- Learning becomes an optimization problem:
 Determine parameters (*a*, *b*) so that a pre-defined cost function (e.g., misclassification error) is minimized.
- Training or learning is usually an iterative process where parameters are gradually changed to make the cost function smaller and smaller.

Machine Learning

- Basic concepts (cont'd)
 - Feature space
 - Decision boundary



Two categories of learning

Supervised learning

Learn from annotated samples

C N E T[™]

Unsupervised learning

Learn from samples without annotation

Machine learning methods

- Deep learning
- Boosting
- Support Vector Machine (SVM)
- Naïve Bayes
- Decision tree
- Linear or logistic regression
- K-nearest neighbours (KNN)

Sample data

- Basic concepts
 - Sample
 - Sample is defined as a vector of attributes (or features), each of which can be
 - Numerical
 - Categorical
 - Ordered
 - No order
 - Binary or Boolean
 - Label can be
 - Categorical (most often, binary) --- classification
 - Numerical --- regression

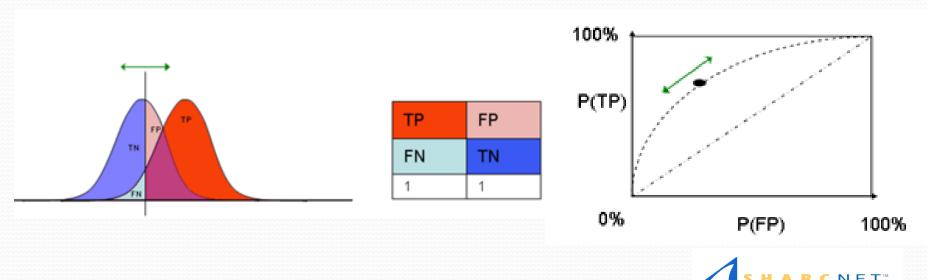
Sample

• Example of data sample

Name	Occupa tion	Smoking	Sugar intake	Hours of exercise	•••	Glucose level	Diabetes
Peter	Driver	Yes	100.0	5.5	•••	80	No
Nancy	Teacher	No	50.0	3	•••	120	Yes
					•••	•••	
			γ]				
		Annotation					

Performance measures

- Basic concepts (cont'd)
 - Classification error
 - Binary classification
 - TP, TN, FP, FN
 - ROC curve
 - TPR = TP/(TP+FN), FPR = FP/(FP+TN)



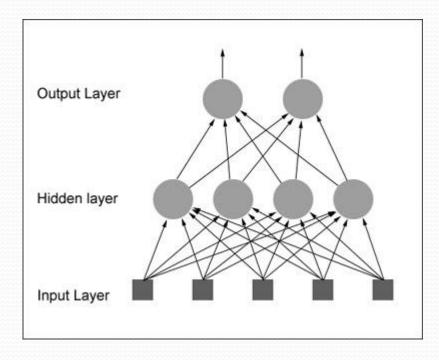
Performance measures

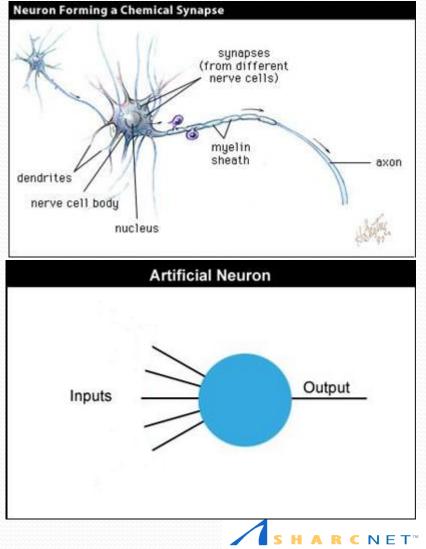
- Basic concepts (cont'd)
 - Classification error
 - Multiclass classification
 - Confusion matrix

		Predicted				
		Cat	Dog	Rabbit		
	Cat	5	3	0		
Actual class	Dog	2	3	1		
×۷	Rabbit	0	2	11		

Neural network and deep learning

• Directed graph of neurons



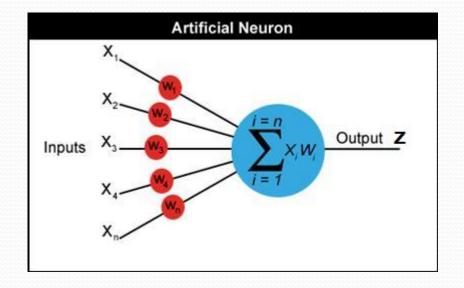


Neurons

- Neurons
 - Linear weighted sum
 - Perceptron
 - Sigmoid
 - Rectified Linear Units (ReLu)
 - ...
- Layers:
 - Pooling
 - Convolution
 - Loss

Linear weighted sum

•
$$z = \sum_j w_j x_j = \boldsymbol{w}^t \boldsymbol{x}_j$$

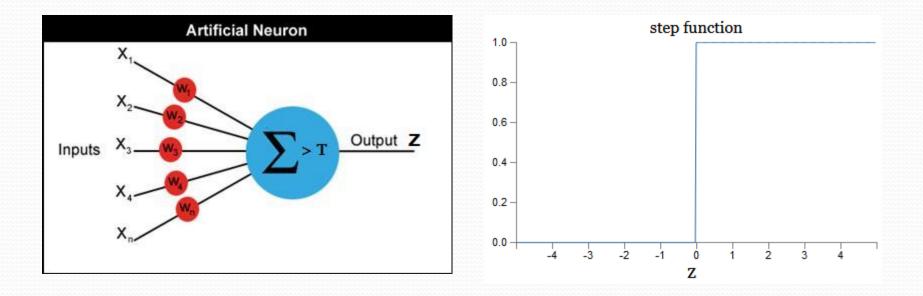


Perceptron

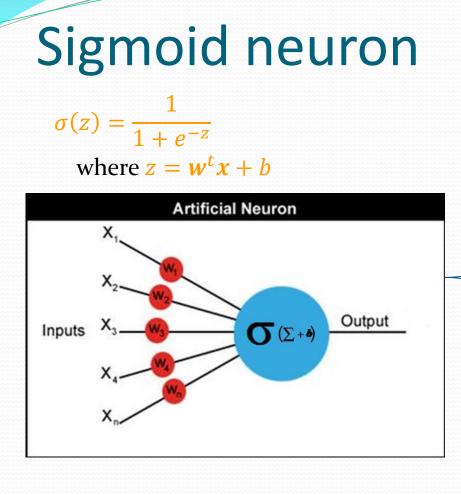
•
$$z = \begin{cases} 0, \text{ if } \sum_{j} w_j x_j \leq T \\ 1, & \text{otherwise} \end{cases}$$

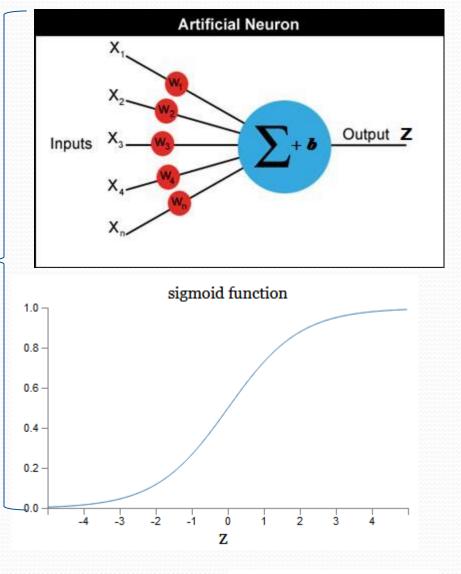
• $z = \begin{cases} 0, \text{ if } \boldsymbol{w}^t \boldsymbol{x} + b \leq 0 \\ 1, & \text{otherwise} \end{cases}$ • weights: $\boldsymbol{w} = (w_1, w_2, \dots, w_n)$

• bias: b = -T



S H A R C N E T

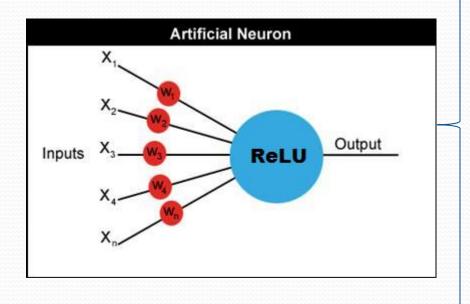


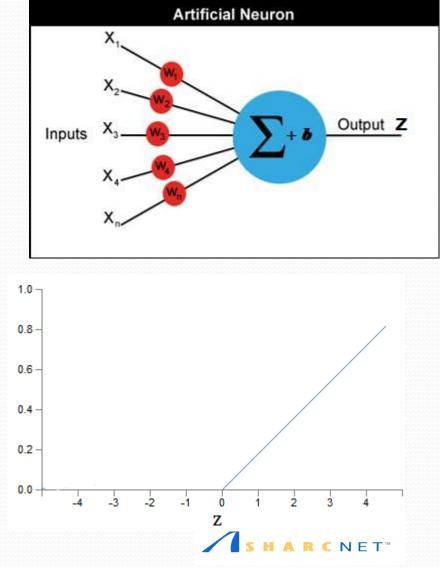


S H A R C N E T

Rectified Linear Units

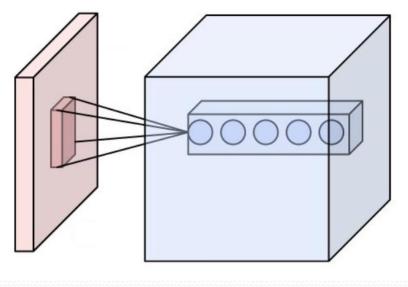
 $\sigma(z) = \max(0, z)$ where $z = w^t x + b$





Convolution layer

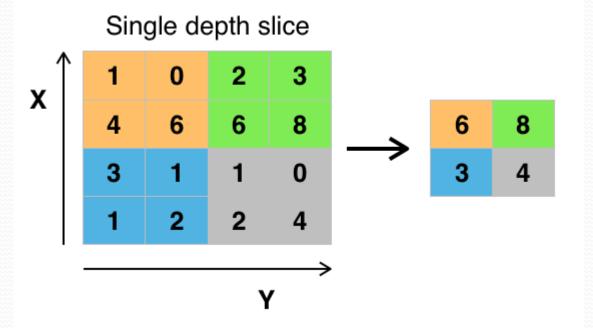
- A set of learnable filters (or kernels) --- 2D array of weights
- Each neuron (blue) of a filter has its receptive field (red) in the input image
- Dot product between receptive field and a filter



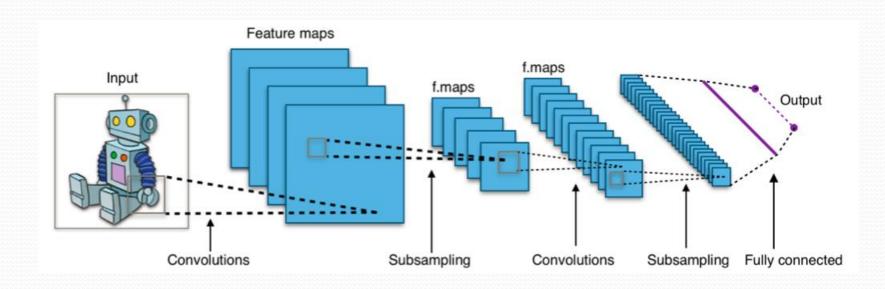
Pooling layer

Sub-sampling

Example of max pooling

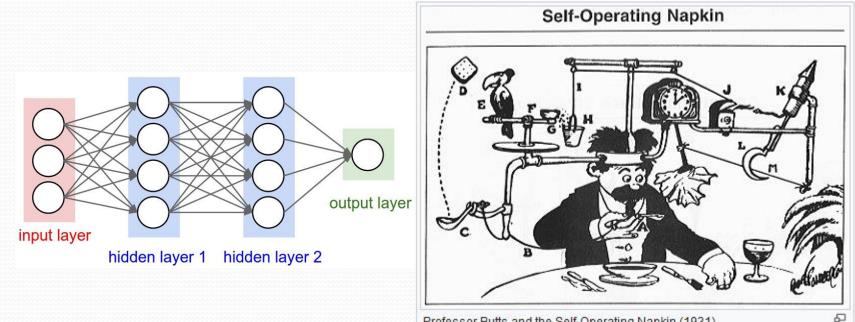


Architecture of neural network



Train a neural network

• Purpose: To determine the parameters of a given network so that it will produce desired outputs.



Professor Butts and the Self-Operating Napkin (1931)

How to achieve the training goal

• Define a cost (objective) function to measure the performance of a NN, such as

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - g(x_i))^2$$

where x_i and y_i are the feature vector and label of the *i*-th sample. $g(x_i)$ is the output of the NN.

- $g(\mathbf{x}_i)$ depends on the parameters of the NN.
- Gradient descent is used to find the values of these parameters that minimize the cost function.

Gradient descent (1D function)

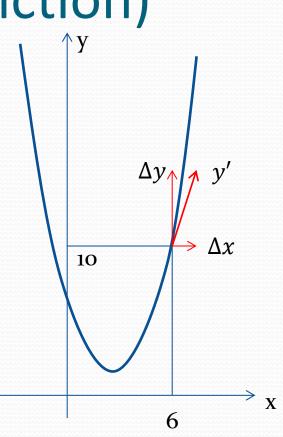
$$y = f(x) = x^2 - 6x + 10$$

- Starting x = 6, we get y = 10
- $x = x \pm \Delta x$, where $\Delta x = 0.01$, we get

$$y = 10.0601 \text{ for } x = 6.01$$

 $y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \approx \frac{0.0601}{0.01} = 6.01$
where $\Delta y = f(x + \Delta x) - f(x)$

• Analytic y' = 2x - 6



Gradient descent (2D function)

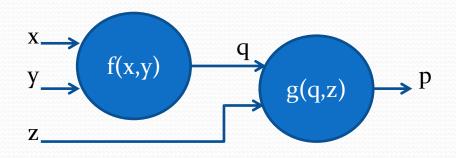
Z

$$z = f(x, y) = x^2 + y^2 - 6x + 10$$

- Starting x = 6, y = -2, we get z = 14
- Analytic: $\frac{\partial z}{\partial x} = 2x 6$, $\frac{\partial z}{\partial y} = 2y$
- Gradient $\nabla z = \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$ is the fastest ascending direction
- Iteratively approaching with learning rate $\eta = 0.01$
 - Round #1: (x, y) = (6, -2), we get $\nabla z = (6, -4)$
 - Round #2: $(x, y) = (x, y) \eta \nabla z = (5.94, -1.96)$, we get $\nabla z = (5.88, -3.92)$
 - Round #3:

Train a neural network

- Initialize the state of a neural network (by randomizing all the parameters)
- Iterative process
 - Feed forward
 - Backpropagation (chain rule)



$$\frac{\partial p}{\partial x} = \frac{\partial p}{\partial q} \frac{\partial q}{\partial x}$$
$$\frac{\partial p}{\partial y} = \frac{\partial p}{\partial q} \frac{\partial q}{\partial y}$$
$$\frac{\partial p}{\partial z} = \frac{\partial p}{\partial z}$$

Chain rule of derivatives

$$p = f(x, y, z)$$
$$x = x(u, v, w)$$
$$y = y(u, v, w)$$
$$z = z(u, v, w)$$

$$\frac{\partial p}{\partial u} = \frac{\partial p}{\partial x} * \frac{\partial x}{\partial u} + \frac{\partial p}{\partial y} * \frac{\partial y}{\partial u} + \frac{\partial p}{\partial z} * \frac{\partial z}{\partial u}$$
$$\frac{\partial p}{\partial v} = \frac{\partial p}{\partial x} * \frac{\partial x}{\partial v} + \frac{\partial p}{\partial y} * \frac{\partial y}{\partial v} + \frac{\partial p}{\partial z} * \frac{\partial z}{\partial v}$$
$$\frac{\partial p}{\partial w} = \frac{\partial p}{\partial x} * \frac{\partial x}{\partial w} + \frac{\partial p}{\partial y} * \frac{\partial y}{\partial w} + \frac{\partial p}{\partial z} * \frac{\partial z}{\partial w}$$

S H A R C N E T

Wait a minute ...

- Questions
 - We want to minimize a cost function, not the output of NN
 - We want to tweak the parameters of NN, not the input data (x, y, z ...) to do the minimization
- Let change the roles ...
 - Consider a, b, ..., f as variables in $z = f(x, y) = ax^2 + by^2 + cxy + dx + ey + f$
 - The cost function C is a function of the output and ground truth so that we can compute $\frac{\partial C}{\partial a}, \frac{\partial C}{\partial b}, \dots, \frac{\partial C}{\partial f}, \frac{\partial C}{\partial f}, \dots, \frac{\partial C}{\partial f}$
 - Apply gradient descent on *a*, *b*, ..., *f* the same way

Training a neural network

- Cost function $C(\boldsymbol{w}, \boldsymbol{b}) = \frac{1}{n} \sum_{i=1}^{n} C_i = (y_i g(\boldsymbol{x}_i))^2$, where $\boldsymbol{w}, \boldsymbol{b}$ are the weights and biases of NN.
- $\nabla C = \frac{1}{n} \sum_{i=1}^{n} \nabla C_i$, *n* is the number of training samples
- $\nabla C \approx \frac{1}{m} \sum_{i=1}^{m} \nabla C_i$, randomly divide training set into small subsets (mini-batches), each of which contains $m \ll n$ samples. An epoch is one complete pass going through all the mini-batches.
- Training with mini-batches is called stochastic gradient descent (SGD)

Caveats and pitfalls

- Feature selection
 - Relevance
 - Redundancy
- Sample data
 - Mislabeling
 - Outliers
- Overfitting
 - Small training set
 - Low-quality training data
 - Over-training
- Confidence level of classification
- Re-tune a trained model to operate on a different position on the ROC curve

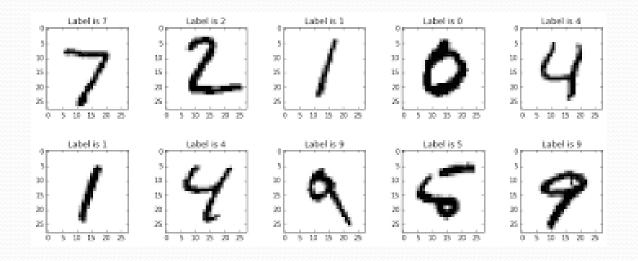
ONTARIO SUMMER SCHOOL ON HIPC 2017

Part II

Case Study: Recognition of hand-written digits

Tasks

- Write our own NN code
- Use DL libraries (Tensorflow)



Four elements in deep learning

- Datasets (for training, testing ...)
- Design of a neural network
- Cost function that training tries to minimize
- Training method(solver or optimizer, such as SGD, AdaDelta, Adaptive Gradient, etc)

Dataset of handwritten digits

- Dataset (<u>http://yann.lecun.com/exdb/mnist/</u>)
 - 60,000 training samples
 - 10,000 testing samples
 - Each sample is 28x28 gray scale image with a label telling what digit it is.
 - The label (0, 1, ..., 9) is vectorized as a "one-hot" vector, e.g., [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] represents 3.
- checkdata.py

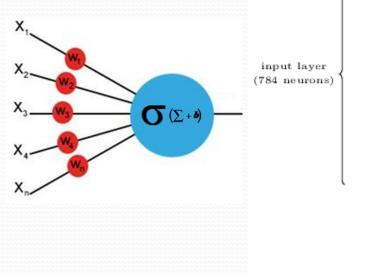
Dataset of handwritten digits

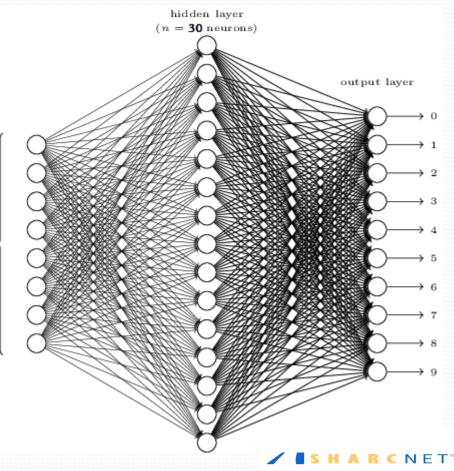
		Γο	0	0	0	0	0	0	0	0	0	0	0	0	0	
ł	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	.6	.8	0	0	0	0	0	0	
		0	0	0	0	0	0	.7	1	0	0	0	0	0	0	
		0	0	0	0	0	0	.7	1	0	0	0	0	0	0	
		0	0	0	0	0	0	.5	1	.4	0	0	0	0	0	
		0	0	0	0	0	0	0	1	.4	0	0	0	0	0	
		0	0	0	0	0	0	0	1	.4	0	0	0	0	0	
		0	0	0	0	0	0	0	1	.7	0	0	0	0	0	
		0	0	0	0	0	0	0	1	1	0	0	0	0	0	
		0	0	0	0	0	0	0	.9	1	.1	0	0	0	0	
		0	0	0	0	0	0	0	.3	1	.1	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	

One-hot vectorized label: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

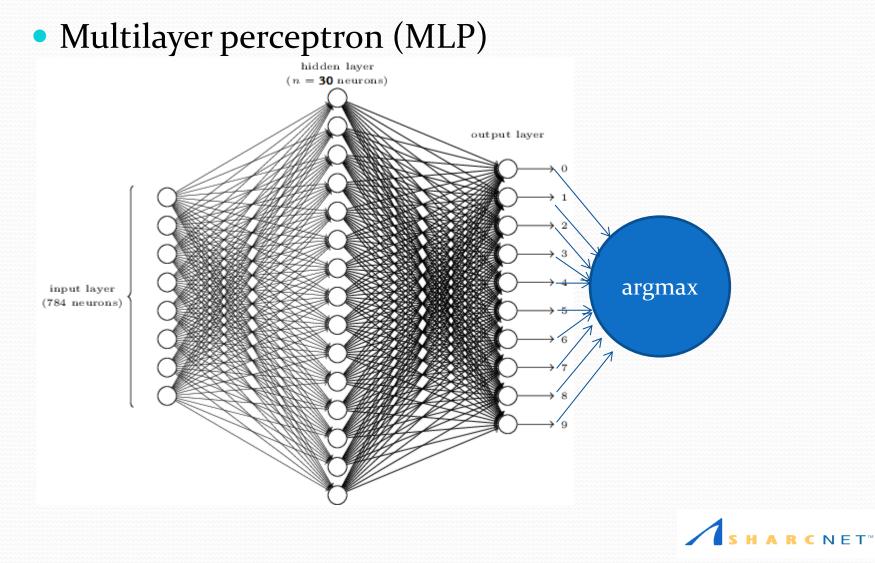
Architecture of neural network

- Multilayer Perceptron (MLP) or fully connected NN
 - Input: 28x28=784
 - One hidden layer
 - Output: a vector of 10 elements





Architecture of neural network

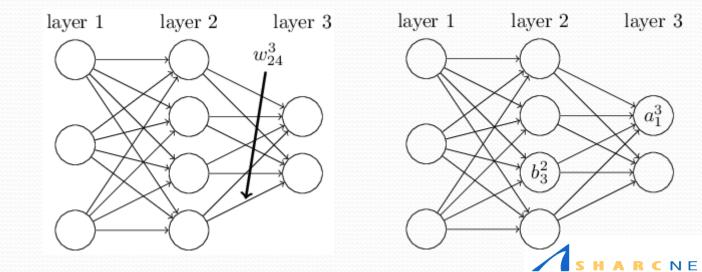


Cost function

Some notations

layer.

 $w_{j,k}^{(l)}$ denotes the weight of the connection between the k^{th} neuron in the $(l-1)^{th}$ layer to the j^{th} neuron in the l^{th} layer. Similarly, we define bias $b_j^{(l)}$, weighted sum+bias $z_j^{(l)}$, and activation $a_j^{(l)} = \sigma(z_j^{(l)})$ at the j^{th} neuron in the l^{th}



Cost function

- Given a input (*x*, *y*)
 - Feedforward calculation

 $z_{j}^{(l)} = \sum_{k} w_{j,k}^{(l)} a_{k}^{(l-1)} + b_{j}^{(l)} \text{ or } \mathbf{z}^{(l)} = \mathbf{w}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$ $a_{j}^{(l)} = \sigma(z_{j}^{(l)}) \text{ or } \mathbf{a}^{(l)} = \sigma(\mathbf{z}^{(l)})$

When l = 1, $a_j^{(1)} = x_j$

• Cost function (quadratic function, MSE)

$$C = \frac{1}{m} \sum_{x} C_{x}$$
, where

 $C_{\boldsymbol{x}} = \left\| \boldsymbol{a}^{(L)}(\boldsymbol{x}) - \boldsymbol{y} \right\|^2 = \sum_{j=1}^{10} \left(a_j^{(L)} - y_j \right)^2, L \text{ is the number of layers of NN } (L = 3 \text{ in this case}).$

SHARCNET"

ONTARIO SUMMER SCHOOL ON HIPC 2017

As if there is an extra node



- *C* depends (indirectly) on $\{w_{j,k}^{(l)}, b_j^{(l)}\}$ where $l \in \{2, 3\}$
 - $j,k \in \begin{cases} \{[1:30], [1:784]\}, & \text{if } l = 2\\ \{[1:10], [1:30]\}, & \text{if } l = 3 \end{cases}$
- $\Delta C \approx \sum \frac{\partial C}{\partial w_{j,k}^{(l)}} \Delta w_{j,k}^{(l)} + \sum \frac{\partial C}{\partial b_j^{(l)}} \Delta b_j^{(l)}$
- If we can calculate $\frac{\partial C}{\partial w_{j,k}^{(l)}}$, $\frac{\partial C}{\partial b_j^{(l)}}$, then we will know how to change each of these parameters $\left\{w_{j,k}^{(l)}, b_j^{(l)}\right\}$ to make *C* smaller.

• Loop over *m* samples, then calculate the average:

 $\frac{\partial C}{\partial w_{j,k}^{(l)}} = \frac{1}{m} \sum_{x} \frac{\partial C_{x}}{\partial w_{j,k}^{(l)}}, \quad \frac{\partial C}{\partial b_{j}^{(l)}} = \frac{1}{m} \sum_{x} \frac{\partial C_{x}}{\partial b_{j}^{(l)}}$ • Let's define $\delta_{j}^{(l)} \equiv \frac{\partial C_{x}}{\partial z_{j}^{(l)}}$ be the error of neuron *j* on layer *l*, or

 $\boldsymbol{\delta}^{(l)} = \left(\delta_1^{(l)}, \delta_2^{(l)}, \dots\right)^t \text{ be the error of layer } l.$

• Since $\mathbf{z}^{(l+1)} = \mathbf{w}^{(l+1)} \mathbf{a}^{(l)} + \mathbf{b}^{(l+1)} = \mathbf{w}^{(l+1)} \sigma(\mathbf{z}^{(l)}) + \mathbf{b}^{(l+1)}$, we can get

$$\boldsymbol{\delta}^{(l)} = \left(\left(\mathbf{w}^{(l+1)} \right)^t \boldsymbol{\delta}^{(l+1)} \right) \odot \sigma'(\mathbf{z}^{(l)})$$

where \odot is Hadamard product operator (element-wise multiplication)

This means we can pass the error backward

 $\boldsymbol{\delta}^{(L)} \rightarrow \boldsymbol{\delta}^{(L-1)} \rightarrow \cdots \rightarrow \boldsymbol{\delta}^{(2)}$

S H A R C N E T

• Then what if we know $\delta^{(l)}$...

$$\frac{\partial C_x}{\partial b_j^{(l)}} = \delta_j^{(l)} \frac{\partial z_j^{(l)}}{\partial b_j^{(l)}} = \delta_j^{(l)}$$
$$\frac{\partial C_x}{\partial w_{j,k}^{(l)}} = \delta_j^{(l)} \frac{\partial z_j^{(l)}}{\partial w_{j,k}^{(l)}} = \delta_j^{(l)} a_k^{(l-1)}$$

or

$$\frac{\partial C_x}{\partial \boldsymbol{b}^{(l)}} = \boldsymbol{\delta}^{(l)}$$
$$\frac{\partial C_x}{\partial \mathbf{w}^{(l)}} = \boldsymbol{\delta}^{(l)} (\boldsymbol{a}^{(l-1)})^t$$

SHARCNET

Backpropagation starts at layer L = 3

$$\delta_{j}^{(L)} = \frac{\partial C_{x}}{\partial a_{j}^{(L)}} \sigma'\left(z_{j}^{(L)}\right)$$

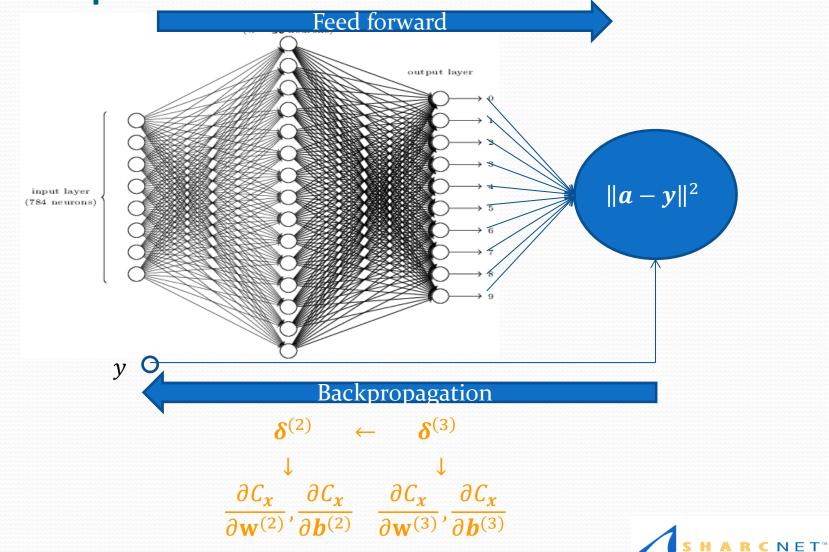
where

 $\frac{\partial C_x}{\partial a_i^{(L)}} = 2\left(a_j^{(L)} - y_j\right)$

Or

 $\delta^{(L)} = \left(a_i^{(L)} - y_j\right) \odot \sigma'(z^{(L)})$

Two passes



Write our own NN code

• Assuming 30 neurons in the hidden layer

Architecture:

```
self.num_layers = 3
self.sizes = [784, 30, 10]
```

Parameters:

self.weights = [[30x784], [10x30]] self.biases = [30, 10]

We need to determine the values of these 30x784 + 10x30 + 30 + 10 = 23860 parameters through a training process.

How?

In each iteration of the training process

- Feedforward
- Backpropagation

Training

• train.py

import mnist_loader
import network

load reformatted data.
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

define the NN
net = network.Network([784, 30, 10])

train with Stochastic Gradient Descent
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

NOTE: training_data is a list of 50000 tuples, each of which is ([784], [10])

Class "Network" (network.py)

- __init__(self, sizes) initialize parameters with random numbers
- feedforward(self, a) takes 'a' as input and return the output of the NN.
- evaluate(self, test_data) evaluates the performance of the NN.
- SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None)
 - update_mini_batch(self, mini_batch, eta)
 - twopasses(self, x, y)

Two helper functions

def sigmoid(z):
 """The sigmoid function."""
 return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
 """Derivative of the sigmoid function."""
 return sigmoid(z)*(1-sigmoid(z))

 $\sigma(z) = \frac{1}{1 + e^{-z}}$


```
def feedforward(self, x):
    for b, w in zip(self.biases, self.weights):
        x = sigmoid(np.dot(w, x)+b)
        return x
```

```
def evaluate(self, test_data):
    test_results = [(np.argmax(self.feedforward(x)), y) \
        for (x, y) in test_data]
    return sum(int(x == y) for (x, y) in test_results)
```

NOTE: self.weights = [[30,784], [10, 30]]self.biases = [30, 10]x = [784] is passed in as argument In loop #1:

- $w^t = [30, 784], b = [30]$
- $\boldsymbol{x} = \sigma(\boldsymbol{w}^t \boldsymbol{x} + \boldsymbol{b}) \rightarrow \boldsymbol{x} = [30]$

In loop #2:

- $w^{t} = [10, 30], b = [10]$
- $\boldsymbol{x} = \sigma(\boldsymbol{w}^t \boldsymbol{x} + \boldsymbol{b}) \rightarrow \boldsymbol{x} = [10]$

def SGD(self, training_data, epochs, mini_batch_size,

eta, test_data=None):
if test_data: n_test = len(test_data)

n = len(training_data)

for j in xrange(epochs):

random.shuffle(training_data)

mini_batches = [

training_data[k:k+mini_batch_size]
for k in xrange(o, n, mini_batch_size)]

for mini_batch in mini_batches:

self.update_mini_batch(mini_batch, eta) if test_data:

print "Epoch {0}: {1} / {2}".format(

j, self.evaluate(test_data), n_test)
else:

print "Epoch {o} complete".format(j)

NOTE: epochs=30, mini_batch_size = 10 eta (or η)=3.0 learning rate

Generate 5000 randomized mini-batches

 Update weights and biases by learning from each batch

If test data is provided, then evaluate the performance of the current NN

S H A R C N E T

def update_mini_batch(self, mini_batch, eta): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.twopasses(x, y) $\rightarrow \nabla C_i$ nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_b)] $\rightarrow \sum_{i=1}^{m} \nabla C_i$ self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] $(w, b) = (w, b) + \eta \frac{1}{m} \sum_{i=1}^{m} \nabla C_i$

$$nabla_w = \left(\begin{bmatrix} \frac{\partial C}{\partial w_{1,1}^{(2)}} & \cdots & \frac{\partial C}{\partial w_{1,784}^{(2)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial C}{\partial w_{30,1}^{(2)}} & \cdots & \frac{\partial C}{\partial w_{30,784}^{(2)}} \end{bmatrix}, \begin{bmatrix} \frac{\partial C}{\partial w_{1,1}^{(3)}} & \cdots & \frac{\partial C}{\partial w_{1,30}^{(3)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial C}{\partial w_{30,1}^{(3)}} & \cdots & \frac{\partial C}{\partial w_{30,784}^{(2)}} \end{bmatrix}, \begin{bmatrix} \frac{\partial C}{\partial w_{1,1}^{(3)}} & \cdots & \frac{\partial C}{\partial w_{10,30}^{(3)}} \end{bmatrix} \right)$$
$$nabla_b = \left(\begin{bmatrix} \frac{\partial C}{\partial b_1^{(2)}}, \dots, \frac{\partial C}{\partial b_{30}^{(2)}} \\ \frac{\partial C}{\partial b_1^{(2)}}, \dots, \frac{\partial C}{\partial b_{30}^{(2)}} \end{bmatrix}, \begin{bmatrix} \frac{\partial C}{\partial b_1^{(3)}}, \dots, \frac{\partial C}{\partial b_{10}^{(3)}} \end{bmatrix} \right)$$

SHARCNET"

```
def twopasses(self, x, y):
                                                                                        \nabla C_i that depends on a
      nabla_b = [np.zeros(b.shape) for b in self.biases]
                                                                                         single sample (x, y)
      nabla_w = [np.zeros(w.shape) for w in self.weights]
      # feedforward
      activation = x
      activations = [x] # list to store all the activations, layer by layer
                                                                                               Feedforward pass:
      zs = [] # list to store all the z vectors, layer by layer
                                                                                              z = w^{t}x + b \rightarrow zs[]

\sigma(z) = \frac{1}{1 + e^{-z}} \rightarrow activations[]
      for b, w in zip(self.biases, self.weights):
         z = np.dot(w, activation)+b
         zs.append(z)
         activation = sigmoid(z)
         activations.append(activation)
      # backward pass
                                                                                        Backpropagation pass:
      delta = (activations[-1] - y) * sigmoid_prime(zs[-1])
                                                                                        delta= \delta^{(L)} = \frac{\partial C_x}{\partial \sigma^{(L)}} \odot \sigma'(z^{(L)})
      nabla b[-1] = delta
                                                                                        Nabla_b[-1] = \frac{\partial C_x}{\partial \mathbf{h}^{(L)}} = \delta^{(L)}
      nabla_w[-1] = np.dot(delta, activations[-2].transpose())
      for l in xrange(2, self.num_layers):
                                                                                        Nabla_w[-1] = \frac{\partial C_x}{\partial w^{(L)}} = \boldsymbol{\delta}^{(L)} (\boldsymbol{a}^{(L-1)})^t
         z = zs[-1]
         sp = sigmoid_prime(z)
                                                                                        delta = \boldsymbol{\delta}^{(l)} = \left( \left( \mathbf{w}^{(l+1)} \right)^{t} \boldsymbol{\delta}^{(l+1)} \right) \odot \sigma'(\mathbf{z}^{(l)})
         delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
         nabla b[-l] = delta
                                                                                        Calculate nabla w, nabla b for layer 2 from
         nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
                                                                                        S(l)
      return (nabla b, nabla w)
```

R C N E T

Tweak around

- Learning rate: 0.001, 1.0, 100.0, ...
- Size of mini-batches: 10, 50, 100, ...
- Number of neurons in the hidden layer: 15, 30, 100, ...
- Number of hidden layers: 1, 2, 5, ...

Use Tensorflow in recognition of

handwritten digits

- Introduction to Tensorflow
- A warm-up
- A 2-layer NN (~92% recognition rate)
- A 3-layer NN (~94% recognition rate)
- A much better NN (~99% recognition rate)

Introduction to Tensorflow

- Tensorflow APIs
 - Low-level APIs --- Tensorflow Core that gives you a fine control
 - High-level APIs --- built upon the Core, which are more convenient and efficient to program with
- Tensor --- a multi-dimensional array which is the central unit of data structure, e.g., [batch, height, width, channel] for image data.
- Session --- encapsulation of the control and the state of Tensorflow runtime.

Introduction to Tensorflow

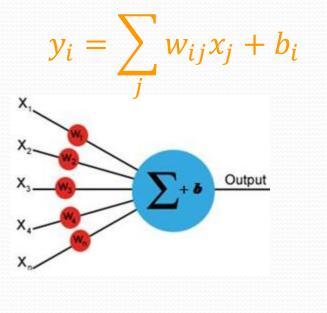
- To perform a specific computational task, one needs to
 - Build a computational graph
 - Run the computational graph
- Computational graph is a directed graph with edges connecting nodes specifying the data flow. A node could be
 - A constant (no input)
 - A variable
 - A placeholder (reserved for input data)

A warm-up exercise (tf_warmup.py)

- Problem:
 - There is a linear model $y = w \cdot x + b$, where w, b are parameters of the model
 - Given a set of training data
 {(x_i, y_i)}_i = {(1, 0), (2, -1), (3, -2), ...}, we need to find
 the values of *w*, *b* so that the model "best" fits into the
 data
- The criteria of "best fit" is minimization of a loss function $C = \frac{1}{n} \sum_{i} (wx_i + b y_i)^2$

A simple method (tf_mnist_2layers.py)

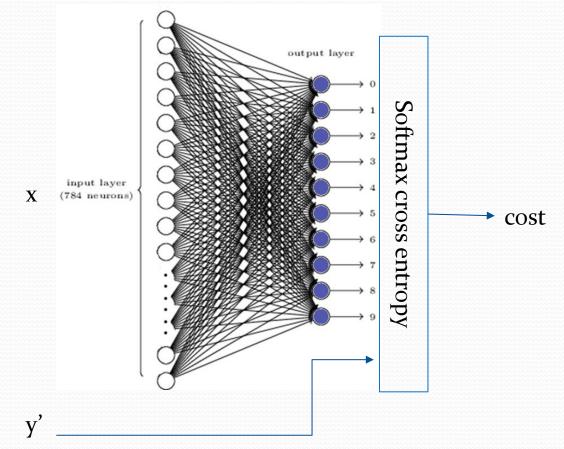
- A two-layer fully-connected network
 - Input: 28x28=784
 - Output: a vector of 10 elements





A simple method (cont.)

• Training



Softmax cross entropy

- Softmax($y_1, y_2, ..., y_n$) = $\frac{1}{\sum_i e^{y_i}} (e^{y_1}, e^{y_2}, ..., e^{y_n})$ turns a vector of outputs into a probability distribution
- Cross entropy between a prediction probability distribution y and a true distribution y' is defined as

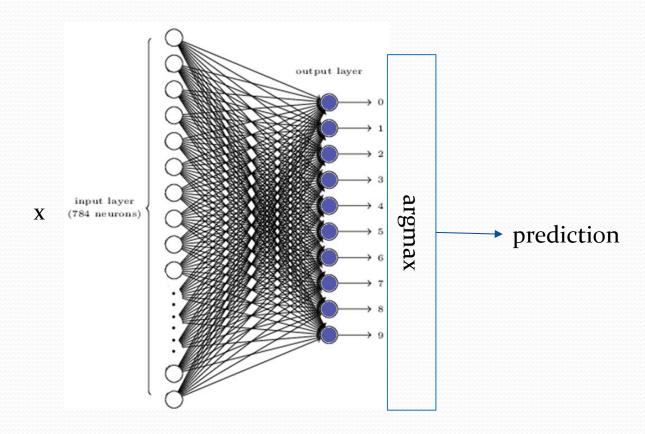
$$H_{\mathbf{y}'}(\mathbf{y}) = -\sum_{i} y'_{i} log(y_{i})$$

Since $0 \le y_i, y'_i \le 1$, so $H_{y'}(y) \ge 0$

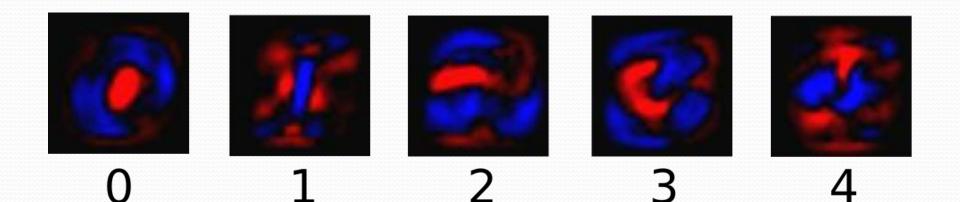
- Tf.nn.softmax_cross_entropy_with_logits
 - **y**_=Softmax(**y**)
 - *H*_{y'}(**y**_)

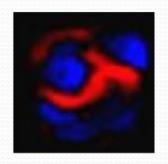
A simple method (cont.)

• Use trained model

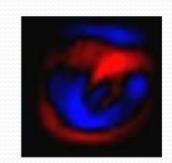


What's learned

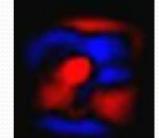




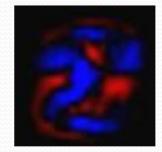
5



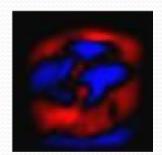
6



7

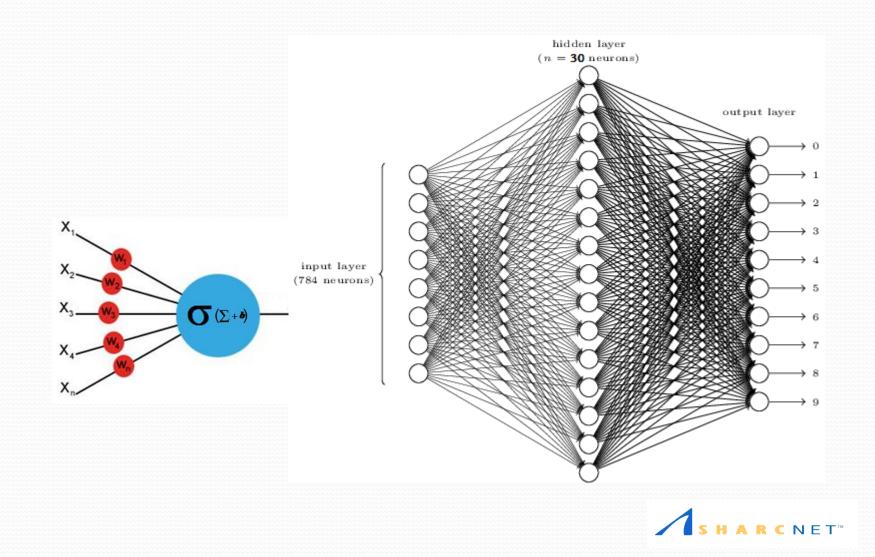


8



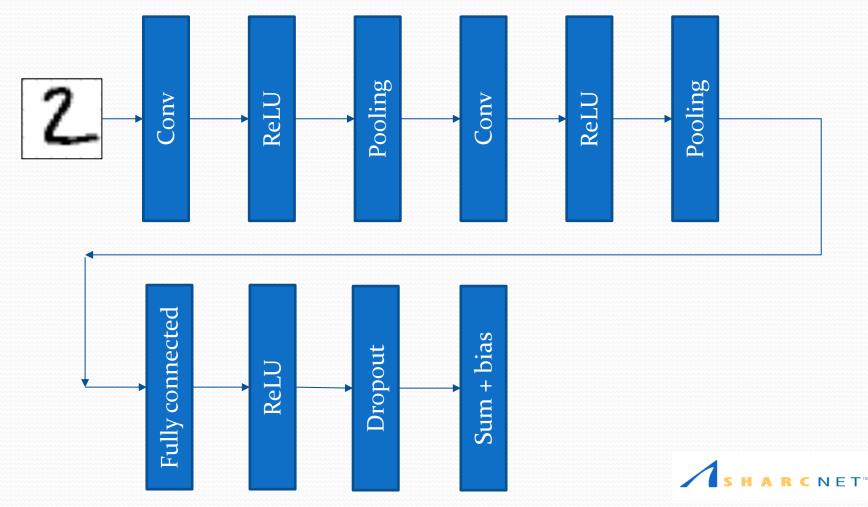
SHARCNET"

Add a hidden layer (tf_mnist_3layers_*.py)



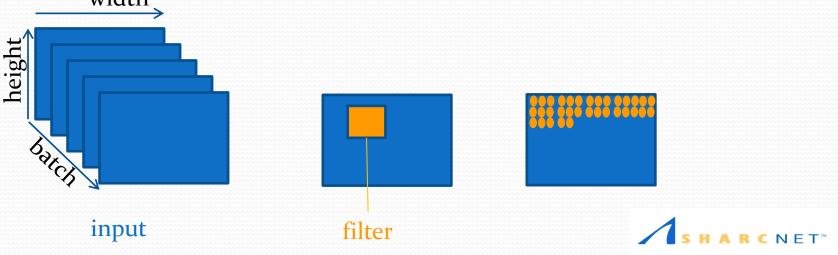
A much better NN

Multilayer convolutional network



Some functions in TF

- tf.nn.conv2d(input, filter, strides, padding, ...)
 - input: 4D tensor [batch, height, width, channels]
 - filter: 4D tensor [f_height, f_width, in_channels, out_channels]
 - strides: 4D tensor
 - padding: "SAME' or 'VALID" width



Discussions

- Generalization, overfitting, regularization
- Difference between deep NN and traditional NN
- Why deep NN works much better

Generalization, overfitting, regularization

- Goal of machine learning: Generalization, i.e., learning general rules/patterns from training data)
- Pitfall: overfitting, i.e., a learned model performs much worse on unseen data
- Mechanism to prevent overfitting: regularization
 - Dropout layer
 - Monitoring performance with evaluation data during training process

Difference between deep NN and traditional NN

- Deeper: more hidden layers
- Combination of unsupervised and supervised learning (autoencoder, a generative NN)
- Better generalization and regularization mechanisms
- More advanced layers/neurons: convolutional, pooling, ...



Why is deep NN so successful?

- It can approximate arbitrary functions well
- Features are extracted in a hierarchical way
 - Features extracted in lower layers are more concrete and local
 - Features extracted in higher layers are more abstract and global
- Deep NN and cheap learning