
Code & data: guanw.sharcnet.ca/ss2017-deeplearning.tar.gz

Weiguang Guan

guanw@sharcnet.ca

guanw.sharcnet.ca/ss2017-deeplearning.tar.gz
guanw.sharcnet.ca/ss2017-deeplearning.tar.gz
guanw.sharcnet.ca/ss2017-deeplearning.tar.gz

Outline
 Part I: Introduction

 Overview of machine learning and AI

 Introduction to neural network and deep learning (DL)

 Part II: Case study − Recognition of handwritten digits

 Write our own DL code

 Use a DL library

Reference
 “Deep Learning Tutorial” by Yann LeCun,

http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-
icml2013.pdf

 “Deep Learning Tutorial” by Yoshua Bengio,
http://deeplearning.net/tutorial/deeplearning.pdf

 “Neural Networks and Deep Learning” by Michael
Nielsen, http://neuralnetworksanddeeplearning.com

http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

Part I

Introduction to
AI, Machine learning, and neural

network

Overview
 What is AI?

 What/how can a machine learn?

 Machine learning methods with focus on deep
learning

 Caveats and pitfalls of machine learning

Artificial Intelligence (AI)
 What is AI

 Def 1: Computer systems able to perform tasks that
normally require human intelligence.

 Def 2: intelligent machines that work and react like
humans

 Def 3 … : more on the internet…

Artificial Intelligence (AI)
 Are these in the domain of AI?

 Computing

 Database

 Logical operations

 …

Artificial Intelligence (AI)
Intelligent robot made by Boston Dynamics

https://youtu.be/rVlhMGQgDkY

AI system (my definition)

 Is able to perform an intelligent task by learning from
examples

 We humans don’t know the explicit rules/instructions
to perform the task

https://youtu.be/rVlhMGQgDkY
https://youtu.be/rVlhMGQgDkY

Artificial Intelligence (AI)

Speech Recognition

Visual Perception

Natural language understanding

Machine Learning Knowledge representation

Robotics

Expert Systems

Artificial Intelligence (AI)
 History of AI

 Brain vs computer

• Memory
• Information processing

(Computing vs thinking)
• Sensing

(camera and microphone vs
eyes and ears)

• Responding

Logic gates
Bio-chemical

operations
???

Artificial Intelligence (AI)
 What are minds?

 What is thinking?

 To what extent can computers have intelligence?

Strong AI vs weak AI

Artificial Intelligence (AI)
 Computers don’t and won’t have

 Passion, feeling, consciousness…

 Inherent common sense

 Motivation

 Computers can be trained to do particular tasks (as
good as humans or even better)

 “Thinking is computing”

How does Machine Learning work
 What is learned by computer?

A parameterized model used to perform a particular task.

Task: to predict diabetes based on sugar intake x and
hours of exercise y per day.

y<b

x>a

x, y

no

no
yes

yes

ND

D

ND

Input: x, y
Output: either D (Diabetes)
 or ND (not Diabetes)
Parameters: a, b

Machine Learning
 How does a computer learn?

Learns from (many) samples

x

y

ND
D

a

b
y<b

x>a

x, y

no

no
yes

yes

ND

D

ND

Machine Learning
 Learning becomes an optimization problem:

Determine parameters (a, b) so that a pre-defined cost
function (e.g., misclassification error) is minimized.

 Training or learning is usually an iterative process
where parameters are gradually changed to make the
cost function smaller and smaller.

Machine Learning
 Basic concepts (cont’d)

 Feature space

 Decision boundary

x

y

ND
D

a

b

Two categories of learning
 Supervised learning

Learn from annotated samples

 Unsupervised learning

Learn from samples without annotation

Faces

Non-faces

Machine learning methods
 Deep learning

 Boosting

 Support Vector Machine (SVM)

 Naïve Bayes

 Decision tree

 Linear or logistic regression

 K-nearest neighbours (KNN)

Sample data
 Basic concepts

 Sample

 Sample is defined as a vector of attributes (or features), each
of which can be

 Numerical

 Categorical

 Ordered

 No order

 Binary or Boolean

 Label can be

 Categorical (most often, binary) --- classification

 Numerical --- regression

Sample
 Example of data sample

Name Occupa

tion
Smoking Sugar

intake
Hours of
exercise

… Glucose
level

Diabetes

Peter Driver Yes 100.0 5.5 … 80 No

Nancy Teacher No 50.0 3 … 120 Yes

… … … … … … … …

Feature vector Annotation

Performance measures
 Basic concepts (cont’d)

 Classification error

 Binary classification

 TP, TN, FP, FN

 ROC curve

 TPR = TP/(TP+FN), FPR =FP/(FP+TN)

Performance measures
 Basic concepts (cont’d)

 Classification error

 Multiclass classification

 Confusion matrix

Neural network and deep learning
 Directed graph of neurons

Neurons
 Neurons

 Linear weighted sum

 Perceptron

 Sigmoid

 Rectified Linear Units (ReLu)

 …

 Layers:
 Pooling

 Convolution

 Loss

 …

Linear weighted sum
 𝑧 = 𝑤𝑗𝑥𝑗 = 𝒘

𝑡
𝑗 𝒙

Perceptron

 𝑧 =
0, if 𝑤𝑗𝑥𝑗 ≤ 𝑇𝑗

1, otherwise

 𝑧 =
0, if 𝒘𝑡𝒙 + 𝑏 ≤ 0
1, otherwise

 weights: 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑛)

 bias: 𝑏 = −𝑇

Sigmoid neuron
𝜎 𝑧 =

1

1 + 𝑒−𝑧

where 𝑧 = 𝒘𝑡𝒙 + 𝑏

Rectified Linear Units
𝜎 𝑧 = max (0, 𝑧)

where 𝑧 = 𝒘𝑡𝒙 + 𝑏

Convolution layer
 A set of learnable filters (or kernels) --- 2D array of

weights

 Each neuron (blue) of a filter has its receptive field
(red) in the input image

 Dot product between receptive field and a filter

Pooling layer
 Sub-sampling

 Example of max pooling

Architecture of neural network

Train a neural network
 Purpose: To determine the parameters of a given

network so that it will produce desired outputs.

How to achieve the training goal
 Define a cost (objective) function to measure the

performance of a NN, such as

MSE =
1

𝑛
 𝑦𝑖 − 𝑔(𝒙𝑖)

2

𝑛

𝑖=1

 where 𝒙𝑖 and 𝑦𝑖 are the feature vector and label of the
𝑖-th sample. 𝑔(𝒙𝑖) is the output of the NN.

 𝑔(𝒙𝑖) depends on the parameters of the NN.

 Gradient descent is used to find the values of these
parameters that minimize the cost function.

Gradient descent (1D function)
𝑦 = 𝑓 𝑥 = 𝑥2 − 6𝑥 + 10

 Starting 𝑥 = 6, we get 𝑦 = 10

 𝑥 = 𝑥 ± ∆𝑥, where ∆𝑥 = 0.01,
we get
𝑦 = 9.9401 for 𝑥 = 5.99

 and

𝑦 = 10.0601 for 𝑥 = 6.01

 𝑦′ = lim
∆𝑥→0

∆𝑦

∆𝑥
≈
0.0601

0.01
= 6.01

where ∆𝑦 = 𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

 Analytic 𝑦′ = 2𝑥 − 6

x

y

6

10 ∆𝑥

∆𝑦 𝑦′

Gradient descent (2D function)
𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 6𝑥 + 10

 Starting 𝑥 = 6, 𝑦 = −2, we get 𝑧 = 14

 Analytic:
𝜕𝑧

𝜕𝑥
= 2𝑥 − 6,

𝜕𝑧

𝜕𝑦
= 2𝑦

 Gradient 𝛻𝑧 = (
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
) is the fastest ascending

direction

 Iteratively approaching with learning rate η = 0.01
 Round #1: (𝑥, 𝑦) = (6,−2), we get 𝛻𝑧 = (6,−4)

 Round #2: 𝑥, 𝑦 = 𝑥, 𝑦 − η𝛻𝑧 = (5.94,−1.96), we get
𝛻𝑧 = (5.88,−3.92)

 Round #3: ……

x

y

z

Train a neural network
 Initialize the state of a neural network (by

randomizing all the parameters)

 Iterative process

 Feed forward

 Backpropagation (chain rule)

f(x,y)
g(q,z)

x

y

z

q
p

𝜕𝑝

𝜕𝑥
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑥

𝜕𝑝

𝜕𝑦
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑦

𝜕𝑝

𝜕𝑧
=
𝜕𝑝

𝜕𝑧

Chain rule of derivatives

Wait a minute …
 Questions

 We want to minimize a cost function, not the output of
NN

 We want to tweak the parameters of NN, not the input
data (x, y, z …) to do the minimization

 Let change the roles …
 Consider 𝑎, 𝑏, … , 𝑓 as variables in 𝑧 = 𝑓 𝑥, 𝑦 = 𝑎𝑥2 +
𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓

 The cost function C is a function of the output and

ground truth so that we can compute
𝜕𝐶

𝜕𝑎
,
𝜕𝐶

𝜕𝑏
,…,
𝜕𝐶

𝜕𝑓
,

 Apply gradient descent on 𝑎, 𝑏, … , 𝑓 the same way

Training a neural network
 Cost function 𝐶(𝒘, 𝒃) =

1

𝑛
 𝐶𝑖
𝑛
𝑖=1 = 𝑦𝑖 − 𝑔(𝒙𝑖)

2,

where 𝒘, 𝒃 are the weights and biases of NN.

 𝛻𝐶 =
1

𝑛
 𝛻𝐶𝑖
𝑛
𝑖=1 , 𝑛 is the number of training samples

 𝛻𝐶 ≈
1

𝑚
 𝛻𝐶𝑖
𝑚
𝑖=1 , randomly divide training set into

small subsets (mini-batches), each of which contains
𝑚 ≪ 𝑛 samples. An epoch is one complete pass going
through all the mini-batches.

 Training with mini-batches is called stochastic
gradient descent (SGD)

Caveats and pitfalls
 Feature selection

 Relevance
 Redundancy

 Sample data
 Mislabeling
 Outliers

 Overfitting
 Small training set
 Low-quality training data
 Over-training

 Confidence level of classification
 Re-tune a trained model to operate on a different position

on the ROC curve

Part II

Case Study:
Recognition of hand-written digits

Tasks
 Write our own NN code

 Use DL libraries (Tensorflow)

Four elements in deep learning
 Datasets (for training, testing …)

 Design of a neural network

 Cost function that training tries to minimize

 Training method(solver or optimizer, such as SGD,
AdaDelta, Adaptive Gradient, etc)

Dataset of handwritten digits
 Dataset (http://yann.lecun.com/exdb/mnist/)

 60,000 training samples

 10,000 testing samples

 Each sample is 28x28 gray scale image with a label
telling what digit it is.

 The label (0, 1, …, 9) is vectorized as a “one-hot” vector,
e.g., [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] represents 3.

 checkdata.py

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Dataset of handwritten digits

One-hot vectorized label: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

Architecture of neural network
 Multilayer Perceptron (MLP) or fully connected NN

 Input: 28x28=784

 One hidden layer

 Output: a vector of

 10 elements

Architecture of neural network
 Multilayer perceptron (MLP)

argmax

Cost function
 Some notations

𝑤𝑗,𝑘
(𝑙)

 denotes the weight of the connection between the 𝑘𝑡ℎ

neuron in the (𝑙 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ

layer. Similarly, we define bias 𝑏𝑗
(𝑙)

, weighted sum+bias 𝑧𝑗
(𝑙)

,

and activation 𝑎𝑗
(𝑙)
= 𝜎 𝑧𝑗

(𝑙)
 at the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ

layer.

Cost function
 Given a input (𝒙, 𝒚)

 Feedforward calculation

 𝑧𝑗
(𝑙)
= 𝑤𝑗,𝑘

(𝑙)
𝑘 𝑎𝑘

(𝑙−1)
+ 𝑏𝑗
(𝑙)

 or 𝒛(𝑙) = 𝐰(𝑙)𝒂(𝑙−1) + 𝒃(𝑙)

𝑎𝑗
(𝑙)
= 𝜎(𝑧𝑗

(𝑙)
) or 𝒂(𝑙) = 𝜎 𝒛(𝑙)

When 𝑙 = 1, 𝑎𝑗
(1)
= 𝑥𝑗

 Cost function (quadratic function, MSE)

 𝐶 =
1

𝑚
 𝐶𝒙𝒙 , where

𝐶𝒙 = 𝒂
𝐿 𝒙 − 𝒚

2
= 𝑎𝑗

(𝐿)
− 𝑦𝑗

2
10
𝑗=1 , 𝐿 is the number of

layers of NN (𝐿 = 3 in this case).

As if there is an extra node

𝒂(𝟑) − 𝒚
2

𝑦

Backpropagation
 C depends (indirectly) on 𝑤𝑗,𝑘

(𝑙)
, 𝑏𝑗
(𝑙)

 where

𝑙 ∈ 2, 3

 𝑗, 𝑘 ∈
1: 30 , [1: 784] , if 𝑙 = 2

1: 10 , [1: 30] , if 𝑙 = 3

 ∆𝐶 ≈
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ∆𝑤𝑗,𝑘

(𝑙)
+

𝜕𝐶

𝜕𝑏
𝑗
(𝑙) ∆𝑏𝑗

(𝑙)

 If we can calculate
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ,

𝜕𝐶

𝜕𝑏
𝑗
(𝑙), then we will

know how to change each of these parameters
𝑤𝑗,𝑘
(𝑙)
, 𝑏𝑗
(𝑙)

 to make C smaller.

Backpropagation
 Loop over 𝑚 samples, then calculate the average:

𝜕𝐶

𝜕𝑤𝑗,𝑘
(𝑙) =

1

𝑚

𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙) 𝒙 ,

𝜕𝐶

𝜕𝑏𝑗
(𝑙) =

1

𝑚

𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙) 𝒙

 Let’s define 𝛿𝑗
(𝑙)
≡
𝜕𝐶𝒙

𝜕𝑧𝑗
(𝑙) be the error of neuron 𝑗 on layer 𝑙, or

 𝜹(𝑙) = 𝛿1
(𝑙)
, 𝛿2
(𝑙)
, …
𝑡
 be the error of layer 𝑙.

 Since 𝒛(𝑙+1) = 𝐰(𝑙+1)𝒂(𝑙) + 𝒃 𝑙+1 = 𝐰(𝑙+1)𝜎 𝒛(𝑙) + 𝒃(𝑙+1), we
can get

𝜹(𝑙) = 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)

where ⊙ is Hadamard product operator (element-wise
multiplication)
 This means we can pass the error backward

𝜹(𝐿) → 𝜹(𝐿−1) → ⋯ → 𝜹 2

Backpropagation
 Then what if we know 𝜹(𝑙) …

𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)

𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝑎𝑘
(𝑙−1)

or
𝜕𝐶𝒙
𝜕𝒃(𝑙)
= 𝜹(𝑙)

𝜕𝐶𝒙
𝜕𝐰(𝑙)
= 𝜹(𝑙) 𝒂(𝑙−1)

𝑡

Backpropagation
Backpropagation starts at layer 𝐿 = 3

𝛿𝑗
(𝐿)
=
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
𝜎′ 𝑧𝑗

𝐿

where
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
= 2 𝑎𝑗

(𝐿)
− 𝑦𝑗

Or

𝛿(𝐿) = 𝑎𝑗
(𝐿)
− 𝑦𝑗 ⊙𝜎′ 𝑧

(𝐿)

Two passes

Backpropagation

𝒂 − 𝒚 2

𝑦

𝜹(2) ⃪ 𝜹 3

 ↓
𝜕𝐶𝒙
𝜕𝐰(3)

,
𝜕𝐶𝒙
𝜕𝒃(3)

Feed forward

 ↓
𝜕𝐶𝒙
𝜕𝐰(2)

,
𝜕𝐶𝒙
𝜕𝒃(2)

Write our own NN code
 Assuming 30 neurons in the hidden layer

Architecture:
 self.num_layers = 3
 self.sizes = [784, 30, 10]
Parameters:
 self.weights = [[30x784], [10x30]]
 self.biases = [30, 10]

We need to determine the values of these
 30x784 + 10x30 + 30 + 10 = 23860 parameters
through a training process.

How?
In each iteration of the training process
• Feedforward
• Backpropagation

Training
 train.py

import mnist_loader
import network

load reformatted data.
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

define the NN
net = network.Network([784, 30, 10])

train with Stochastic Gradient Descent
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

NOTE:
training_data is a list of 50000 tuples, each of which is ([784], [10])

Class “Network” (network.py)
 __init__(self, sizes) initialize parameters with random

numbers

 feedforward(self, a) takes ‘a’ as input and return the
output of the NN.

 evaluate(self, test_data) evaluates the performance of
the NN.

 SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None)

 update_mini_batch(self, mini_batch, eta)

 twopasses(self, x, y)

Two helper functions

def sigmoid(z):
 """The sigmoid function."""
 return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
 """Derivative of the sigmoid function."""
 return sigmoid(z)*(1-sigmoid(z))

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝜎′ 𝑧 = 𝜎 𝑧 (1 − 𝜎 𝑧)

Functions of Network
def feedforward(self, x):
 for b, w in zip(self.biases, self.weights):
 x = sigmoid(np.dot(w, x)+b)
 return x

def evaluate(self, test_data):
 test_results = [(np.argmax(self.feedforward(x)), y) \
 for (x, y) in test_data]
 return sum(int(x == y) for (x, y) in test_results)

NOTE:
self.weights = [[30,784], [10, 30]]
self.biases = [30, 10]
𝒙=[784] is passed in as argument

In loop #1:
• 𝒘𝑡 = [30, 784], 𝒃 = [30]
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃) → 𝒙=[30]

In loop #2:
• 𝒘𝑡 = [10, 30], 𝒃 = [10]
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃) → 𝒙=[10]

Functions of Network
def SGD(self, training_data, epochs, mini_batch_size,
 eta, test_data=None):
 if test_data: n_test = len(test_data)
 n = len(training_data)
 for j in xrange(epochs):
 random.shuffle(training_data)
 mini_batches = [
 training_data[k:k+mini_batch_size]
 for k in xrange(0, n, mini_batch_size)]
 for mini_batch in mini_batches:
 self.update_mini_batch(mini_batch, eta)
 if test_data:
 print "Epoch {0}: {1} / {2}".format(
 j, self.evaluate(test_data), n_test)
 else:
 print "Epoch {0} complete".format(j)

NOTE:
epochs=30, mini_batch_size = 10
eta (or η)=3.0 learning rate

Generate 5000 randomized
mini-batches

Update weights and biases by
learning from each batch

If test data is provided, then
evaluate the performance of
the current NN

Functions of Network
def update_mini_batch(self, mini_batch, eta):
 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 for x, y in mini_batch:
 delta_nabla_b, delta_nabla_w = self.twopasses(x, y)
 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
 self.weights = [w-(eta/len(mini_batch))*nw
 for w, nw in zip(self.weights, nabla_w)]
 self.biases = [b-(eta/len(mini_batch))*nb
 for b, nb in zip(self.biases, nabla_b)]

nabla_w=

𝜕𝐶

𝜕𝑤1,1
(2) ⋯

𝜕𝐶

𝜕𝑤1,784
(2)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤30,1
(2) ⋯

𝜕𝐶

𝜕𝑤30,784
(2)

,

𝜕𝐶

𝜕𝑤1,1
(3) ⋯

𝜕𝐶

𝜕𝑤1,30
(3)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤10,1
(3) ⋯

𝜕𝐶

𝜕𝑤10,30
(3)

nabla_b=

𝜕𝐶

𝜕𝑏1
(2) , … ,

𝜕𝐶

𝜕𝑏30
(2) ,

𝜕𝐶

𝜕𝑏1
(3) , … ,

𝜕𝐶

𝜕𝑏10
(3)

𝐰, 𝒃 = 𝐰, 𝒃 + η
1

𝑚
 𝛻𝐶𝑖

𝑚

𝑖=1

𝛻𝐶𝑖

 𝛻𝐶𝑖

𝑚

𝑖=1

Functions of Network
def twopasses(self, x, y):
 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 # feedforward
 activation = x
 activations = [x] # list to store all the activations, layer by layer
 zs = [] # list to store all the z vectors, layer by layer
 for b, w in zip(self.biases, self.weights):
 z = np.dot(w, activation)+b
 zs.append(z)
 activation = sigmoid(z)
 activations.append(activation)
 # backward pass
 delta = (activations[-1] - y) * sigmoid_prime(zs[-1])
 nabla_b[-1] = delta
 nabla_w[-1] = np.dot(delta, activations[-2].transpose())
 for l in xrange(2, self.num_layers):
 z = zs[-l]
 sp = sigmoid_prime(z)
 delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
 nabla_b[-l] = delta
 nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
 return (nabla_b, nabla_w)

𝛻𝐶𝑖 that depends on a
single sample (x, y)

Feedforward pass:
𝑧 = 𝒘𝑡𝒙 + 𝑏 → zs[]

𝜎 𝑧 =
1

1+𝑒−𝑧
→ activations[]

Backpropagation pass:
delta= 𝛿(𝐿) =

𝜕𝐶𝒙

𝜕𝒂(𝐿)
⊙𝜎′ 𝑧(𝐿)

Nabla_b[-1] =
𝜕𝐶𝒙

𝜕𝒃(𝐿)
= 𝛿(𝐿)

Nabla_w[-1]=
𝜕𝐶𝒙

𝜕𝐰(𝐿)
= 𝜹(𝐿) 𝒂(𝐿−1)

𝑡

delta = 𝜹(𝑙)= 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)

Calculate nabla_w, nabla_b for layer 2 from
𝜹(𝑙)

Tweak around
 Learning rate: 0.001, 1.0, 100.0, …

 Size of mini-batches: 10, 50, 100, …

 Number of neurons in the hidden layer: 15, 30, 100, …

 Number of hidden layers: 1, 2, 5, …

Use Tensorflow in recognition of
handwritten digits
 Introduction to Tensorflow

 A warm-up

 A 2-layer NN (~92% recognition rate)

 A 3-layer NN (~94% recognition rate)

 A much better NN (~99% recognition rate)

Introduction to Tensorflow
 Tensorflow APIs

 Low-level APIs --- Tensorflow Core that gives you a fine
control

 High-level APIs --- built upon the Core, which are more
convenient and efficient to program with

 Tensor --- a multi-dimensional array which is the
central unit of data structure, e.g., [batch, height,
width, channel] for image data.

 Session --- encapsulation of the control and the state
of Tensorflow runtime.

Introduction to Tensorflow
 To perform a specific computational task, one needs to

 Build a computational graph

 Run the computational graph

 Computational graph is a directed graph with edges
connecting nodes specifying the data flow. A node
could be

 A constant (no input)

 A variable

 A placeholder (reserved for input data)

A warm-up exercise (tf_warmup.py)
 Problem:

 There is a linear model 𝑦 = 𝑤 ∙ 𝑥 + 𝑏, where 𝑤, 𝑏 are
parameters of the model

 Given a set of training data
𝑥𝑖 , 𝑦𝑖 𝑖 = 1, 0 , 2,−1 , 3,−2 ,… , we need to find

the values of 𝑤, 𝑏 so that the model “best” fits into the
data

 The criteria of “best fit” is minimization of a loss

function 𝐶 =
1

𝑛
 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖

2
𝑖

A simple method (tf_mnist_2layers.py)
 A two-layer fully-connected

network

 Input: 28x28=784

 Output: a vector of

 10 elements

𝑦𝑖 = 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑗

A simple method (cont.)
 Training

x

y’

S
o

ftm
ax cro

ss en
tro

p
y

cost

Softmax cross entropy
 Softmax(𝑦1, 𝑦2, … , 𝑦𝑛)=

1

 𝑒𝑦𝑖𝑖
𝑒𝑦1 , 𝑒𝑦2 , … , 𝑒𝑦𝑛 turns a

vector of outputs into a probability distribution

 Cross entropy between a prediction probability
distribution 𝒚 and a true distribution 𝒚′ is defined as

𝐻𝒚′ 𝒚 = − 𝑦𝑖
′𝑙𝑜𝑔 𝑦𝑖

𝑖

 Since 0 ≤ 𝑦𝑖 , 𝑦𝑖
′ ≤ 1, so 𝐻𝑦′ 𝑦 ≥ 0

 Tf.nn.softmax_cross_entropy_with_logits
 𝒚_ =Softmax(𝒚)

 𝐻𝒚′ 𝒚_

A simple method (cont.)
 Use trained model

arg
m

ax

x
prediction

What’s learned

Add a hidden layer (tf_mnist_3layers_*.py)

A much better NN
 Multilayer convolutional network

C
o

n
v

R
eL

U

P
o

o
li

n
g

C
o

n
v

R
eL

U

P
o

o
li

n
g

R
eL

U

F
u

ll
y

co
n

n
ec

te
d

D
ro

p
o

u
t

S
u

m
 +

 b
ia

s

Some functions in TF
 tf.nn.conv2d(input, filter, strides, padding, …)

 input: 4D tensor [batch, height, width, channels]

 filter: 4D tensor [f_height, f_width, in_channels,
out_channels]

 strides: 4D tensor

 padding: “SAME’ or ‘VALID”

input

width

h
ei

gh
t

filter

Discussions
 Generalization, overfitting, regularization

 Difference between deep NN and traditional NN

 Why deep NN works much better

Generalization, overfitting,
regularization
 Goal of machine learning: Generalization, i.e.,

learning general rules/patterns from training data)

 Pitfall: overfitting, i.e., a learned model performs
much worse on unseen data

 Mechanism to prevent overfitting: regularization

 Dropout layer

 Monitoring performance with evaluation data during
training process

Difference between deep NN and
traditional NN
 Deeper: more hidden layers

 Combination of unsupervised and supervised learning
(autoencoder, a generative NN)

 Better generalization and regularization mechanisms

 More advanced layers/neurons: convolutional,
pooling, …

Why is deep NN so successful?
 It can approximate arbitrary functions well

 Features are extracted in a hierarchical way

 Features extracted in lower layers are more concrete and
local

 Features extracted in higher layers are more abstract and
global

 Deep NN and cheap learning

