Scalable Memory
Allocation tor
Paralle Algonthms

Armm Sobham
asobhani@sharcnet.ca

HPC Technical Consultant
SHARCNET | Compute Canada

1 OntarioTech

IIIIIIIIII

March 17, 2021 IBRd | Ve Benchmark

ASHARCNETW

What is a Scalable Memory Allocator?

Optimized routines for memory allocation/deallocation

Usually not provided by OS or compiler
May increase the performance of parallel sections

Some of them can also be used for heap profiling

A s H A R c N E TTM Scalable Memory Allocation for Parallel Algorithms

Why You Need One?

Standard Allocators Scalable Allocators

Not designed for
threads

Act as a bottleneck 9 ,
Preventing

9 false sharing
Trying to

optimize for
cache locality

No support for cachin
effects

Not scalable oUsing multiple

chunks of raw
memory
.Provide
scalability in
multi-
Slow down as the number threaded
systems by:

of cores increases

™
N E T Scalable Memory Allocation for Parallel Algorithms

Some Popular Scalable Allocators

mmm FreeBSD libc allocator — jemalloc

e Written by Jason Evans and used by Facebook

mm_— (500gle’s gperftools — tcmalloc

e Thread-caching malloc

s INtel’s TBB (OneTBB) — tbbmalloc

e The most convenient and feature-rich

A s H A R C N E TTM Scalable Memory Allocation for Parallel Algorithms

Ways to Use Scalable Memory Allocators

Run-time Method — TBB Pray Library

Run-time

Link-time

Compile-time

Compile-time

R C NET”

Proxy Library

Proxy Library

Alternate
Functions

Alternate Classes

LD_PRELOAD

Static/Dynamic
Libraries

C/C++ Functions

C++ Classes

No code changes

No code changes

malloc
calloc
realloc
free

std:allocator

Linux and Mac

All Oses

All Oses

All Oses

Scalable Memory Allocation for Parallel Algorithms

Run-time Method — TBB Proxy Library

Linux Code Injection MacOS Code Injection
* Dynamic memory replacement ¢ Dynamic memory replacement
by defining LD_PRELOAD by defining
environment variable before DYLD_INSERT_LIBRARIES
running your program environment variable before
running your program
* Example » Example

export LD_PRELOAD=$TBBROOT/1lib/intel64/gcc4.8/1ibtbbmalloc_proxy.so.2 export DYLD_INSERT_LIBRARIES=$TBBROOT/1lib/libtbbmalloc_proxy.dylib

™
N E T Scalable Memory Allocation for Parallel Algorithms

Run-time Method — TBB Proxy Library

Replaceable global C++ operators new and delete

Standard C library functions:

malloc, calloc, realloc, free Yes Yes Yes
Standard C library functions (added in C11):
. Yes
aligned_alloc
Standard POSIX* function:
Yes Yes

posix_memalign

List of routines replaced by proxy

™
N E T Scalable Memory Allocation for Parallel Algorithms ?

Link-time Method — TBB Proxy Library

Linux and MacOS Windows
 Add the following linker flags: Add the following linker flags:
-L$TBBROOT/1ib/intel64/gcc4.8 -1ltbbmalloc_proxy tbbmalloc_proxy.lib /INCLUDE:" TBB_malloc_proxy"

 Add the following compiler flags Add the following compiler flags
for gcc and icc: for icc :

-fno-builtin-malloc

/Qfno-builtin-malloc
/Qfno-builtin-calloc
/Qfno-builtin-realloc
/Qfno-builtin-free

-fno-builtin-calloc

-fno-builtin-realloc

-fno-builtin-free

™
N E T Scalable Memory Allocation for Parallel Algorithms

Compile-time Method — Alternate Functions

Family 1

Family 2

void* scalable malloc (size_t size)

void scalable_free (void* ptr)

void* scalable realloc (void* ptr, size t size)
void* scalable calloc (size_t nobj, size_t size)

int scalable_posix_memalign (void** memptr,
size_t alignment, size_t size)

void* scalable_aligned_malloc (size_t size,
size_t alignment)

void* scalable_aligned_realloc (void* ptr,
size_t size, size_t alignment)

void scalable_aligned_free (void* ptr)

malloc analogue

free analogue

realloc analogue

calloc analogue complementing scalable_malloc

posix_memalign analogue
malloc analogue complementing scalable_malloc

realloc analogue complementing scalable_realloc

free analogue for a previously allocated

scalable_aligned_malloc Or
scalable_aligned_realloc

Functions offered by the TBB scalable memory allocator

N E T"

Scalable Memory Allocation for Parallel Algorithms

Compile-time Method — Alternate Functions

Allocation Routine Deallocation Routine Analogous Library

scalable_malloc scalable_free C standard library
scalable calloc
scalable_realloc

scalable_posix_memalign POSIX

2 scalable_aligned_malloc scalable_aligned_free Microsoft C runtime
scalable_aligned_realloc

Coupling of allocate-deallocate functions by families

™
N E T Scalable Memory Allocation for Parallel Algorithms 10

Compile-time Method — Alternate Classes

tbb

tbb: :

tbb: :

tbb: :

tbb: :

tbb: :

::aligned_space< T, N >

cache_aligned _allocator< T >

memory_pool _allocator< T, P >

scalable _allocator< T >

tbb_allocator< T >

zero_allocator< T [, Allocator] >

Block of space aligned sufficiently large to construct an array
T with N elements of type T.

Scalable memory allocation, aligned to begin on a cache
line. Helps avoid false sharing, but alignment can increase
memory footprint.

Mainly intended to enable memory pools with STL
containers. This is a preview feature.

Scalable memory allocation. Calling this directly will fail if
the tbbmalloc library is not available.

Selects tbb: :scalable_allocator when available, and fall
back on standard malloc when the tbbmalloc is not
available.

Forwards allocation requests to Allocator (defaults to
tbb_allocator) and zeros the allocation before returning it.

Classes offered by the TBB scalable memory allocator

N E T"

Scalable Memory Allocation for Parallel Algorithms

1L

Compile-time Method — Alternate Classes

std: :allocator

#include <vector>
#include <algorithm>
#include <execution>

tbb::scalable allocator

#include <vector>
#include <algorithm>
#include <execution>

#include <tbb/scalable allocator.h>

// fill the vector with some data // fill the vector with some data

std::vector<int> v{..};

// sort it 1in parallel

std::vector<int, tbb::scalable allocator<int>> v{..};

// sort it 1in parallel

std::sort(std::execution::par, v.begin(), v.end()); std::sort(std::execution::par, v.begin(), v.end());

™
E T Scalable Memory Allocation for Parallel Algorithms

12

Compile-time Method — Alternate Classes

std::allocator tbb::scalable_allocator
#include <vector> #include <vector>

#include <algorithm> #include <algorithm>

#include <execution> #include <execution>

(:)-{#include <tbb/scalable_allocator.h>

// fill the vector with some data // fill the vector with some data

std::vector<int> v{..}; std::vector<int{ tbb::scalable_allocator<int§> v{..};
Y

// sort it in parallel // sort it in parallel <:>

std::sort(std::execution::par, v.begin(), v.end()); std::sort(std::execution::par, v.begin(), v.end());

™
N E T Scalable Memory Allocation for Parallel Algorithms

13

Live Benchmark

4 RMSD
NORM2

(J’) A llel Root-Mean-Square D
-
+— .
S
O
20
N E T

C/C++ Extension
Pack

vcpkg

scalable_allocators
‘ on GitHub

Repository — https://github.com/arminms/scalable_allocators Remote Buiid/Run/Debug using VSCode
C/C++ Extension Pack vepkg
- - gt e e e
7 a5 oot W
=
b

Repository

Scalable Memory Allocation for Parallel Algorithms Yy

Algorithms — Parallel Root-Mean-Square Deviation

2 Notloggedin Talk Contributions Create account Log in

Article Talk Read Edit View history | Search Wikipedia Q

WixierniA ~ Root-mean-square deviation of atomic positions

The Free Encyclopedia

« RMSD of atomic positions

Contents distance between the atoms (usually the backbone atoms) of superimposed proteins. Note that RMSD calculation can be applied to other, non-protein

Current events molecules, such as small organic molecules [In the study of globular protein conformations, one customarily measures the similarity in three-dimensional
Random article .
structure by the RMSD of the Ca atomic coordinates after optimal rigid body superposition

About Wikipedia
Contact usp When a dynamical system fluctuates about some well-defined average position, the RMSD from the average over time can be referred to as the RMSF or root
Donate mean square fluctuation. The size of this fluctuation can be measured, for example using Méssbauer spectroscopy or nuclear magnetic resonance, and can
Contribute provide important physical information. The Lindemann index is a method of placing the RMSF in the context of the parameters of the system
Help A widely used way to compare the structures of biomolecules or solid bodies is to translate and rotate one structure with respect to the other to minimize the
Leam to edit RMSD. Coutsias, et al. presented a simple derivation, based on quaternions, for the optimal solid body transformation (rotation-translation) that minimizes the
Community portal RMSD between two sets of vectors. 2] They proved that the gquaternion method is equivalent to the well-known Kabsch algorithm Bl The solution given by
n Recentichanges Kabsch is an instance of the solution of the d-dimensional problem, introduced by Hurley and Cattell 14 The quaternion selution to compute the optimal
1 Z : 2 Uil rotation was published in the appendix of a paper of Petitiean 18] This quaternion solution and the calculation of the optimal isometry in the d-dimensional case
RMSD (v, W) = - l ‘ v’r, - w:l, || Tools were both extended to infinite sets and to the continuous case in the appendix A of another paper of Petitjean 161
n 2= 1 What links here Contents [hide]
Related changes
T Special pages 1 The equation
1 9 9 9 Permanent link 2 Uses
= —_ E ((’in — wia:) + (viy — wiy) + ('Uiz — wiz)) :Ze“:'sf::ﬂ;mn 3 See also
n < N : 4 References
i=1 prssieien 4.1 Further reading
Print/export 5 External links

Download as PDF
Printable version .
The equation [edi)

Languages o
Add links

where §; is the distance between atom / and either a reference structure or the mean position of the M equivalent atoms. This is often calculated for the
backbone heavy atoms C, N, O, and C, or sometimes just the C, atoms

Normally a rigid superposition which minimizes the RMSD is performed, and this minimum is returned. Given two sets of i points v and w, the RMSD is
defined as follows:

1& .
RMSD(v, w) = b Z (o — ws?
=1

= % i((uiz _'-Ux'z)z + (wy — wx‘y)2 + (v — Wx‘.z)E)
=1

An RMSD value is expressed in length units. The most commanly used unit in structural biology is the Angstrm (A) which is equal to 107"m

™
N E T Scalable Memory Allocation for Parallel Algorithms 15

Algorithms — Parallel Euclidean Norm

& Notlogged in Talk Contributions Create account Log in

Article Talk Read Edit View history | Search Wikipedia Q

e AKA norm2 Or 2-norm

wWikieepiA | Norm (mathematics)

The Free Encyclo]
° A | a t.te r. n S, From Wikipedia, the free encyclopedia
I e u C e p Main page This article is about norms of normed vector spaces. For field theory, see Field norm. For ideals, see Ideal norm. For group theory, see
Contents Morm (group). For norms in descriptive set theory, see prewellordering.

Current events

Random article In mathematics, a norm is a function from a real or complex vector space to the nonnegative real numbers that behaves in certain ways like

About Wikipedia the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the
Contact us Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root
Donate of the inner product of a vector with itself

Contribute A pseL or i the first two properties of a norm, but may be zero for other vectors than the origin 11 A vector space
Help with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector
Learn to edit space.

Community portal

Recent changes Contents [hide]

2 Upload file 1 Definition

w . : !:2 —|— - & » _|_ a: Tl 1.1 Equivalent norms
2 Notati
2 * 1 - What links here otaton

3 Examples
3.1 Absolute-value norm

Related changes
Special pages

Permanent link 3.2 Euclidean norm

Page information 3.2.1 Euclidean norm of complex numbers.

EBO=mEE 3.2.2 Quaternions and octonions

Wikidata ftem 3.3 Taxicab norm or Manhattan norm

Print/export 3.4 p-norm

Download as PDF 3.5 Maximum norm (special case of: infinity norm, uniform norm, or supremum norm)
Printable version 3.6 Zeronorm

3.6.1 Hamming distance of a vector from zero
In other projects 3.7 Infinite dimensions

Wikimedia Commons 3.8 Composite norms

Languages o 3.9 In abstract algebra
el 3.9.1 Composition algebras
Deutsch 4 Properties
Esparial 4.1 Equivalence
wwyls 5 Classification of seminorms: absolutely convex absorbing sets.
Frangais 6 Seealso
Ital|annu 7 References
Pyccrui
8 Bibliography
33l

™
N E T Scalable Memory Allocation for Parallel Algorithms 1b

Repository — https://github.com/arminms/scalable_allocators

B arminms / scalable_allocators @® Unwatch ~ 1 9% star 0 % Fork 0

<> Code @ Issues 10 Pull requests () Actions [T Projects [0 wiki @ Security [~ Insights 83 Settings

¥ main ~ ¥ 1branch © 0tags Go to file Add file ~ About &

A benchmark for using Intel TBB's

asobhani Update README.md 8882013 5 hoursago O 48 commits scalable_allocator in C++17 parallel
algorithms
[cmake Remove oneDPL submodule 3 days ago
0 Readme
M external Clean up cmake script 3 days ago
&8 MIT License
0 include Remove rmsd_vec algorithm 4 days ago
M src Fix problem finding installed TBB 3 days ago
Releases
[0 test Change boost detection place in the cmake script 7 hours ago
No releases published
[.gitignore Add Google benchmark folder to .gitignore 25 days ago Create a new release
[.gitmodules Remove oneTBB submodule 3 days ago
[CMakelLists.txt Change boost detection place in the cmake script 7 hours ago Packages
[LICENSE Initial commit last month No packages published
Publish your first package
M README.md Update README.md 5 hours ago
Languages
README.md Va

L)
CMake 62.8% ® C++372%

scalable_allocators

S H A R C N E TTM Scalable Memory Allocation for Parallel Algorithms 17

Remote Build/Run/Debug using VSCode

C/C++ Extension Pack

tudic Code > Extension Packs > C/C++ Extension Pack

C/C++ Extension Pack
Microsoft | & 348868 installs | J % Jr dr o (1) | Free

C/C++

Popular extensions for C++ development in Visual Studio Code.

Overview Version History Q& A Rating & Review

C/C++ Extension Pack

This extension pack includes a set of popular extensions for C++ development in Visual Studio Code:

* C/C++

* C/C++ Themes

* CMake

* CMake Tools

* Remote Development Extension Pack
* GitHub Pull Requests and Issues

* Visual Studio Codespaces

* LiveShare Extension Pack

* Doxygen Documentation Generator
* Better C++ Syntax

N E T"

vcpkg
vecpkg: a C++ package manager for Windows, Linux, and

macOS
12/11/2020 « 4 minutes to read « s ao a f

vepkg is a cross-platform command-line package manager for C and C++ libraries. It simplifies the acquisition and installation of
third-party libraries on Windows, Linux, and macOS. If your project uses third-party libraries, we recommend that you use vcpkg to
install them. vcpkg supports both open-source and proprietary libraries. All libraries in the vepkg Windows catalog have been tested
for compatibility with Visual Studio 2015, Visual Studio 2017, and Visual Studio 2019. Between the Windows and Linux/macOS
catalogs, vcpkg now supports thousands of libraries. The C++ community adds more libraries to both catalogs on an ongoing basis.

How to get and use vcpkg

Install vepkg by making a local clone from its GitHub repo https://github.com/Microsoft/vepkg 7. Then run the vepkg-bootstrapper
script to set it up. For detailed installation instructions, see Install vepkg. To integrate vepkg with your Visual Studio or Visual Studio
Code development environment, see Integrate vepkg. Then, to use vepkg to install or update a library, see Manage libraries with
vepkg. For more information about vepkg commands, see vepkg command-line reference.

How vcpkg works

The vepkg project is open-source, available on GitHub. A clone or local copy of the vepkg repo contains the vepkg executable and a
catalog, a list of packages that describe a library and its options. Each package includes one or more ports, information about how to
obtain and build the library from sources, or download a binary version, for a specific target environment. When you use vcpkg to
install a library, it uses the package and port information to download and produce a local copy of the library in a subdirectory of the
vepkg directory, ready for you to use.

When a library is available in source form, vepkg downloads sources instead of binaries. It compiles those sources using the most
recent version of the C or C++ compiler and tools that it can find. For C++ ABI compatibility, it's important that both your application
code and any libraries you use are compiled by the same version of the same compiler. By using vcpkg, you eliminate or at least
greatly reduce the potential for mismatched binaries and the problems they can cause. In teams that standardize on a specific version
of a compiler, one team member can use vcpkg to download sources and compile a set of binaries. It's inefficient to make everyone
on a team download and build common libraries. One team member can use the vepkg export command to create a common zip

file of the binaries and headers, or a NuGet package. Then, it's easy to share it with other team members.

Scalable Memory Allocation for Parallel Algorithms

148

Installing Dependencies with vcpkg

Without unit tests With unit tests

$./vcpkg install tbb benchmark $./vcpkg install tbb benchmark boost-system boost-test

™
N E T Scalable Memory Allocation for Parallel Algorithms

19

