
Code & data: guanw.sharcnet.ca/ss2017-deeplearning.tar.gz

Weiguang Guan

guanw@sharcnet.ca

guanw.sharcnet.ca/ss2017-deeplearning.tar.gz
guanw.sharcnet.ca/ss2017-deeplearning.tar.gz
guanw.sharcnet.ca/ss2017-deeplearning.tar.gz

Outline
 Part I: Introduction

 Overview of machine learning and AI

 Introduction to neural network and deep learning (DL)

 Part II: Case study − Recognition of handwritten digits

 Write our own DL code

 Use a DL library

Reference
 “Deep Learning Tutorial” by Yann LeCun,

http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-
icml2013.pdf

 “Deep Learning Tutorial” by Yoshua Bengio,
http://deeplearning.net/tutorial/deeplearning.pdf

 “Neural Networks and Deep Learning” by Michael
Nielsen, http://neuralnetworksanddeeplearning.com

http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

Part I

Introduction to
AI, Machine learning, and neural

network

Overview
 What is AI?

 What/how can a machine learn?

 Machine learning methods with focus on deep
learning

 Caveats and pitfalls of machine learning

Artificial Intelligence (AI)
 What is AI

 Def 1: Computer systems able to perform tasks that
normally require human intelligence.

 Def 2: intelligent machines that work and react like
humans

 Def 3 … : more on the internet…

Artificial Intelligence (AI)
 Are these in the domain of AI?

 Computing

 Database

 Logical operations

 …

Artificial Intelligence (AI)
Intelligent robot made by Boston Dynamics

https://youtu.be/rVlhMGQgDkY

AI system (my definition)

 Is able to perform an intelligent task by learning from
examples

 We humans don’t know the explicit rules/instructions
to perform the task

https://youtu.be/rVlhMGQgDkY
https://youtu.be/rVlhMGQgDkY

Artificial Intelligence (AI)

Speech Recognition

Visual Perception

Natural language understanding

Machine Learning Knowledge representation

Robotics

Expert Systems

Artificial Intelligence (AI)
 History of AI

 Brain vs computer

• Memory
• Information processing

(Computing vs thinking)
• Sensing

(camera and microphone vs
eyes and ears)

• Responding

Logic gates
Bio-chemical

operations
???

Artificial Intelligence (AI)
 What are minds?

 What is thinking?

 To what extent can computers have intelligence?

Strong AI vs weak AI

Artificial Intelligence (AI)
 Computers don’t and won’t have

 Passion, feeling, consciousness…

 Inherent common sense

 Motivation

 Computers can be trained to do particular tasks (as
good as humans or even better)

 “Thinking is computing”

How does Machine Learning work
 What is learned by computer?

A parameterized model used to perform a particular task.

Task: to predict diabetes based on sugar intake x and
hours of exercise y per day.

y<b

x>a

x, y

no

no
yes

yes

ND

D

ND

Input: x, y
Output: either D (Diabetes)
 or ND (not Diabetes)
Parameters: a, b

Machine Learning
 How does a computer learn?

Learns from (many) samples

x

y

ND
D

a

b
y<b

x>a

x, y

no

no
yes

yes

ND

D

ND

Machine Learning
 Learning becomes an optimization problem:

Determine parameters (a, b) so that a pre-defined cost
function (e.g., misclassification error) is minimized.

 Training or learning is usually an iterative process
where parameters are gradually changed to make the
cost function smaller and smaller.

Machine Learning
 Basic concepts (cont’d)

 Feature space

 Decision boundary

x

y

ND
D

a

b

Two categories of learning
 Supervised learning

Learn from annotated samples

 Unsupervised learning

Learn from samples without annotation

Faces

Non-faces

Machine learning methods
 Deep learning

 Boosting

 Support Vector Machine (SVM)

 Naïve Bayes

 Decision tree

 Linear or logistic regression

 K-nearest neighbours (KNN)

Sample data
 Basic concepts

 Sample

 Sample is defined as a vector of attributes (or features), each
of which can be

 Numerical

 Categorical

 Ordered

 No order

 Binary or Boolean

 Label can be

 Categorical (most often, binary) --- classification

 Numerical --- regression

Sample
 Example of data sample

Name Occupa

tion
Smoking Sugar

intake
Hours of
exercise

… Glucose
level

Diabetes

Peter Driver Yes 100.0 5.5 … 80 No

Nancy Teacher No 50.0 3 … 120 Yes

… … … … … … … …

Feature vector Annotation

Performance measures
 Basic concepts (cont’d)

 Classification error

 Binary classification

 TP, TN, FP, FN

 ROC curve

 TPR = TP/(TP+FN), FPR =FP/(FP+TN)

Performance measures
 Basic concepts (cont’d)

 Classification error

 Multiclass classification

 Confusion matrix

Neural network and deep learning
 Directed graph of neurons

Neurons
 Neurons

 Linear weighted sum

 Perceptron

 Sigmoid

 Rectified Linear Units (ReLu)

 …

 Layers:
 Pooling

 Convolution

 Loss

 …

Linear weighted sum
 𝑧 = 𝑤𝑗𝑥𝑗 = 𝒘

𝑡
𝑗 𝒙

Perceptron

 𝑧 =
0, if 𝑤𝑗𝑥𝑗 ≤ 𝑇𝑗

1, otherwise

 𝑧 =
0, if 𝒘𝑡𝒙 + 𝑏 ≤ 0
1, otherwise

 weights: 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑛)

 bias: 𝑏 = −𝑇

Sigmoid neuron
𝜎 𝑧 =

1

1 + 𝑒−𝑧

where 𝑧 = 𝒘𝑡𝒙 + 𝑏

Rectified Linear Units
𝜎 𝑧 = max (0, 𝑧)

where 𝑧 = 𝒘𝑡𝒙 + 𝑏

Convolution layer
 A set of learnable filters (or kernels) --- 2D array of

weights

 Each neuron (blue) of a filter has its receptive field
(red) in the input image

 Dot product between receptive field and a filter

Pooling layer
 Sub-sampling

 Example of max pooling

Architecture of neural network

Train a neural network
 Purpose: To determine the parameters of a given

network so that it will produce desired outputs.

How to achieve the training goal
 Define a cost (objective) function to measure the

performance of a NN, such as

MSE =
1

𝑛
 𝑦𝑖 − 𝑔(𝒙𝑖)

2

𝑛

𝑖=1

 where 𝒙𝑖 and 𝑦𝑖 are the feature vector and label of the
𝑖-th sample. 𝑔(𝒙𝑖) is the output of the NN.

 𝑔(𝒙𝑖) depends on the parameters of the NN.

 Gradient descent is used to find the values of these
parameters that minimize the cost function.

Gradient descent (1D function)
𝑦 = 𝑓 𝑥 = 𝑥2 − 6𝑥 + 10

 Starting 𝑥 = 6, we get 𝑦 = 10

 𝑥 = 𝑥 ± ∆𝑥, where ∆𝑥 = 0.01,
we get
𝑦 = 9.9401 for 𝑥 = 5.99

 and

𝑦 = 10.0601 for 𝑥 = 6.01

 𝑦′ = lim
∆𝑥→0

∆𝑦

∆𝑥
≈
0.0601

0.01
= 6.01

where ∆𝑦 = 𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

 Analytic 𝑦′ = 2𝑥 − 6

x

y

6

10 ∆𝑥

∆𝑦 𝑦′

Gradient descent (2D function)
𝑧 = 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 6𝑥 + 10

 Starting 𝑥 = 6, 𝑦 = −2, we get 𝑧 = 14

 Analytic:
𝜕𝑧

𝜕𝑥
= 2𝑥 − 6,

𝜕𝑧

𝜕𝑦
= 2𝑦

 Gradient 𝛻𝑧 = (
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
) is the fastest ascending

direction

 Iteratively approaching with learning rate η = 0.01
 Round #1: (𝑥, 𝑦) = (6,−2), we get 𝛻𝑧 = (6,−4)

 Round #2: 𝑥, 𝑦 = 𝑥, 𝑦 − η𝛻𝑧 = (5.94,−1.96), we get
𝛻𝑧 = (5.88,−3.92)

 Round #3: ……

x

y

z

Train a neural network
 Initialize the state of a neural network (by

randomizing all the parameters)

 Iterative process

 Feed forward

 Backpropagation (chain rule)

f(x,y)
g(q,z)

x

y

z

q
p

𝜕𝑝

𝜕𝑥
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑥

𝜕𝑝

𝜕𝑦
=
𝜕𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑦

𝜕𝑝

𝜕𝑧
=
𝜕𝑝

𝜕𝑧

Chain rule of derivatives

Wait a minute …
 Questions

 We want to minimize a cost function, not the output of
NN

 We want to tweak the parameters of NN, not the input
data (x, y, z …) to do the minimization

 Let change the roles …
 Consider 𝑎, 𝑏, … , 𝑓 as variables in 𝑧 = 𝑓 𝑥, 𝑦 = 𝑎𝑥2 +
𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓

 The cost function C is a function of the output and

ground truth so that we can compute
𝜕𝐶

𝜕𝑎
,
𝜕𝐶

𝜕𝑏
,…,
𝜕𝐶

𝜕𝑓
,

 Apply gradient descent on 𝑎, 𝑏, … , 𝑓 the same way

Training a neural network
 Cost function 𝐶(𝒘, 𝒃) =

1

𝑛
 𝐶𝑖
𝑛
𝑖=1 = 𝑦𝑖 − 𝑔(𝒙𝑖)

2,

where 𝒘, 𝒃 are the weights and biases of NN.

 𝛻𝐶 =
1

𝑛
 𝛻𝐶𝑖
𝑛
𝑖=1 , 𝑛 is the number of training samples

 𝛻𝐶 ≈
1

𝑚
 𝛻𝐶𝑖
𝑚
𝑖=1 , randomly divide training set into

small subsets (mini-batches), each of which contains
𝑚 ≪ 𝑛 samples. An epoch is one complete pass going
through all the mini-batches.

 Training with mini-batches is called stochastic
gradient descent (SGD)

Caveats and pitfalls
 Feature selection

 Relevance
 Redundancy

 Sample data
 Mislabeling
 Outliers

 Overfitting
 Small training set
 Low-quality training data
 Over-training

 Confidence level of classification
 Re-tune a trained model to operate on a different position

on the ROC curve

Part II

Case Study:
Recognition of hand-written digits

Tasks
 Write our own NN code

 Use DL libraries (Tensorflow)

Four elements in deep learning
 Datasets (for training, testing …)

 Design of a neural network

 Cost function that training tries to minimize

 Training method(solver or optimizer, such as SGD,
AdaDelta, Adaptive Gradient, etc)

Dataset of handwritten digits
 Dataset (http://yann.lecun.com/exdb/mnist/)

 60,000 training samples

 10,000 testing samples

 Each sample is 28x28 gray scale image with a label
telling what digit it is.

 The label (0, 1, …, 9) is vectorized as a “one-hot” vector,
e.g., [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] represents 3.

 checkdata.py

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Dataset of handwritten digits

One-hot vectorized label: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

Architecture of neural network
 Multilayer Perceptron (MLP) or fully connected NN

 Input: 28x28=784

 One hidden layer

 Output: a vector of

 10 elements

Architecture of neural network
 Multilayer perceptron (MLP)

argmax

Cost function
 Some notations

𝑤𝑗,𝑘
(𝑙)

 denotes the weight of the connection between the 𝑘𝑡ℎ

neuron in the (𝑙 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ

layer. Similarly, we define bias 𝑏𝑗
(𝑙)

, weighted sum+bias 𝑧𝑗
(𝑙)

,

and activation 𝑎𝑗
(𝑙)
= 𝜎 𝑧𝑗

(𝑙)
 at the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ

layer.

Cost function
 Given a input (𝒙, 𝒚)

 Feedforward calculation

 𝑧𝑗
(𝑙)
= 𝑤𝑗,𝑘

(𝑙)
𝑘 𝑎𝑘

(𝑙−1)
+ 𝑏𝑗
(𝑙)

 or 𝒛(𝑙) = 𝐰(𝑙)𝒂(𝑙−1) + 𝒃(𝑙)

𝑎𝑗
(𝑙)
= 𝜎(𝑧𝑗

(𝑙)
) or 𝒂(𝑙) = 𝜎 𝒛(𝑙)

When 𝑙 = 1, 𝑎𝑗
(1)
= 𝑥𝑗

 Cost function (quadratic function, MSE)

 𝐶 =
1

𝑚
 𝐶𝒙𝒙 , where

𝐶𝒙 = 𝒂
𝐿 𝒙 − 𝒚

2
= 𝑎𝑗

(𝐿)
− 𝑦𝑗

2
10
𝑗=1 , 𝐿 is the number of

layers of NN (𝐿 = 3 in this case).

As if there is an extra node

𝒂(𝟑) − 𝒚
2

𝑦

Backpropagation
 C depends (indirectly) on 𝑤𝑗,𝑘

(𝑙)
, 𝑏𝑗
(𝑙)

 where

𝑙 ∈ 2, 3

 𝑗, 𝑘 ∈
1: 30 , [1: 784] , if 𝑙 = 2

1: 10 , [1: 30] , if 𝑙 = 3

 ∆𝐶 ≈
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ∆𝑤𝑗,𝑘

(𝑙)
+

𝜕𝐶

𝜕𝑏
𝑗
(𝑙) ∆𝑏𝑗

(𝑙)

 If we can calculate
𝜕𝐶

𝜕𝑤
𝑗,𝑘
(𝑙) ,

𝜕𝐶

𝜕𝑏
𝑗
(𝑙), then we will

know how to change each of these parameters
𝑤𝑗,𝑘
(𝑙)
, 𝑏𝑗
(𝑙)

 to make C smaller.

Backpropagation
 Loop over 𝑚 samples, then calculate the average:

𝜕𝐶

𝜕𝑤𝑗,𝑘
(𝑙) =

1

𝑚

𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙) 𝒙 ,

𝜕𝐶

𝜕𝑏𝑗
(𝑙) =

1

𝑚

𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙) 𝒙

 Let’s define 𝛿𝑗
(𝑙)
≡
𝜕𝐶𝒙

𝜕𝑧𝑗
(𝑙) be the error of neuron 𝑗 on layer 𝑙, or

 𝜹(𝑙) = 𝛿1
(𝑙)
, 𝛿2
(𝑙)
, …
𝑡
 be the error of layer 𝑙.

 Since 𝒛(𝑙+1) = 𝐰(𝑙+1)𝒂(𝑙) + 𝒃 𝑙+1 = 𝐰(𝑙+1)𝜎 𝒛(𝑙) + 𝒃(𝑙+1), we
can get

𝜹(𝑙) = 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)

where ⊙ is Hadamard product operator (element-wise
multiplication)
 This means we can pass the error backward

𝜹(𝐿) → 𝜹(𝐿−1) → ⋯ → 𝜹 2

Backpropagation
 Then what if we know 𝜹(𝑙) …

𝜕𝐶𝒙

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑏𝑗
(𝑙)
= 𝛿𝑗
(𝑙)

𝜕𝐶𝒙

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗,𝑘
(𝑙)
= 𝛿𝑗
(𝑙)
𝑎𝑘
(𝑙−1)

or
𝜕𝐶𝒙
𝜕𝒃(𝑙)
= 𝜹(𝑙)

𝜕𝐶𝒙
𝜕𝐰(𝑙)
= 𝜹(𝑙) 𝒂(𝑙−1)

𝑡

Backpropagation
Backpropagation starts at layer 𝐿 = 3

𝛿𝑗
(𝐿)
=
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
𝜎′ 𝑧𝑗

𝐿

where
𝜕𝐶𝒙

𝜕𝑎𝑗
(𝐿)
= 2 𝑎𝑗

(𝐿)
− 𝑦𝑗

Or

𝛿(𝐿) = 𝑎𝑗
(𝐿)
− 𝑦𝑗 ⊙𝜎′ 𝑧

(𝐿)

Two passes

Backpropagation

𝒂 − 𝒚 2

𝑦

𝜹(2) ⃪ 𝜹 3

 ↓
𝜕𝐶𝒙
𝜕𝐰(3)

,
𝜕𝐶𝒙
𝜕𝒃(3)

Feed forward

 ↓
𝜕𝐶𝒙
𝜕𝐰(2)

,
𝜕𝐶𝒙
𝜕𝒃(2)

Write our own NN code
 Assuming 30 neurons in the hidden layer

Architecture:
 self.num_layers = 3
 self.sizes = [784, 30, 10]
Parameters:
 self.weights = [[30x784], [10x30]]
 self.biases = [30, 10]

We need to determine the values of these
 30x784 + 10x30 + 30 + 10 = 23860 parameters
through a training process.

How?
In each iteration of the training process
• Feedforward
• Backpropagation

Training
 train.py

import mnist_loader
import network

load reformatted data.
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

define the NN
net = network.Network([784, 30, 10])

train with Stochastic Gradient Descent
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

NOTE:
training_data is a list of 50000 tuples, each of which is ([784], [10])

Class “Network” (network.py)
 __init__(self, sizes) initialize parameters with random

numbers

 feedforward(self, a) takes ‘a’ as input and return the
output of the NN.

 evaluate(self, test_data) evaluates the performance of
the NN.

 SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None)

 update_mini_batch(self, mini_batch, eta)

 twopasses(self, x, y)

Two helper functions

def sigmoid(z):
 """The sigmoid function."""
 return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
 """Derivative of the sigmoid function."""
 return sigmoid(z)*(1-sigmoid(z))

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝜎′ 𝑧 = 𝜎 𝑧 (1 − 𝜎 𝑧)

Functions of Network
def feedforward(self, x):
 for b, w in zip(self.biases, self.weights):
 x = sigmoid(np.dot(w, x)+b)
 return x

def evaluate(self, test_data):
 test_results = [(np.argmax(self.feedforward(x)), y) \
 for (x, y) in test_data]
 return sum(int(x == y) for (x, y) in test_results)

NOTE:
self.weights = [[30,784], [10, 30]]
self.biases = [30, 10]
𝒙=[784] is passed in as argument

In loop #1:
• 𝒘𝑡 = [30, 784], 𝒃 = [30]
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃) → 𝒙=[30]

In loop #2:
• 𝒘𝑡 = [10, 30], 𝒃 = [10]
• 𝒙 = 𝜎(𝒘𝑡𝒙 + 𝒃) → 𝒙=[10]

Functions of Network
def SGD(self, training_data, epochs, mini_batch_size,
 eta, test_data=None):
 if test_data: n_test = len(test_data)
 n = len(training_data)
 for j in xrange(epochs):
 random.shuffle(training_data)
 mini_batches = [
 training_data[k:k+mini_batch_size]
 for k in xrange(0, n, mini_batch_size)]
 for mini_batch in mini_batches:
 self.update_mini_batch(mini_batch, eta)
 if test_data:
 print "Epoch {0}: {1} / {2}".format(
 j, self.evaluate(test_data), n_test)
 else:
 print "Epoch {0} complete".format(j)

NOTE:
epochs=30, mini_batch_size = 10
eta (or η)=3.0 learning rate

Generate 5000 randomized
mini-batches

Update weights and biases by
learning from each batch

If test data is provided, then
evaluate the performance of
the current NN

Functions of Network
def update_mini_batch(self, mini_batch, eta):
 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 for x, y in mini_batch:
 delta_nabla_b, delta_nabla_w = self.twopasses(x, y)
 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
 self.weights = [w-(eta/len(mini_batch))*nw
 for w, nw in zip(self.weights, nabla_w)]
 self.biases = [b-(eta/len(mini_batch))*nb
 for b, nb in zip(self.biases, nabla_b)]

nabla_w=

𝜕𝐶

𝜕𝑤1,1
(2) ⋯

𝜕𝐶

𝜕𝑤1,784
(2)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤30,1
(2) ⋯

𝜕𝐶

𝜕𝑤30,784
(2)

,

𝜕𝐶

𝜕𝑤1,1
(3) ⋯

𝜕𝐶

𝜕𝑤1,30
(3)

⋮ ⋱ ⋮
𝜕𝐶

𝜕𝑤10,1
(3) ⋯

𝜕𝐶

𝜕𝑤10,30
(3)

nabla_b=

𝜕𝐶

𝜕𝑏1
(2) , … ,

𝜕𝐶

𝜕𝑏30
(2) ,

𝜕𝐶

𝜕𝑏1
(3) , … ,

𝜕𝐶

𝜕𝑏10
(3)

𝐰, 𝒃 = 𝐰, 𝒃 + η
1

𝑚
 𝛻𝐶𝑖

𝑚

𝑖=1

𝛻𝐶𝑖

 𝛻𝐶𝑖

𝑚

𝑖=1

Functions of Network
def twopasses(self, x, y):
 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 # feedforward
 activation = x
 activations = [x] # list to store all the activations, layer by layer
 zs = [] # list to store all the z vectors, layer by layer
 for b, w in zip(self.biases, self.weights):
 z = np.dot(w, activation)+b
 zs.append(z)
 activation = sigmoid(z)
 activations.append(activation)
 # backward pass
 delta = (activations[-1] - y) * sigmoid_prime(zs[-1])
 nabla_b[-1] = delta
 nabla_w[-1] = np.dot(delta, activations[-2].transpose())
 for l in xrange(2, self.num_layers):
 z = zs[-l]
 sp = sigmoid_prime(z)
 delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
 nabla_b[-l] = delta
 nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
 return (nabla_b, nabla_w)

𝛻𝐶𝑖 that depends on a
single sample (x, y)

Feedforward pass:
𝑧 = 𝒘𝑡𝒙 + 𝑏 → zs[]

𝜎 𝑧 =
1

1+𝑒−𝑧
→ activations[]

Backpropagation pass:
delta= 𝛿(𝐿) =

𝜕𝐶𝒙

𝜕𝒂(𝐿)
⊙𝜎′ 𝑧(𝐿)

Nabla_b[-1] =
𝜕𝐶𝒙

𝜕𝒃(𝐿)
= 𝛿(𝐿)

Nabla_w[-1]=
𝜕𝐶𝒙

𝜕𝐰(𝐿)
= 𝜹(𝐿) 𝒂(𝐿−1)

𝑡

delta = 𝜹(𝑙)= 𝐰(𝑙+1)
𝑡
𝜹(𝑙+1) ⊙𝜎′ 𝒛(𝑙)

Calculate nabla_w, nabla_b for layer 2 from
𝜹(𝑙)

Tweak around
 Learning rate: 0.001, 1.0, 100.0, …

 Size of mini-batches: 10, 50, 100, …

 Number of neurons in the hidden layer: 15, 30, 100, …

 Number of hidden layers: 1, 2, 5, …

Use Tensorflow in recognition of
handwritten digits
 Introduction to Tensorflow

 A warm-up

 A 2-layer NN (~92% recognition rate)

 A 3-layer NN (~94% recognition rate)

 A much better NN (~99% recognition rate)

Introduction to Tensorflow
 Tensorflow APIs

 Low-level APIs --- Tensorflow Core that gives you a fine
control

 High-level APIs --- built upon the Core, which are more
convenient and efficient to program with

 Tensor --- a multi-dimensional array which is the
central unit of data structure, e.g., [batch, height,
width, channel] for image data.

 Session --- encapsulation of the control and the state
of Tensorflow runtime.

Introduction to Tensorflow
 To perform a specific computational task, one needs to

 Build a computational graph

 Run the computational graph

 Computational graph is a directed graph with edges
connecting nodes specifying the data flow. A node
could be

 A constant (no input)

 A variable

 A placeholder (reserved for input data)

A warm-up exercise (tf_warmup.py)
 Problem:

 There is a linear model 𝑦 = 𝑤 ∙ 𝑥 + 𝑏, where 𝑤, 𝑏 are
parameters of the model

 Given a set of training data
𝑥𝑖 , 𝑦𝑖 𝑖 = 1, 0 , 2,−1 , 3,−2 ,… , we need to find

the values of 𝑤, 𝑏 so that the model “best” fits into the
data

 The criteria of “best fit” is minimization of a loss

function 𝐶 =
1

𝑛
 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖

2
𝑖

A simple method (tf_mnist_2layers.py)
 A two-layer fully-connected

network

 Input: 28x28=784

 Output: a vector of

 10 elements

𝑦𝑖 = 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑗

A simple method (cont.)
 Training

x

y’

S
o

ftm
ax cro

ss en
tro

p
y

cost

Softmax cross entropy
 Softmax(𝑦1, 𝑦2, … , 𝑦𝑛)=

1

 𝑒𝑦𝑖𝑖
𝑒𝑦1 , 𝑒𝑦2 , … , 𝑒𝑦𝑛 turns a

vector of outputs into a probability distribution

 Cross entropy between a prediction probability
distribution 𝒚 and a true distribution 𝒚′ is defined as

𝐻𝒚′ 𝒚 = − 𝑦𝑖
′𝑙𝑜𝑔 𝑦𝑖

𝑖

 Since 0 ≤ 𝑦𝑖 , 𝑦𝑖
′ ≤ 1, so 𝐻𝑦′ 𝑦 ≥ 0

 Tf.nn.softmax_cross_entropy_with_logits
 𝒚_ =Softmax(𝒚)

 𝐻𝒚′ 𝒚_

A simple method (cont.)
 Use trained model

arg
m

ax

x
prediction

What’s learned

Add a hidden layer (tf_mnist_3layers_*.py)

A much better NN
 Multilayer convolutional network

C
o

n
v

R
eL

U

P
o

o
li

n
g

C
o

n
v

R
eL

U

P
o

o
li

n
g

R
eL

U

F
u

ll
y

co
n

n
ec

te
d

D
ro

p
o

u
t

S
u

m
 +

 b
ia

s

Some functions in TF
 tf.nn.conv2d(input, filter, strides, padding, …)

 input: 4D tensor [batch, height, width, channels]

 filter: 4D tensor [f_height, f_width, in_channels,
out_channels]

 strides: 4D tensor

 padding: “SAME’ or ‘VALID”

input

width

h
ei

gh
t

filter

Discussions
 Generalization, overfitting, regularization

 Difference between deep NN and traditional NN

 Why deep NN works much better

Generalization, overfitting,
regularization
 Goal of machine learning: Generalization, i.e.,

learning general rules/patterns from training data)

 Pitfall: overfitting, i.e., a learned model performs
much worse on unseen data

 Mechanism to prevent overfitting: regularization

 Dropout layer

 Monitoring performance with evaluation data during
training process

Difference between deep NN and
traditional NN
 Deeper: more hidden layers

 Combination of unsupervised and supervised learning
(autoencoder, a generative NN)

 Better generalization and regularization mechanisms

 More advanced layers/neurons: convolutional,
pooling, …

Why is deep NN so successful?
 It can approximate arbitrary functions well

 Features are extracted in a hierarchical way

 Features extracted in lower layers are more concrete and
local

 Features extracted in higher layers are more abstract and
global

 Deep NN and cheap learning

