
Scalable Memory
Allocation for
Parallel Algorithms

Armin Sobhani

asobhani@sharcnet.ca

HPC Technical Consultant

SHARCNET | Compute Canada

March 17, 2021

What

Why

Which

How

Live Benchmark

What is a Scalable Memory Allocator?

Optimized routines for memory allocation/deallocation

Usually not provided by OS or compiler

May increase the performance of parallel sections

Some of them can also be used for heap profiling

Scalable Memory Allocation for Parallel Algorithms 2

Why You Need One?

Standard Allocators Scalable Allocators

Provide
scalability in
multi-
threaded
systems by:

Using multiple
chunks of raw
memory

Trying to
optimize for
cache locality

Preventing
false sharing

Scalable Memory Allocation for Parallel Algorithms 3

Not designed for
threads

Act as a bottleneck

No support for caching
effects

Not scalable

Slow down as the number
of cores increases

①

②
③

Some Popular Scalable Allocators

• Written by Jason Evans and used by Facebook

FreeBSD libc allocator – jemalloc

• Thread-caching malloc

Google’s gperftools – tcmalloc

• The most convenient and feature-rich

Intel’s TBB (OneTBB) – tbbmalloc

Scalable Memory Allocation for Parallel Algorithms 4

Ways to Use Scalable Memory Allocators

Compile-time

Compile-time

Link-time

Run-time

Alternate Classes

Alternate
Functions

Proxy Library

Proxy Library

C++ Classes

C/C++ Functions

Static/Dynamic
Libraries

LD_PRELOAD

std:allocator

malloc
calloc
realloc
free

No code changes

No code changes

All Oses

All Oses

All Oses

Linux and Mac

TBB

All

All

All

Scalable Memory Allocation for Parallel Algorithms 5

Run-time Method – TBB Proxy Library

Linux Code Injection

• Dynamic memory replacement
by defining LD_PRELOAD
environment variable before
running your program

• Example
export LD_PRELOAD=$TBBROOT/lib/intel64/gcc4.8/libtbbmalloc_proxy.so.2

MacOS Code Injection

• Dynamic memory replacement
by defining
DYLD_INSERT_LIBRARIES

environment variable before
running your program

• Example
export DYLD_INSERT_LIBRARIES=$TBBROOT/lib/libtbbmalloc_proxy.dylib

Scalable Memory Allocation for Parallel Algorithms 6

Run-time Method – TBB Proxy Library

Linux MacOS Windows

Replaceable global C++ operators new and delete Yes Yes Yes

Standard C library functions:
malloc, calloc, realloc, free

Yes Yes Yes

Standard C library functions (added in C11):
aligned_alloc

Yes

Standard POSIX* function:
posix_memalign

Yes Yes

Scalable Memory Allocation for Parallel Algorithms 7

List of routines replaced by proxy

Link-time Method – TBB Proxy Library

Linux and MacOS

• Add the following linker flags:

-L$TBBROOT/lib/intel64/gcc4.8 -ltbbmalloc_proxy

• Add the following compiler flags
for gcc and icc:

-fno-builtin-malloc

-fno-builtin-calloc

-fno-builtin-realloc

-fno-builtin-free

Windows

• Add the following linker flags:

tbbmalloc_proxy.lib /INCLUDE:"__TBB_malloc_proxy"

• Add the following compiler flags
for icc :

- /Qfno-builtin-malloc

- /Qfno-builtin-calloc

- /Qfno-builtin-realloc

- /Qfno-builtin-free

Scalable Memory Allocation for Parallel Algorithms 8

Compile-time Method – Alternate Functions
Fa

m
ily

 1

void* scalable_malloc (size_t size) malloc analogue

void scalable_free (void* ptr) free analogue

void* scalable_realloc (void* ptr, size_t size) realloc analogue

void* scalable_calloc (size_t nobj, size_t size) calloc analogue complementing scalable_malloc

int scalable_posix_memalign (void** memptr,
size_t alignment, size_t size)

posix_memalign analogue

Fa
m

ily
 2

void* scalable_aligned_malloc (size_t size,
size_t alignment)

malloc analogue complementing scalable_malloc

void* scalable_aligned_realloc (void* ptr,
size_t size, size_t alignment)

realloc analogue complementing scalable_realloc

void scalable_aligned_free (void* ptr) free analogue for a previously allocated
scalable_aligned_malloc or
scalable_aligned_realloc

Scalable Memory Allocation for Parallel Algorithms 9

Functions offered by the TBB scalable memory allocator

Compile-time Method – Alternate Functions

Family Allocation Routine Deallocation Routine Analogous Library

1 scalable_malloc
scalable_calloc
scalable_realloc

scalable_free C standard library

scalable_posix_memalign POSIX

2 scalable_aligned_malloc
scalable_aligned_realloc

scalable_aligned_free Microsoft C runtime

Scalable Memory Allocation for Parallel Algorithms 10

Coupling of allocate-deallocate functions by families

Compile-time Method – Alternate Classes

Scalable Memory Allocation for Parallel Algorithms 11

tbb::aligned_space< T, N > Block of space aligned sufficiently large to construct an array
T with N elements of type T.

tbb::cache_aligned_allocator< T > Scalable memory allocation, aligned to begin on a cache
line. Helps avoid false sharing, but alignment can increase
memory footprint.

tbb::memory_pool_allocator< T, P > Mainly intended to enable memory pools with STL
containers. This is a preview feature.

tbb::scalable_allocator< T > Scalable memory allocation. Calling this directly will fail if
the tbbmalloc library is not available.

tbb::tbb_allocator< T > Selects tbb::scalable_allocator when available, and fall
back on standard malloc when the tbbmalloc is not
available.

tbb::zero_allocator< T [, Allocator] > Forwards allocation requests to Allocator (defaults to
tbb_allocator) and zeros the allocation before returning it.

Classes offered by the TBB scalable memory allocator

Compile-time Method – Alternate Classes

std::allocator

#include <vector>
#include <algorithm>
#include <execution>

// fill the vector with some data
std::vector<int> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

tbb::scalable_allocator

#include <vector>
#include <algorithm>
#include <execution>

#include <tbb/scalable_allocator.h>

// fill the vector with some data
std::vector<int, tbb::scalable_allocator<int>> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

Scalable Memory Allocation for Parallel Algorithms 12

Compile-time Method – Alternate Classes

std::allocator

#include <vector>
#include <algorithm>
#include <execution>

// fill the vector with some data
std::vector<int> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

tbb::scalable_allocator

#include <vector>
#include <algorithm>
#include <execution>

#include <tbb/scalable_allocator.h>

// fill the vector with some data
std::vector<int, tbb::scalable_allocator<int>> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

Scalable Memory Allocation for Parallel Algorithms 13

①

②

Live Benchmark
A

lg
o

ri
th

m
s

RMSD

NORM2

R
ep

o
si

to
ry

scalable_allocators
on GitHub

V
SC

o
d

e

C/C++ Extension
Pack

vcpkg

Scalable Memory Allocation for Parallel Algorithms 14

Algorithms – Parallel Root-Mean-Square Deviation

• RMSD of atomic positions

• A transform-reduce pattern

Scalable Memory Allocation for Parallel Algorithms 15

Algorithms – Parallel Euclidean Norm

• AKA norm2 or 2-norm

• A reduce pattern

Scalable Memory Allocation for Parallel Algorithms 16

Repository – https://github.com/arminms/scalable_allocators

Scalable Memory Allocation for Parallel Algorithms 17

Remote Build/Run/Debug using VSCode

C/C++ Extension Pack vcpkg

Scalable Memory Allocation for Parallel Algorithms 18

Installing Dependencies with vcpkg

Without unit tests

$./vcpkg install tbb benchmark

With unit tests

$./vcpkg install tbb benchmark boost-system boost-test

Scalable Memory Allocation for Parallel Algorithms 19

