
Debugging on Graham with
DDT

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)

July 4, 2018

Outline

● Overview of DDT
● Using DDT on Graham
● Advanced features of DDT
● Questions?

Overview of DDT

● DDT (former Allinea; now ARM) is a powerful
commercial debugger specifically designed for
HPC.

● It can debug serial, multi-threaded, MPI, CUDA
codes, and any combinations of the above.

● It has all the features a debugger needs,
including
– Play / pause / step through commands
– Breakpoints / watchpoints / tracepoints
– Display / edit values of variables
– Memory debugging

● A lot of the DDT's functionality is for dealing
with parallel codes, e.g.
– Easy access to any MPI process or thread (on CPU

or GPU)
– Control the execution of processes or threads either

in groups or individually
– Visualization of ongoing MPI communications
– Displaying the values of a variable across MPI

ranks or threads

● For more information, check the DDT wiki page
on Compute Canada web portal,

https://docs.computecanada.ca/wiki/ARM_software

and the DDT User guide,

https://developer.arm.com/docs/101136/latest/ddt

Using DDT on Graham

● DDT is a GUI application, so one has to ensure
that X11 forwarding is enabled (ssh -Y), and
that an X Window server is running on your
terminal.
– On Windows, use a free application MobaXterm

(ssh client and X Window server)
– On Mac, use an XQuartz app for the X Window

server functionality
● Graham doesn't have dedicated development

nodes (like orca), so one has to reserve node(s)
using salloc or sbatch commands.

Basic usage

$ ssh -Y user@graham.computecanada.ca

● Serial / MPI:
$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G --ntasks=4 -A
def-user
$ mpicc -g -O0 code.c -o code
$ module load ddt-cpu
$ ddt ./code

● OpenMP:
$ salloc --x11 --time=0-3:00 --mem=16G --cpus-per-task=4 -A
def-user
$ icc -g -O0 -qopenmp code.c -o code
$ module load ddt-cpu
$ ddt ./code

● CUDA:
$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G --ntasks=1
--gres=gpu:1 -A def-user
$ module load cuda
$ nvcc -G -g -O0 -arch=sm_60 code.cu -o code
$ module load ddt-gpu
$ ddt ./code

Advanced features of DDT

Watchpoints

● Unlike breakpoints (which are associated with a
specific line in code, with an optional condition),
watchpoints are used to pause at any line
where the watched variable (or expression)
changes its value.

● Changing the default “write” mode to “read”
mode will force DDT to pause the next time the
variable is accessed in the code.

Tracepoints

● Tracepoints allow you to print certain variables
values at certain lines of the code without
pausing the code.

● Can be set from the source code window (right-
click), or by right-clicking in the Tracepoints
view and selecting Add Tracepoint.

● This option is particularly useful in the offline
(non-interactive) mode of using DDT (we'll talk
about it later), where it is set via DDT command
line option “--trace-at=...”.

Hybrid codes

● Debugging “vanilla” parallel programs (e.g. MPI)
is already a difficult task.

● Debugging hybrid codes (MPI+OpenMP,
MPI+CUDA etc) is even harder, and a tool like
DDT becomes invaluable.

● DDT provides an easy way to switch “focus”
from MPI ranks to CPU threads to GPU threads.

● Breakpoints and watchpoints can be process
and thread specific.

● Variable values across all ranks or threads can
be displayed.

Large jobs

● salloc has a runtime limit of 3 hours. Also, the
wait time can become very long if asking for
more than one node.

● If a bug is encountered at a predictable point,
one can write a checkpointing file right before it
happens, and do interactive debugging from
that point on.

● How to debug codes which are large or where a
bug is encountered at a random point, likely
beyond the 3 hour limit of salloc?

Attaching to a running job

● One possibility is to use the DDT's advanced
feature “Attach to an already running program”.
– Submit your job via sbatch
– Launch ddt without arguments from a login node
– Use squeue command to find out which node(s) are

used by the job
– Choose the “Attach to an already running program”

option.
– Click on Choose Hosts button, and add the job

nodes there.
– In most cases DDT will automatically detect all the

processes from your code.

Core files analysis

● If your code's bug results in a crash producing
core* files, one can use another advanced DDT
functionality, Open Core, to gain insight on the
reasons for crashing.

● Compile your code with “-g”, submit it via sbatch.
Make sure you run it from Project or Scratch file
system (on Home file system no core files are
created.)

● After the code crashes, launch ddt without
arguments, and choose the Open Core option. Add
your core files and the path to your code there.

● You can now see the state of the code at the time
of crashing.

Offline debugging

● Finally, one could also try the Offline debugging
option.

● Submit “ddt --offline/code” to the scheduler via
sbatch command.

● There are many ddt switches which can be used in
the offline mode. E.g. the following command will do
an offline debugging of a 4-ranks MPI job which will
save snapshots of the stack/variables every 10
minutes to a log file:

$ ddt --offline -n 4 --snapshot-interval=10 ./code

● There is a limited support for breakpoints and
tracepoints.

Questions?

● You can always contact me directly
(syam@sharcnet.ca) or send an email to
help@sharcnet.ca or
support@computecanada.ca .

mailto:syam@sharcnet.ca
mailto:help@sharcnet.ca
mailto:support@computecanada.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

