CUDA Profiling and Tuning

Fei Mao
HPC Technical Consultant
SHARCNET

Outlines:

* CUDA Review

* GPU Profiling and Optimization

* Nsight and NVidia Visual Profiler (NVVP) on SHARCNET
* Performance Limiter

* Warp and Occupancy

* Instruction Latency and Throughput (hardware background)
* Play with Shuffle instructions and Instruction Level Parallelism

C Program
Sequential
Execution

CUDA Review sl

Parallel kernel Device
Kernel 0<<<>>>() Grid 0

* Programming model Block 0.0) Block (1,.0) | Block 2,0)

* Threads W W W

Block (0, 1) Block (1,1) Block(2,1)

* Blocks S o dma

* Memory hierarchy e
- Global mem i
* Shared mem
Parallel kernel L
¢ Register Kernell<<<>>>() Grid1
Block (0, 0) Block (1, 0)
* Code flow W W
* Heterogeneous Programming -u%n miw
M%b Mi’ﬂ)

GPU Profiling and Optimization

* Why do | need to profile my code (again)?

5750
5500
5250
5000

4750
4500 e==s===Intel CPU Double Precision GeForce GTX TITAN

GeForce 780 Ti
ws=w===NVIDIA GPU Single Precision
e=t=mnsNVIDIA GPU Double Precision

4250 emg==|ntel CPU Single Precision

4000
3750
3500
3250
3000
2750
2500
2250
2000
1750 GeForce GTX 580
1500 GeForce GTX 480

GeForce GTX 680

Tesla K40
Tesla K20X

1250 GeForce GTX 280
1000
750 GeForce 8800 GTX

Tesla M2090

Testa C2050
500 GeForce 7800 GTX Tesla C1060 = vy Bridge

GeForce 6800 Ultra
250 GeForce FX 5800
o

Pentium 4 Bloomfield Westmere
A r-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

- Optimization goal?
* Fully utilize all hardware resource

Nsight and NVVP

Nsight: A full-featured IDE that provides an all-in-one
integrated environment to edit, build, debug and profile
CUDA-C applications

NVVP: A cross-platform performance profiling tool that
delivers developers vital feedback for optimizing CUDA C/C++
applications

NVVP is built in Nsight

Using Nsight on SHARCNET

* Development nodes on Monk (Fermi based GPUs, be careful if
GPU is being used by others)

* Submitting interactive job to Angel (Maxwell based GPUs)

Performance Limiter

How to tell if the code is compute or memory bound?

(From hardware side, not from the nature of algorithm)

B - i
. . m] ..

60%

Comp Mem Comp Mem Comp Mem Comp Mem

Compute Bandwidth Latency Compute and
Bound Bound Bound Bandwidth
Bound

Warp and Occupancy

* Warp = 32 Threads with consecutive thread indexes executed
physically in parallel (SIMD) on a multiprocessor

* Occupancy = Active Warps/ Maximum Active Warps
* Occupancy Limiter

* Register usage

* Shared Memory usage

> Block size

* 100% occupancy isn’t needed to reach maximum performance,
Once the “needed” occupancy is reached, further increases won’t
improve performance

* Many find 66% is enough
* More independent work per thread -> less occupancy is needed

* Memory-bound codes tend to need more occupancy
Higher latency than for arithmetic, need more work to hide it

Instruction Latency and Throughput

NVIDIA Kepler SM NVIDIA Maxwell SM

* SM (stream ‘ ————V————————

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
B * 1 4 1 v

multiprocessor)

com [
o [e
o R e
con [o
o R e
o RN e
o [
o [v

Cors Cor

-2 e B Bl Bl B - Instruction Bufter
o o [- 570 o o o [o — —
PY — CR— Clapatch Uk
Ore Core uuc«.m:m-mc»m s s s
€,384 x 22.bk) Rogistor File (16,384 x 32-bit,
Core sru Core Coe [BRUM core
.
[] LD/SI unlt Core sFy WCM-va Cors Con| |Co] [core
= = - Cors Cors |Cors Cors
0 Core Core Core Core
° D Core Core Core - Core
uni cen con] [co] e
Core
Core

Cors Core

* SFU
* 4 schedulers

* “dual issue”
instructions to pipes =-==«~

* Pipelines k8 Sty 11 ik

48 KB Read-Only Data Cache

* LD/ST, Arithmetic, ™= In ——
Control-Flow, — ——

Core Come

Texture ==

§

Core Core

Cors Core

Waip Scheduer Warg Scheculer

o
H

Dinpatch Unt Chapatch Unt Oseteh test rapancr U
2 s + s

I EEE

Rogistor File (16,334 x Rogistor File (16,384 x 32.0it)

s
Core
=
Core
Core
Core
==
Core
Core
Core
Core
Core
Core
Core
Core
Core.
Core

AL rrrrrrrrrrrgs
A rrrrrrrrrr

INEEEEEENE

o
<
<

Core Core Core Core Cowe

Core Core Core Core Core

Core Core Core Core Core

Cors Core Core Core

Example code (binary reduction)

* Basic code flow:

Loading data to shared
memory

Synchronizing all warps
in a block

Reducing to half sized
data

Synchronizing

Reducing to half sized
data

Reducing to 1 element

Values (shared memory)| 10| 1 {8 [-1 {0 |2|3|5|2([8[2|7]0][11]0]2

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
Ds ,

Values

Thread
IDs

Values

Thread X¥' A

Values

Thread
IDs

Values

Example code (binary reduction)

* |Instruction latencies

* Execution dependency:
An input required by the instruction is not yet available

* Synchronization
The warp is blocked at a __syncthreads() call

* Reducing synchronization latency
* “Shuffle” instructions instead of shared memory

* Reducing execution dependency
* Instruction-level parallelism

Shuftle instructions

 Shuffle instruction (SHFL) enables a thread to directly read a
register from another thread in the same warp (32 threads)

* Only supported on Compute Capability 3.0 (Kepler) and higher

* Shuffle Warp Reduce
warpld 0 1 2 3 4 5

6 7
o I o i B e B B B |

v+=__shfl down (v, 4)

v+=_shfl down(v,2)

v+=__shfl down(v,1)

Instruction Level Parallelism

Thread-level parallelism ---> Concurrent threads

Instruction-level parallelism ---> Concurrent instructions

* QOverlapping instructions

Instruction latencies:

* Arithmetic: ~20 cycles

* Reading shared memory(or L1 cache): 20-40 cycles

* Reading global memory: 400-600 cycles

* GPU switch warp to hide latency, issuing independent instructions
For reduction problem:

* Hidden independent ADD operation in LOAD operation ---> need
more ADD

* Number of instructions that can be scheduled is limited by number
of active warps and number of instructions in each warp

Instruction Level Parallelism

* For reduction problem:
* Increase number of instructions within a thread (warp)

* Each thread adds multiple elements before binary reduction,
each pair of elements is independent to others

Loading a pair of two elements, adding them and storing the
temporal result into a register

Adding temporal results together and then using shuffle instructions
to sum between threads

Benchmark results

* Reduction of 4K elements on K20 (theoretical memory
bandwidth 208GB/s)

Time(us) Mem bandwidth
(GB/s)
Original 479 1x 46
Shuffle 318 1.5x 67
+2 ILP 155 3.1x 135
+4 |LP 135 3.5x 143
+8 ILP 116 4.1x 172

+16 ILP 114 4.2x 177

Q&A

