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What is a Scalable Memory Allocator?

Optimized routines for memory allocation/deallocation

Usually not provided by OS or compiler

May increase the performance of parallel sections

Some of them can also be used for heap profiling
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Why You Need One?

Standard Allocators Scalable Allocators

Provide 
scalability in 
multi-
threaded 
systems by:

Using multiple 
chunks of raw 
memory 

Trying to 
optimize for 
cache locality

Preventing 
false sharing
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Not designed for 
threads

Act as a bottleneck

No support for caching 
effects

Not scalable

Slow down as the number 
of cores increases

①

②
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Some Popular Scalable Allocators

• Written by Jason Evans and used by Facebook

FreeBSD libc allocator – jemalloc

• Thread-caching malloc

Google’s gperftools – tcmalloc

• The most convenient and feature-rich

Intel’s TBB (OneTBB) – tbbmalloc
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Ways to Use Scalable Memory Allocators

Compile-time

Compile-time

Link-time

Run-time

Alternate Classes

Alternate 
Functions

Proxy Library

Proxy Library

C++ Classes

C/C++ Functions

Static/Dynamic 
Libraries

LD_PRELOAD

std:allocator

malloc
calloc
realloc
free

No code changes

No code changes

All Oses

All Oses

All Oses

Linux and Mac

TBB

All

All

All
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Run-time Method – TBB Proxy Library

Linux Code Injection

• Dynamic memory replacement 
by defining LD_PRELOAD 
environment variable before 
running your program

• Example
export LD_PRELOAD=$TBBROOT/lib/intel64/gcc4.8/libtbbmalloc_proxy.so.2

MacOS Code Injection

• Dynamic memory replacement 
by defining 
DYLD_INSERT_LIBRARIES 

environment variable before 
running your program

• Example
export DYLD_INSERT_LIBRARIES=$TBBROOT/lib/libtbbmalloc_proxy.dylib
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Run-time Method – TBB Proxy Library

Linux MacOS Windows

Replaceable global C++ operators new and delete Yes Yes Yes

Standard C library functions:
malloc, calloc, realloc, free

Yes Yes Yes

Standard C library functions (added in C11):
aligned_alloc

Yes

Standard POSIX* function:
posix_memalign

Yes Yes
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List of routines replaced by proxy



Link-time Method – TBB Proxy Library

Linux and MacOS

• Add the following linker flags:

-L$TBBROOT/lib/intel64/gcc4.8 -ltbbmalloc_proxy

• Add the following compiler flags 
for gcc and icc:

-fno-builtin-malloc

-fno-builtin-calloc

-fno-builtin-realloc

-fno-builtin-free

Windows

• Add the following linker flags:

tbbmalloc_proxy.lib /INCLUDE:"__TBB_malloc_proxy"

• Add the following compiler flags 
for icc :

- /Qfno-builtin-malloc

- /Qfno-builtin-calloc

- /Qfno-builtin-realloc

- /Qfno-builtin-free
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Compile-time Method – Alternate Functions
Fa

m
ily

 1

void* scalable_malloc (size_t size) malloc analogue

void scalable_free (void* ptr) free analogue

void* scalable_realloc (void* ptr, size_t size) realloc analogue

void* scalable_calloc (size_t nobj, size_t size) calloc analogue complementing scalable_malloc

int scalable_posix_memalign (void** memptr,
size_t alignment, size_t size)

posix_memalign analogue

Fa
m

ily
 2

void* scalable_aligned_malloc (size_t size,
size_t alignment)

malloc analogue complementing scalable_malloc

void* scalable_aligned_realloc (void* ptr,
size_t size, size_t alignment)

realloc analogue complementing scalable_realloc

void scalable_aligned_free (void* ptr) free analogue for a previously allocated 
scalable_aligned_malloc or 
scalable_aligned_realloc
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Functions offered by the TBB scalable memory allocator



Compile-time Method – Alternate Functions

Family Allocation Routine Deallocation Routine Analogous Library

1 scalable_malloc
scalable_calloc
scalable_realloc

scalable_free C standard library

scalable_posix_memalign POSIX

2 scalable_aligned_malloc
scalable_aligned_realloc

scalable_aligned_free Microsoft C runtime
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Coupling of allocate-deallocate functions by families



Compile-time Method – Alternate Classes
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tbb::aligned_space< T, N > Block of space aligned sufficiently large to construct an array 
T with N elements of type T.

tbb::cache_aligned_allocator< T > Scalable memory allocation, aligned to begin on a cache 
line. Helps avoid false sharing, but alignment can increase 
memory footprint.

tbb::memory_pool_allocator< T, P > Mainly intended to enable memory pools with STL 
containers. This is a preview feature.

tbb::scalable_allocator< T > Scalable memory allocation. Calling this directly will fail if 
the tbbmalloc library is not available.

tbb::tbb_allocator< T > Selects tbb::scalable_allocator when available, and fall 
back on standard malloc when the tbbmalloc is not 
available.

tbb::zero_allocator< T [ , Allocator ] > Forwards allocation requests to Allocator (defaults to 
tbb_allocator) and zeros the allocation before returning it.

Classes offered by the TBB scalable memory allocator



Compile-time Method – Alternate Classes

std::allocator

#include <vector>
#include <algorithm>
#include <execution>

// fill the vector with some data
std::vector<int> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

tbb::scalable_allocator

#include <vector>
#include <algorithm>
#include <execution>

#include <tbb/scalable_allocator.h>

// fill the vector with some data
std::vector<int, tbb::scalable_allocator<int>> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());
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Compile-time Method – Alternate Classes

std::allocator

#include <vector>
#include <algorithm>
#include <execution>

// fill the vector with some data
std::vector<int> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());

tbb::scalable_allocator

#include <vector>
#include <algorithm>
#include <execution>

#include <tbb/scalable_allocator.h>

// fill the vector with some data
std::vector<int, tbb::scalable_allocator<int>> v{…};

// sort it in parallel
std::sort(std::execution::par, v.begin(), v.end());
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Algorithms – Parallel Root-Mean-Square Deviation

• RMSD of atomic positions

• A transform-reduce pattern
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Algorithms – Parallel Euclidean Norm

• AKA norm2 or 2-norm

• A reduce pattern
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Repository – https://github.com/arminms/scalable_allocators
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Remote Build/Run/Debug using VSCode

C/C++ Extension Pack vcpkg
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Installing Dependencies with vcpkg

Without unit tests

$ ./vcpkg install tbb benchmark

With unit tests

$ ./vcpkg install tbb benchmark boost-system boost-test
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