
Scalable Memory Allocation for Parallel Algorithms

Armin Sobhani asobhani@sharcnet.ca HPC Technical Consultant SHARCNET | Compute Canada

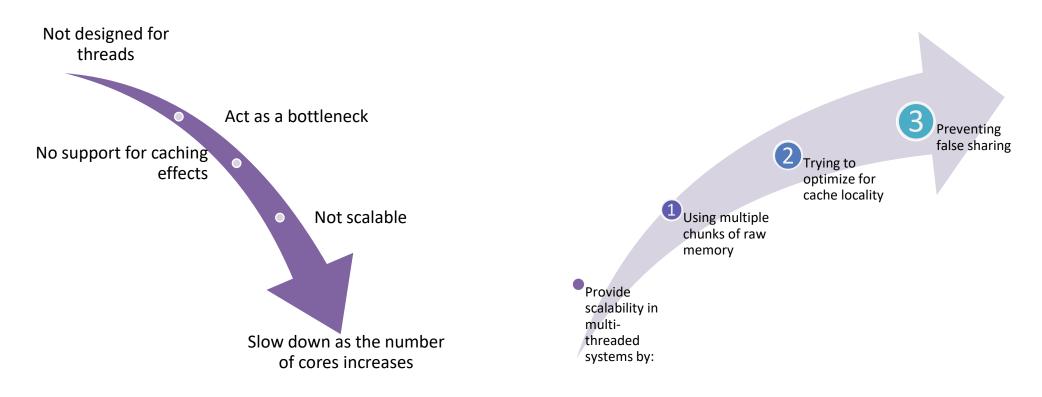
March 17, 2021

What is a Scalable Memory Allocator?

Optimized routines for memory allocation/deallocation

Usually not provided by OS or compiler

May increase the performance of parallel sections


Some of them can also be used for heap profiling

Why You Need One?

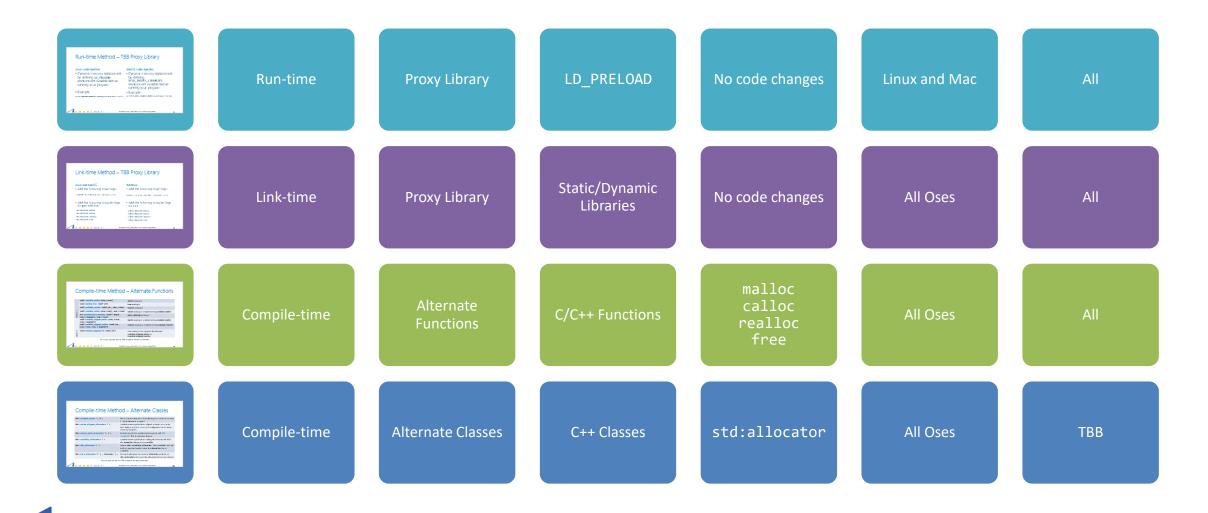
Standard Allocators

Scalable Allocators

Some Popular Scalable Allocators

FreeBSD libc allocator - jemalloc

• Written by Jason Evans and used by Facebook


Google's gperftools - tcmalloc

• Thread-caching malloc

Intel's TBB (OneTBB) – tbbmalloc

• The most convenient and feature-rich

Ways to Use Scalable Memory Allocators

R C N E T[™]

Run-time Method – TBB Proxy Library

Linux Code Injection

• Dynamic memory replacement by defining LD_PRELOAD environment variable before running your program

• Example

export LD_PRELOAD=\$TBBROOT/lib/intel64/gcc4.8/libtbbmalloc_proxy.so.2

MacOS Code Injection

 Dynamic memory replacement by defining DYLD_INSERT_LIBRARIES environment variable before running your program

• Example

export DYLD_INSERT_LIBRARIES=\$TBBROOT/lib/libtbbmalloc_proxy.dylib

Run-time Method – TBB Proxy Library

	Linux	MacOS	Windows
Replaceable global C++ operators new and delete	Yes	Yes	Yes
Standard C library functions: malloc, calloc, realloc, free	Yes	Yes	Yes
Standard C library functions (added in C11): aligned_alloc	Yes		
Standard POSIX* function: <pre>posix_memalign</pre>	Yes	Yes	

List of routines replaced by proxy

Link-time Method – TBB Proxy Library

Linux and MacOS

- Add the following linker flags:
- -L\$TBBROOT/lib/intel64/gcc4.8 -ltbbmalloc_proxy
- Add the following compiler flags for **gcc** and **icc**:
- -fno-builtin-malloc
- -fno-builtin-calloc
- -fno-builtin-realloc
- -fno-builtin-free

Windows

• Add the following linker flags:

tbbmalloc_proxy.lib /INCLUDE:"__TBB_malloc_proxy"

- Add the following compiler flags for **icc** :
- /Qfno-builtin-malloc
- /Qfno-builtin-calloc
- /Qfno-builtin-realloc
- /Qfno-builtin-free

Compile-time Method – Alternate Functions

	<pre>void* scalable_malloc (size_t size)</pre>	malloc analogue
	<pre>void scalable_free (void* ptr)</pre>	free analogue
	<pre>void* scalable_realloc (void* ptr, size_t size)</pre>	realloc analogue
\ 1	<pre>void* scalable_calloc (size_t nobj, size_t size)</pre>	calloc analogue complementing scalable_malloc
Family	<pre>int scalable_posix_memalign (void** memptr, size_t alignment, size_t size)</pre>	<pre>posix_memalign analogue</pre>
	<pre>void* scalable_aligned_malloc (size_t size, size_t alignment)</pre>	malloc analogue complementing scalable_malloc
	<pre>void* scalable_aligned_realloc (void* ptr, size_t size, size_t alignment)</pre>	realloc analogue complementing scalable_realloc
Family 2	<pre>void scalable_aligned_free (void* ptr)</pre>	<pre>free analogue for a previously allocated scalable_aligned_malloc Or scalable_aligned_realloc</pre>

Functions offered by the TBB scalable memory allocator

Compile-time Method – Alternate Functions

Family	Allocation Routine	Deallocation Routine	Analogous Library
1	<pre>scalable_malloc scalable_calloc scalable_realloc</pre>	scalable_free C standard library	C standard library
	<pre>scalable_posix_memalign</pre>		POSIX
2	<pre>scalable_aligned_malloc scalable_aligned_realloc</pre>	<pre>scalable_aligned_free</pre>	Microsoft C runtime

Coupling of allocate-deallocate functions by families

Compile-time Method – Alternate Classes

<pre>tbb::aligned_space< T, N ></pre>	Block of space aligned sufficiently large to construct an array T with N elements of type T .
<pre>tbb::cache_aligned_allocator< T ></pre>	Scalable memory allocation, aligned to begin on a cache line. Helps avoid <i>false sharing</i> , but alignment can increase memory footprint.
<pre>tbb::memory_pool_allocator< T, P ></pre>	Mainly intended to enable memory pools with STL containers. This is a preview feature.
<pre>tbb::scalable_allocator< T ></pre>	Scalable memory allocation. Calling this directly will fail if the tbbmalloc library is not available.
<pre>tbb::tbb_allocator< T ></pre>	Selects tbb::scalable_allocator when available, and fall back on standard malloc when the tbbmalloc is not available.
<pre>tbb::zero_allocator< T [, Allocator] ></pre>	Forwards allocation requests to Allocator (defaults to tbb_allocator) and zeros the allocation before returning it.

Classes offered by the TBB scalable memory allocator

Compile-time Method – Alternate Classes

std::allocator

#include <vector>
#include <algorithm>
#include <execution>

// fill the vector with some data
std::vector<int> v{...};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

tbb::scalable_allocator

#include <vector>
#include <algorithm>
#include <execution>

#include <tbb/scalable_allocator.h>

// fill the vector with some data
std::vector<int, tbb::scalable_allocator<int>> v{...};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

Compile-time Method – Alternate Classes

std::allocator

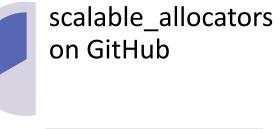
#include <vector>
#include <algorithm>
#include <execution>

// fill the vector with some data
std::vector<int> v{...};

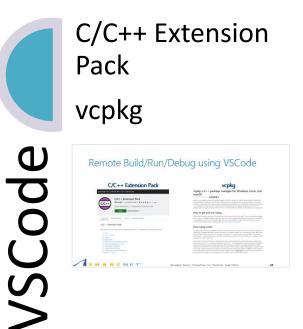
// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

tbb::scalable_allocator

#include <vector>
#include <algorithm>
#include <execution>

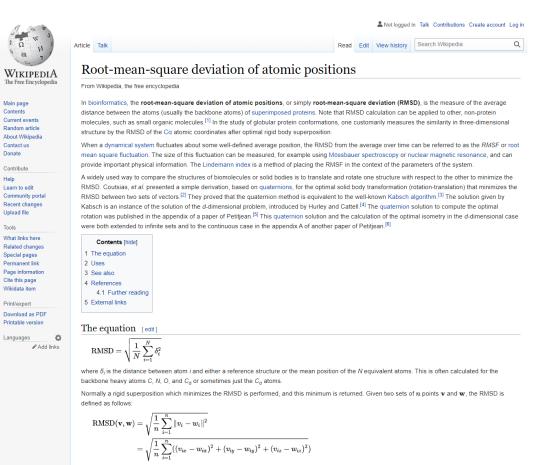

.) - #include <tbb/scalable_allocator.h>

// fill the vector with some data
std::vector<int, tbb::scalable_allocator<int>> v{...};
// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());



Live Benchmark

NORM2	
Again a constraint of the second constraints of the second constrai	



Algorithms – Parallel Root-Mean-Square Deviation

- RMSD of atomic positions
- A transform-reduce pattern

$$egin{aligned} ext{RMSD}(\mathbf{v},\mathbf{w}) &= \sqrt{rac{1}{n}\sum_{i=1}^n \|v_i - w_i\|^2} \ &= \sqrt{rac{1}{n}\sum_{i=1}^n ((v_{ix} - w_{ix})^2 + (v_{iy} - w_{iy})^2 + (v_{iz} - w_{iz})^2)} \end{aligned}$$

An RMSD value is expressed in length units. The most commonly used unit in structural biology is the Angström (Å) which is equal to 10⁻¹⁰ m.

Algorithms – Parallel Euclidean Norm

- AKA norm2 or 2-norm
- A reduce pattern

$$egin{array}{l} \|oldsymbol{x}\|_2 := \sqrt{x_1^2 + \cdots + x_n^2}. \end{array}$$

The Free Encyclopedia

Main page

Contents

Donate

Help

Contribute

Learn to edit

Current events

Random article

About Wikipedia Contact us

A Not logged in Talk Contributions Create account Log in

Q

Read Edit View history Search Wikipedia

Norm (mathematics)

From Wikipedia, the free encyclopedia

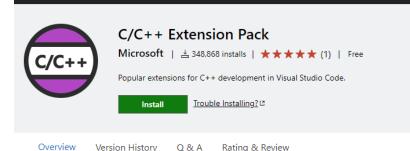
Article Talk

This article is about norms of normed vector spaces. For field theory, see Field norm. For ideals, see Ideal norm. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering.

In mathematics, a norm is a function from a real or complex vector space to the nonnegative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself.

A pseudonorm or seminorm satisfies the first two properties of a norm, but may be zero for other vectors than the origin.^[1] A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space.

Contents [hide]
1 Definition
1.1 Equivalent norms
2 Notation
3 Examples
3.1 Absolute-value norm
3.2 Euclidean norm
3.2.1 Euclidean norm of complex numbers
3.2.2 Quaternions and octonions
3.3 Taxicab norm or Manhattan norm
3.4 <i>p</i> -norm
3.5 Maximum norm (special case of: infinity norm, uniform norm, or supremum norm)
3.6 Zero norm
3.6.1 Hamming distance of a vector from zero
3.7 Infinite dimensions
3.8 Composite norms
3.9 In abstract algebra
3.9.1 Composition algebras
4 Properties
4.1 Equivalence
5 Classification of seminorms: absolutely convex absorbing sets
6 See also
7 References
8 Bibliography
o bibliography


Repository – https://github.com/arminms/scalable_allocators

e 🕘 Issues 👫 Pull requests	Actions III Projects III Wiki 🗓) Security 🗠 Insights 🔅 Settings		
양 main ▾ 양 1 branch	🛇 0 tags	Go to file Add file ▼	About	钧
asobhani Update READMI	E.md	8882013 5 hours ago 🕚 48 commits	A benchmark for using I scalable_allocator in C+· algorithms	
📄 cmake	Remove oneDPL submodule	3 days ago	Readme	
external	Clean up cmake script	3 days ago	া Readme	
include	Remove rmsd_vec algorithm	4 days ago	ala MIT License	
src src	Fix problem finding installed TBB	3 days ago	Releases	
test	Change boost detection place in the c	make script 7 hours ago	No releases published	
🗋 .gitignore	Add Google benchmark folder to .gitig	gnore 25 days ago		
🗋 .gitmodules	Remove oneTBB submodule	3 days ago		
CMakeLists.txt	Change boost detection place in the c	make script 7 hours ago	Packages	
LICENSE	Initial commit	last month	No packages published Publish your first package	
🖺 README.md	Update README.md	5 hours ago		
README.md		Ø	Languages	
			• CMake 62.8% • C++	37.2%

Remote Build/Run/Debug using VSCode

C/C++ Extension Pack

C/C++ Extension Pack

This extension pack includes a set of popular extensions for C++ development in Visual Studio Code:

- C/C++
- C/C++ Themes
- CMake
- CMake Tools
- Remote Development Extension Pack

Visual Studio Code > Extension Packs > C/C++ Extension Pack

- GitHub Pull Requests and Issues
- Visual Studio Codespaces
- LiveShare Extension Pack
- Doxygen Documentation Generator
- Better C++ Syntax

SHARCNET

vcpkg

vcpkg: a C++ package manager for Windows, Linux, and macOS

12/11/2020 • 4 minutes to read • 🧝 🚱 🔘 🍘 堂

vcpkg is a cross-platform command-line package manager for C and C++ libraries. It simplifies the acquisition and installation of third-party libraries on Windows, Linux, and macOS. If your project uses third-party libraries, we recommend that you use vcpkg to install them. vcpkg supports both open-source and proprietary libraries. All libraries in the vcpkg Windows catalog have been tested for compatibility with Visual Studio 2015, Visual Studio 2017, and Visual Studio 2019. Between the Windows and Linux/macOS catalogs, vcpkg now supports thousands of libraries. The C++ community adds more libraries to both catalogs on an ongoing basis.

How to get and use vcpkg

Install vcpkg by making a local clone from its GitHub repo https://github.com/Microsoft/vcpkg &. Then run the vcpkg-bootstrapper script to set it up. For detailed installation instructions, see Install vcpkg. To integrate vcpkg with your Visual Studio or Visual Studio Code development environment, see Integrate vcpkg. Then, to use vcpkg to install or update a library, see Manage libraries with vcpkg. For more information about vcpkg commands, see vcpkg command-line reference.

How vcpkg works

The vcpkg project is open-source, available on GitHub. A *clone* or local copy of the vcpkg repo contains the vcpkg executable and a *catalog*, a list of packages that describe a library and its options. Each package includes one or more *ports*, information about how to obtain and build the library from sources, or download a binary version, for a specific target environment. When you use vcpkg to install a library, it uses the package and port information to download and produce a local copy of the library in a subdirectory of the vcpkg directory, ready for you to use.

When a library is available in source form, vcpkg downloads sources instead of binaries. It compiles those sources using the most recent version of the C or C++ compiler and tools that it can find. For C++ ABI compatibility, it's important that both your application code and any libraries you use are compiled by the same version of the same compiler. By using vcpkg, you eliminate or at least greatly reduce the potential for mismatched binaries and the problems they can cause. In teams that standardize on a specific version of a compiler, one team member can use vcpkg to download sources and compile a set of binaries. It's inefficient to make everyone on a team download and build common libraries. One team member can use the vcpkg expert command to create a common zip file of the binaries and headers, or a NuGet package. Then, it's easy to share it with other team members.

Installing Dependencies with vcpkg

Without unit tests

With unit tests

\$./vcpkg install tbb benchmark

\$./vcpkg install tbb benchmark boost-system boost-test

