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Outlines:

* CUDA Review

* GPU Profiling and Optimization

* Nsight and NVidia Visual Profiler (NVVP) on SHARCNET
* Performance Limiter

* Warp and Occupancy

* Instruction Latency and Throughput (hardware background)
* Play with Shuffle instructions and Instruction Level Parallelism
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GPU Profiling and Optimization

* Why do | need to profile my code (again)?
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- Optimization goal?
* Fully utilize all hardware resource




Nsight and NVVP

Nsight: A full-featured IDE that provides an all-in-one
integrated environment to edit, build, debug and profile
CUDA-C applications

NVVP: A cross-platform performance profiling tool that
delivers developers vital feedback for optimizing CUDA C/C++
applications

NVVP is built in Nsight

Using Nsight on SHARCNET

* Development nodes on Monk (Fermi based GPUs, be careful if
GPU is being used by others)

* Submitting interactive job to Angel (Maxwell based GPUs)




Performance Limiter

How to tell if the code is compute or memory bound?

(From hardware side, not from the nature of algorithm)
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Warp and Occupancy

* Warp = 32 Threads with consecutive thread indexes executed
physically in parallel (SIMD) on a multiprocessor

* Occupancy = Active Warps/ Maximum Active Warps
* Occupancy Limiter

* Register usage

* Shared Memory usage

> Block size

* 100% occupancy isn’t needed to reach maximum performance,
Once the “needed” occupancy is reached, further increases won’t
improve performance

* Many find 66% is enough
* More independent work per thread -> less occupancy is needed

* Memory-bound codes tend to need more occupancy
Higher latency than for arithmetic, need more work to hide it




Instruction Latency and Throughput

NVIDIA Kepler SM NVIDIA Maxwell SM

* SM (stream ‘ ————V————————

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
B * 1 4 1 v

multiprocessor)

com [
o [ e
o R e
con [ o
o R e
o RN e
o [
o [ v

Cors  Cor

-2 e B Bl Bl B - Instruction Bufter
o o [ - 570 o o o [ o — —
PY — CR— Clapatch Uk
Ore Core uuc«.m:m-mc»m s s s
€,384 x 22.bk) Rogistor File (16,384 x 32-bit,
Core sru Core Coe [BRUM core
.
[ ] LD/SI unlt Core sFy WCM-va Cors Con| |Co] [core
= = - Cors Cors |Cors  Cors
0 Core Core  Core  Core
° D Core Core Core - Core
uni cen con] [co] e
Core
Core

Cors  Core

* SFU
* 4 schedulers

* “dual issue”
instructions to pipes =-==«~

* Pipelines k8 Sty 11 ik

48 KB Read-Only Data Cache

* LD/ST, Arithmetic, ™= In ——
Control-Flow, — ——

Core  Come

Texture ==

§

Core  Core

Cors  Core

Waip Scheduer Warg Scheculer

o
H

Dinpatch Unt Chapatch Unt Oseteh test rapancr U
2 s + s

I EEE

Rogistor File (16,334 x Rogistor File (16,384 x 32.0it)

s
Core
=
Core
Core
Core
==
Core
Core
Core
Core
Core
Core
Core
Core
Core.
Core

AL rrrrrrrrrrrgs
A rrrrrrrrrr

INEEEEEENE

o
<
<

Core  Core Core  Core  Cowe

Core  Core Core  Core  Core

Core  Core Core  Core  Core

Cors  Core Core  Core




Example code (binary reduction)

* Basic code flow:

Loading data to shared
memory

Synchronizing all warps
in a block

Reducing to half sized
data

Synchronizing

Reducing to half sized
data

Reducing to 1 element
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Example code (binary reduction)

* |Instruction latencies

* Execution dependency:
An input required by the instruction is not yet available

* Synchronization
The warp is blocked at a __syncthreads() call

* Reducing synchronization latency
* “Shuffle” instructions instead of shared memory

* Reducing execution dependency
* Instruction-level parallelism




Shuftle instructions

 Shuffle instruction (SHFL) enables a thread to directly read a
register from another thread in the same warp (32 threads)

* Only supported on Compute Capability 3.0 (Kepler) and higher

* Shuffle Warp Reduce
warpld 0 1 2 3 4 5
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v+=__shfl down (v, 4)

v+=_shfl down(v,2)

v+=__shfl down(v,1)




Instruction Level Parallelism

Thread-level parallelism ---> Concurrent threads

Instruction-level parallelism ---> Concurrent instructions

* QOverlapping instructions

Instruction latencies:

* Arithmetic: ~20 cycles

* Reading shared memory(or L1 cache): 20-40 cycles

* Reading global memory: 400-600 cycles

* GPU switch warp to hide latency, issuing independent instructions
For reduction problem:

* Hidden independent ADD operation in LOAD operation ---> need
more ADD

* Number of instructions that can be scheduled is limited by number
of active warps and number of instructions in each warp




Instruction Level Parallelism

* For reduction problem:
* Increase number of instructions within a thread (warp)

* Each thread adds multiple elements before binary reduction,
each pair of elements is independent to others

Loading a pair of two elements, adding them and storing the
temporal result into a register

Adding temporal results together and then using shuffle instructions
to sum between threads




Benchmark results

* Reduction of 4K elements on K20 (theoretical memory
bandwidth 208GB/s)

Time(us) Mem bandwidth
(GB/s)
Original 479 1x 46
Shuffle 318 1.5x 67
+2 ILP 155 3.1x 135
+4 |LP 135 3.5x 143
+8 ILP 116 4.1x 172

+16 ILP 114 4.2x 177




Q&A




