Debugging on Graham with
DDT

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)

July 4, 2018



Outline

« Overview of DDT

e Using DDT on Graham

o Advanced features of DDT
e Questions?



Overview of DDT



« DDT (former Allinea; now ARM) Is a powerful
commercial debugger specifically designed for
HPC.

e |t can debug serial, multi-threaded, MPI, CUDA
codes, and any combinations of the above.

e |t has all the features a debugger needs,
iIncluding
- Play / pause / step through commands
- Breakpoints / watchpoints / tracepoints
- Display / edit values of variables
- Memory debugging



 Alot of the DDT's functionality Is for dealing
with parallel codes, e.q.

- Easy access to any MPI process or thread (on CPU
or GPU)

- Control the execution of processes or threads either
In groups or individually

- Visualization of ongoing MPl communications

- Displaying the values of a variable across MPI
ranks or threads



« For more information, check the DDT wiki page
on Compute Canada web portal,

https://docs.computecanada.ca/wiki/ARM _software

and the DDT User guide,

https://developer.arm.com/docs/101136/latest/ddt



Using DDT on Graham



« DDT Is a GUI application, so one has to ensure
that X11 forwarding is enabled (ssh -Y), and
that an X Window server IS running on your
terminal.

- On Windows, use a free application MobaXterm
(ssh client and X Window server)

- On Mac, use an XQuartz app for the X Window
server functionality

« Graham doesn't have dedicated development

nodes (like orca), so one has to reserve node(s)
using salloc or shatch commands.



Basic usage

$ ssh -Y user@graham.computecanada.ca

Serial / MPI:

$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G --ntasks=4 -A
def-user

$ mpicc -g -O0 code.c -0 code

$ module load ddt-cpu

$ ddt ./code

OpenMP:

$ salloc --x11 --time=0-3:00 --mem=16G --cpus-per-task=4 -A
def-user

$ icc -g -O0 -gopenmp code.c -0 code

$ module load ddt-cpu

$ ddt ./code



« CUDA:
$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G --ntasks=1
--gres=gpu:1l -A def-user
$ module load cuda
nvcc -G -g -O0 -arch=sm_60 code.cu -0 code

$
$ module load ddt-gpu
$ ddt ./code



Advanced features of DDT



Watchpoints

 Unlike breakpoints (which are associated with a
specific line in code, with an optional condition),
watchpoints are used to pause at any line
where the watched variable (or expression)
changes its value.

« Changing the default “write” mode to “read”
mode will force DDT to pause the next time the
variable Is accessed In the code.




Tracepoints

 Tracepoints allow you to print certain variables
values at certain lines of the code without
pausing the code.

e Can be set from the source code window (right-
click), or by right-clicking in the Tracepoints
view and selecting Add Tracepoint.

e This option Is particularly useful in the offline
(non-interactive) mode of using DDT (we'll talk
about it later), where it Is set via DDT command
line option “--trace-at=...".



Hybrid codes

Debugging “vanilla” parallel programs (e.g. MPI)
IS already a difficult task.

Debugging hybrid codes (MP1+OpenMP,
MPI+CUDA etc) Is even harder, and a tool like

DDT
DDT

necomes Invaluable.

orovides an easy way to switch “focus”

from MPI ranks to CPU threads to GPU threads.

Breakpoints and watchpoints can be process
and thread specific.

Variable values across all ranks or threads can
be displayed.



Large jobs

« salloc has a runtime limit of 3 hours. Also, the
walt time can become very long if asking for
more than one node.

 |f a bug Is encountered at a predictable point,
one can write a checkpointing file right before it
happens, and do interactive debugging from
that point on.

« How to debug codes which are large or where a
Dug Is encountered at a random point, likely
neyond the 3 hour limit of salloc?




Attaching to a running job

« One possibllity is to use the DDT's advanced
feature “Attach to an already running program?”.

Submit your job via sbatch
Launch ddt without arguments from a login node

Use squeue command to find out which node(s) are
used by the job

Choose the “Attach to an already running program”
option.

Click on Choose Hosts button, and add the job
nodes there.

In most cases DDT will automatically detect all the
processes from your code.



Core files analysis

o If your code's bug results in a crash producing
core* files, one can use another advanced DDT
functionality, Open Core, to gain insight on the
reasons for crashing.

« Compile your code with “-g”, submit it via sbatch.
Make sure you run it from Project or Scratch file
system (on Home file system no core files are
created.)

« After the code crashes, launch ddt without
arguments, and choose the Open Core option. Add
your core files and the path to your code there.

« You can now see the state of the code at the time
of crashing.



Offline debugging

Finally, one could also try the Offline debugging
option.

Submit “ddt --offline ... ./code” to the scheduler via
sbatch command.

There are many ddt switches which can be used in
the offline mode. E.g. the following command will do
an offline debugging of a 4-ranks MPI job which will
save snapshots of the stack/variables every 10
minutes to a log file:

$ ddt --offline -n 4 --snapshot-interval=10 ./code

There is a limited support for breakpoints and
tracepoints.



Questions?

e You can always contact me directly
(syam@sharcnet.ca) or send an email to
help@sharcnet.ca or
support@computecanada.ca .


mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca
mailto:support@computecanada.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

