
Getting the Most from 
Sharcnet



plan

● processors/nodes
● interconnect
● storage
● scheduler



Brief review

● Many clusters, spanning 8 years of tech
● Some intentionally specialized
● Some contributed
● No two identical:

○ cpu/memory node config
○ cluster interconnect and storage
○ connectivity to the WAN



Node hardware

● CPU models: instruction set and clock:
○ 2 DP flops/cycle (Requin)
○ 4 Saw, Orca
○ 16 Haswell

● Memory configuration (bandwidth, capacity)
○ 4*PC3200 (Requin, 3.2 GB/s/core)
○ 4*PC5300 (Saw, 2.7)
○ 8*PC10666 (Orca, 3.5)
○ 8*PC15000 (Haswell, 5.0)



Memory

● All systems except Saw are NUMA
● This means that a big-memory serial job will 

never be as fast as possible
● Ideally, use the amount of memory attached 

to the number of CPU die you’re using
● Approximated by memory-per-core



Node Interconnect

● Requin: 1GB/s, 1.4 us, full bisection
● Saw: 2.5 GB/s, 2 us, partial
● Orca: 5 GB/s, 2 us, partial



Storage

● Metadata
○ many/small files
○ file creation/rename/delete
○ colorized ls is expensive

● Large IO
○ fewer, big files
○ good for Lustre
○ blocks should be megabytes
○ global work and orca/saw scratch



Storage

● Please don’t use /home
○ very nice NFS servers but terrible for bandwidth
○ OK for metadata (compiling)

● Global work
○ terrible for anything but big-file-IO
○ striping

● Scratch
○ much faster normally
○ because it’s less contended



Node-local storage

● Don’t forget that nodes have their own disks
● Not very convenient
● Scales ideally



Storage Performance Numbers

● Lustre is about 150 MB/s per OSS
● local /scratch scales well
● global work not so well

○ interference
○ latency



Into and Out of Sharcnet

● sshfs
● DTN

○ globus: gridftp
○ rsync



Scheduling

● Jobs request CPU and memory resources 
for a specific length of time (GPU too).

● Scheduler chooses node where these can 
be provided exclusively.

● This means that all resources are conflated 
and mutually affect how soon a job may be 
scheduled



Scheduling

● Minimize your memory request
● Minimize your CPU request
● Minimize your runtime request
● Don’t turn a bunch of serial work into MPI



Scheduling
● Every cycle, jobs are examined to see which ones can 

be started.
● Order depends on priority, which is mainly NRAC > 

normal
● Fairshare is considered a goal: some priority advantage 

if you are far from your usage.
● Greedy: whether your job starts depends mostly on 

when/whether resources become available.


