
How to Use C++

Parallel Algorithms in

an MPI Setup

Armin Sobhani

asobhani@sharcnet.ca

SHARCNET | Compute Canada

HPC Technical Consultant

July 29, 2020

STL

Outline

• A very short intro to C++17 parallel algorithms

• An overview of Partitioned Global Address Space (PGAS)

parallel programming model

• Introducing DASH C++ template library

• A live demo of installing and building programs with DASH

• Demo project on GitHub: https://github.com/arminms/dash-tutorial

How to Use C++ Parallel Algorithms in an MPI Setup 2

https://github.com/arminms/dash-tutorial

Standard Template Library (STL)

• Software library for the C++

• Influenced many parts of the

C++ Standard Library

• Consisting of 4 components:

Containers

Iterators

Algorithms

Functions

How to Use C++ Parallel Algorithms in an MPI Setup 3

STL

Parallel STL

Why?

Familiar to most C++
programmers

Simplifies porting
existing applications to
parallel architectures

Available Implementations

• Microsoft Visual Studio 2017 15.5

• Intel’s open source Parallel STL

• STE||AR Group’s HPX library

• KhronosGroup’s SYCL Parallel STL

C++17 Parallel Algorithms

• Boost.Compute

• Thrust by Nvidia

• Bolt by AMD

Third-Party C++ Libraries

How to Use C++ Parallel Algorithms in an MPI Setup 4

Is There a Parallel Algorithms Implementation for MPI?

• The straight answer is NO

• Why not?

– Requires a new type of distributed containers

– Requires new types of iterators/algorithms that support both local

and global iterations, AKA Affinity

• But hold on…

How to Use C++ Parallel Algorithms in an MPI Setup 5

Programming Parallel Machines

How to Use C++ Parallel Algorithms in an MPI Setup 6

The two most widely used approaches for parallel programming

Shared Memory

programming using

Threads

Memory System

…

Distributed Memory

programming using

Message Passing (MPI)

Process/thread

Physical memory

Memory Access (read/write)

Explicit Message

Private data
Shared data

…

Mem Mem Mem

Shared Memory Programming using Threads

How to Use C++ Parallel Algorithms in an MPI Setup 7

• All the CPU-cores
can access the
same memory

• Examples:
– OpenMP

– Pthreads

– C++ threads

– Java threads

Memory System

…

Process/thread

Physical memory

Memory Access (R/W)
Explicit Message

Private data
Shared data

Pros Cons

Distributed Memory Programming using Message Passing

How to Use C++ Parallel Algorithms in an MPI Setup 8

…

Mem Mem Mem
Pros Cons

Process/thread

Physical memory

Memory Access (R/W)
Explicit Message

Private data
Shared data

• The CPU-cores
cannot access the
same memory

• Example
– MPI (Message

Passing Interface)

Partitioned Global Address Space (PGAS)

How to Use C++ Parallel Algorithms in an MPI Setup 9

Process/thread

Physical memory

Memory Access (R/W)
Explicit Message

Private data
Shared data

PGAS Layer

shared data space
is partitioned!

• Best of both worlds

• Can be used on large scale distributed memory

as well as shared memory architectures

• A PGAS program looks much like a regular

threaded program, but

– Sharing data is declared explicitly

– The data partitioning is made explicit

– Both needed for performance!

PGAS – Relies on

One-sided Communications in MPI (AKA RDMA or RMA)

Non-Blocking Synchronization

Non-Uniform Memory Access (NUMA)

Cache Only Memory Architecture (COMA)

How to Use C++ Parallel Algorithms in an MPI Setup 10

PGAS – Implementations

Runtime Middleware Layers that Exploit RDMA-Enabled Networks

GASnet ARMCI GASPI OpenShmem MPI-3 RMA

How to Use C++ Parallel Algorithms in an MPI Setup 11

PGAS – Implementations

Language Extensions Languages Libraries

Unified
Parallel
C (UPC)

Coarray
Fortran

Split-C
Sun’s

Fortress
Cray’s
Chapel

IBM’s
X10

UPC++
Coarray
C++

SHMEM DASH

How to Use C++ Parallel Algorithms in an MPI Setup 12

PGAS – How it Works
G
l
o
b
a
l

A
d
d
r
e
s
s

S
p
a
c
e

P
r
i
v
a
t
e

S
h
a
r
e
d

Thread 0 Thread 1 Thread n-1

…
mine mine

ours

mine

• An example in Unified Parallel C or UPC’s terms:

– Let’s call the members of our program threads

– Let’s assume we use the SPMD (single program multiple data) paradigm

– Let’s assume we have a new keyword “shared” that puts variables in the
shared global address space

shared int ours;
int mine;

• 1 copy of ours
̶ Accessible by every thread

• n copies of mine (one per thread)

– Each thread can only access

its own copy

How to Use C++ Parallel Algorithms in an MPI Setup 13

PGAS – Shared Arrays

• A shared array example in UPC
G
l
o
b
a
l

A
d
d
r
e
s
s

S
p
a
c
e

Private

Shared

Thread 0 Thread 1 Thread 3

mine mine

ours[0]

mine mine

Thread 2

ours[1] ours[2] ours[3]

shared int[4] ours;
int mine;

• Affinity – in which partition a data item “lives”
– ours (previous slide) lives in partition 0 (by convention)

– ours[i] lives in partition i

How to Use C++ Parallel Algorithms in an MPI Setup 14

PGAS – Global-View vs. Local-View

• Two ways to organize access to shared

data:

– Global-view e.g. UPC

– Local-view e.g. Co-Array Fortran

• X is declared in terms of its global size

• X is accessed in terms of global indices

• process (image) is not specified explicitly

• a, b are declared in terms of their local size

• a, b are accessed in terms of local indices

• process (image) is specified explicitly (the

co-index)

How to Use C++ Parallel Algorithms in an MPI Setup 15

shared int X[100];
X[i]=23;

integer :: a(100)[*], b(100)[*]
b(17) = a(17)[2]

co-dimension / co-index
in square brackets

Global size,
Global index

Local index,
Local size

PGAS – Summary

• PGAS is a concept realized in UPC and other languages and extensions

• UPC, for example, is an extention to C, implementing the PGAS model

– Built on top of a middleware layer like GASNet

– Available as a gcc version, Berkeley UPC, from some vendors

• Cons

– Often not part of the standard software stack of HPC systems

– Tricky to install and tune for individual users

– No collective operations or algortithms (e.g. reduce)

How to Use C++ Parallel Algorithms in an MPI Setup 16

DASH – Overview
• PGAS in the form of a C++ Template library

– Focus on data structures

• Not a new language to learn
– Can be integrated with existing (MPI)

applications

– Relies on MPI3 RMA

• Support for hierarchical locality
– Team hierarchies and locality iterators

http://www.dash-project.org/

• Array a can be stored in the memory of several nodes

• a[i] transparently refers to local memory or to remote

memory via operator overloading

dash::Array<int> a(1000);

a[23] = 412;
std::cout << a[42] << std::endl;

Node

e.g., STL vector,
array

Node

DASH Array

How to Use C++ Parallel Algorithms in an MPI Setup 17

http://www.dash-project.org/

DASH 101

• A complete PGAS
programming system
without a custom (pre-)
compiler

• It offers:
– Distributed data structures

(containers) and parallel
algorithms
• STL conformity / iterator

interface

– HDF5 input/output

DASH – A C++ Template Library

Component of DASH

DASH Runtime (DART)

DASH C++ Template Library

DASH Application To
o

ls an
d

 In
terfaces

Hardware
Network, Processor, Memory, etc.

MPI 3 GASnet GASPI CUDA

One-sided Communication
Backend

Existing component / Software

How to Use C++ Parallel Algorithms in an MPI Setup 19

• Plain-C (99) interface

• SPMD execution model

• Defines Units and Teams

• Global memory abstraction

• One-sided RDMA operations

• Several implementations:

– DART-SHMEM
Shared-memory based implementation

– DART-CUDA
Supports GPUs, based on DART-SHMEM

– DART-GASPI
Initial implementation using GASPI

– DART-MPI
MPI-3 RDMA “workhorse”
implementation

DART – The DASH Runtime Interface

Component of DASH

DASH Runtime (DART)

DASH C++ Template Library

DASH Application To
o

ls an
d

 In
terfaces

Hardware
Network, Processor, Memory, etc.

MPI 3 GASnet GASPI CUDA

One-sided Communication
Backend

Existing component / Software

How to Use C++ Parallel Algorithms in an MPI Setup 20

Units and Teams in DART

• Unit – individual participants in a DASH/DART program
– Unit ≈ process (MPI) ≈ thread (UPC) ≈ image (CAF)

– Execution model follows the classical SPMD (Single Program Multiple Data)
paradigm

– Each unit has a global ID that remains unchanged during the execution

• Team
– Ordered subset of units

– Identified by an integer ID

– DART_TEAM_ALL represents all units in a program

– Units that are members of a team have a local ID with respect to that team

How to Use C++ Parallel Algorithms in an MPI Setup 21

PGAS in DASH

• Data Affinity – data has well-

defined owner but can be

accessed by any unit

• Unified access to local and

remote data in global memory

space

How to Use C++ Parallel Algorithms in an MPI Setup 22

PGAS in DASH

• Data Affinity – data has well-

defined owner but can be

accessed by any unit

• Unified access to local and

remote data in global memory

space

• And explicit views on local

memory space

How to Use C++ Parallel Algorithms in an MPI Setup 23

Hello World in DASH

How to Use C++ Parallel Algorithms in an MPI Setup 24

#include <iostream>

#include <libdash.h>

using namespace std;

int main(int argc, char* argv[])
{

pid_t pid; char buf[100];

dash::init(&argc, &argv);

auto myid = dash::myid();
auto size = dash::size();
gethostname(buf, 100); pid = getpid();

cout << "'Hello world' from unit " << myid <<
" of " << size <<" on " << buf <<
" pid=" << pid << endl;

dash::finalize();
}

Initialize the programming
environment

Determine total number
of units and our own unit

ID

Print message. Note SPMD
model, similar to MPI

$ mpirun -n 4 hello_mpi
'Hello world' from unit 0 of 4 on gra-login2 pid=22872
'Hello world' from unit 1 of 4 on gra-login2 pid=22873
'Hello world' from unit 2 of 4 on gra-login2 pid=22878
'Hello world' from unit 3 of 4 on gra-login2 pid=22879

Global-View vs. Local-View in DASH

• DASH supports both global-view and local-view semantics

• Example
– dash::Array with 14 elements

– distributed over 4 units

– default distribution: BLOCKED
– blocksize = ceil(14/4) = 4

How to Use C++ Parallel Algorithms in an MPI Setup 25

Global-View Local-View LV Shorthand

range begin arr.begin() arr.local.begin() arr.lbegin()

range end arr.end() arr.local.end() arr.lend()

elements arr.size() arr.local.size () arr.lsize()

element access arr[glob_idx] arr.local[loc_idx]

Distributed Data Structures

• DASH offers distributed data structures

– Support for flexible data distribution schemes

– Example: dash::Array<T>

How to Use C++ Parallel Algorithms in an MPI Setup 26

dash::Array<int> arr(100);
auto myid = dash::myid();

if (dash::myid() == 0)
for (auto i = 0; i < arr.size(); ++i)

arr[i] = i;

arr.barrier();

if (dash::myid() == 0)
for (auto val : arr)

cout << static_cast<int>(val) << " ";

cout << endl;

DASH global array of 100
integers, distributed over all
units, default distribution is

BLOCKED

Unit 0 writes to the array using the
global index i. Operator[] is

overloaded for the dash::Array

Unit 1 executes a range based
for loop over the DASH array

$ mpirun -n 4 ./global_mpi
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
93 94 95 96 97 98 99

Accessing Local Data

• Access to the local portion of the data is exposed through a local-

view proxy object (.local)

How to Use C++ Parallel Algorithms in an MPI Setup 27

dash::Array<int> arr(100);
auto myid = dash::myid();

for (auto i = 0; i < arr.lsize(); ++i)
arr.local[i] = i;

arr.barrier();

if (dash::myid() == 0)
for (auto val : arr)

cout << static_cast<int>(val) << " ";

cout << endl;

.lsize() is short hand for
.local.size() and

returns the number of local
elements

.local is a proxy object that
represents the part of the
data that is local to a unit

$ mpirun -n 4 ./local_mpi
0 1 1
1 2 2 2 2
2 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Using STL Algorithms
• STL algorithms can be used with DASH containers

– Both on the local view and the global view

How to Use C++ Parallel Algorithms in an MPI Setup 28

#include <iostream>

#include <libdash.h>

using namespace std;

int main(int argc, char* argv[])
{

dash::init(&argc, &argv);

dash::Array<int> a(1000);

// local access using local iterators
std::fill(a.lbegin(), a.lend(), 100 + dash::myid());

// global iterators and STL algorithms
if (dash::myid() == 0)

std::sort(a.begin(), a.end());

dash::finalize();
}

Collective constructor,
all units involved

STL algorithms work with
DASH local iterator ranges

… as well as DASH global
iterator ranges

Distributed Data Structures in DASH

Container Description Data Distribution

Array<T> 1D Array static, configurable

NArray<T, N> N-dimensional Array static, configurable

Shared<T> Shared scalar fixed (at 0)

Directory<T>* Variable-size, locally indexed array manual, load-balanced

List<T> Variable-size linked list dynamic, load-balanced

Map<T> Variable-size associative map dynamic, balanced by hash function

How to Use C++ Parallel Algorithms in an MPI Setup 29

* Under construction

Data Distribution Patterns

• Data distribution patterns are configurable in DASH

• Four units layout

How to Use C++ Parallel Algorithms in an MPI Setup 30

dash::Array<int> arr1(20); // default: BLOCKED
dash::Array<int> arr2(20, dash::BLOCKED)
dash::Array<int> arr3(20, dash::CYCLIC)
dash::Array<int> arr4(20, dash::BLOCKCYCLIC(3))
// use your own data distribution:
dash::Array<int, MyPattern> arr5(20, MyPattern(…))

The N-Dimensional Array

• dash::Narray (dash::Matrix) offers a distributed multidimensional array

abstraction

– Dimension is a template parameter

– Element access using coordinates or linear index

– Support for custom index types

– Support for row-major and column-major storage

How to Use C++ Parallel Algorithms in an MPI Setup 31

dash::NArray<int, 2> mat(40, 30); // 1200 elements

int a = mat(i,j); // Fortran style access
int b = mat[i][j]; // chained subscripts

auto loc = mat.local; // local iterator

int c = loc(i,j);
int d = *(loc.begin());

Multidimensional Data Distribution

• dash::Pattern<N> specifies N-dim data distribution

– Blocked, cyclic, and block-cyclic in multiple dimensions

How to Use C++ Parallel Algorithms in an MPI Setup 32

DASH Algorithms
• Growing number of DASH equivalents for STL algorithms

• Examples of STL algorithms ported to DASH
(which also work for multidimensional ranges)

– dash::copy range[i] <- range2[i]
– dash::fill range[i] <- val
– dash::generate range[i] <- func()
– dash::for_each func(range[i])
– dash::transform range[i] = func(range2[i])
– dash::accumulate sum(range[i]) (0<=i<=n-1)
– dash::min_element min(range[i]) (0<=i<=n-1)

How to Use C++ Parallel Algorithms in an MPI Setup 33

dash::GlobIter<T> dash::fill(GlobIter<T> begin, GlobIter<T> end, val);

DASH Algorithms
• Growing number of DASH equivalents for STL algorithms

• Examples of STL algorithms ported to DASH
(which also work for multidimensional ranges)

– dash::copy range[i] <- range2[i]
– dash::fill range[i] <- val
– dash::generate range[i] <- func()
– dash::for_each func(range[i])
– dash::transform range[i] = func(range2[i])
– dash::accumulate sum(range[i]) (0<=i<=n-1)
– dash::min_element min(range[i]) (0<=i<=n-1)

How to Use C++ Parallel Algorithms in an MPI Setup 34

dash::GlobIter<T> dash::fill(GlobIter<T> begin, GlobIter<T> end, val);

map

DASH Algorithms
• Growing number of DASH equivalents for STL algorithms

• Examples of STL algorithms ported to DASH
(which also work for multidimensional ranges)

– dash::copy range[i] <- range2[i]
– dash::fill range[i] <- val
– dash::generate range[i] <- func()
– dash::for_each func(range[i])
– dash::transform range[i] = func(range2[i])
– dash::accumulate sum(range[i]) (0<=i<=n-1)
– dash::min_element min(range[i]) (0<=i<=n-1)

How to Use C++ Parallel Algorithms in an MPI Setup 35

dash::GlobIter<T> dash::fill(GlobIter<T> begin, GlobIter<T> end, val);

map
reduce

DASH Algorithms
• Growing number of DASH equivalents for STL algorithms

• Examples of STL algorithms ported to DASH
(which also work for multidimensional ranges)

– dash::copy range[i] <- range2[i]
– dash::fill range[i] <- val
– dash::generate range[i] <- func()
– dash::for_each func(range[i])
– dash::transform range[i] = func(range2[i])
– dash::accumulate sum(range[i]) (0<=i<=n-1)
– dash::min_element min(range[i]) (0<=i<=n-1)

How to Use C++ Parallel Algorithms in an MPI Setup 36

dash::GlobIter<T> dash::fill(GlobIter<T> begin, GlobIter<T> end, val);

map
reduce

No filter!
(remove_if)

DASH Algorithms

• Example – Find the minimum element in a distributed array

• Features

– Still works when using CYCLIC or any other distribution

– Still works when using a range other than [begin, end)

How to Use C++ Parallel Algorithms in an MPI Setup 37

dash::Array<int> arr(100, dash::BLOCKED);

// ...

auto min = dash::min_element(arr.begin(), arr.end());

if (dash::myid() == 0)
cout << "Global minimum: " << (int)*min << endl;

Collective call, returns
global pointer to
minimum element

→ reduce results of
std::min_element
of all local ranges

Performance of dash::min_element()(int)

How to Use C++ Parallel Algorithms in an MPI Setup 38

Using DASH on Graham

Building and Installing DASH

• Home page: http://www.dash-project.org/

• Git repository: https://github.com/dash-project/dash

• Requires: C++14 and MPI API 3.0 or higher

How to Use C++ Parallel Algorithms in an MPI Setup 40

$ cd ~/scratch
$ wget https://github.com/dash-project/dash.git
$ cd dash
$ module load gcc/7.3.0 intel/2018.3 openmpi
$./build.sh -DINSTALL_PREFIX=/home/$USER
$ cd build
$ make install

http://www.dash-project.org/
https://github.com/dash-project/dash

Testing and Building Programs

• Running test

• Compiling and running DASH programs

How to Use C++ Parallel Algorithms in an MPI Setup 41

$ cd dash
$ mpirun –n 4 ./dash-test-mpi

$ dash-mpicxx hello.cpp –o hello_mpi
$ mpirun –n 4 ./hello_mpi

Dash Tutorial

How to Use C++ Parallel Algorithms in an MPI Setup 42

https://github.com/arminms/dash-tutorial

https://github.com/arminms/dash-tutorial

