Diagnosing Wasted Resources from User Facing Portals on the National Clusters

Compute Ontario Colloquium: SHARCNET

Tyler Collins HPC Analyst, Brock University

Outline and format for today's talk

- Summarize previous talks and assumptions
- Discuss wait times
 - What's fair vs what a user needs
- How to investigate an account's priority that is seeing wait times
- Diagnosing wasted resources
 - CLI tools
 - Portals

Open question period at the end of the talk!

Send tickets to help@sharcnet.ca

Previous talks and assumptions

All talks by James Desjardins:

- Visualizing job properties for wait time assessment
- Exploring job wait times on Alliance compute clusters: a holistic view
- Exploring Compute Usage from User Facing Portals on the National Clusters

As this is the latest in a series, we'll be building off of these talks

Safe to conclude that wait times can be unpredictable for users

Previous talks and assumptions: definitions

- Job shape: phrase meaning job attributes taken as a whole
 - \circ 16 cores x 4G x 7 days
- **Billing:** combined metric that the scheduler uses to judge how many resources are used
 - \circ ~ A single core 125G job is not billed as a single core, but instead an entire node
- Waste: resources that have been requested but NOT used
 - Requesting a GPU when your software does not use an accelerator
- Allocation: where usage of the system is "billed" too, often named after a PI
 - $\circ \qquad {\sf Default\ allocations\ start\ with\ def\ and\ have\ an\ average\ target}$
 - RAC accounts are competition based assurances of targets
- Priority: how the scheduler decides the ordering of which jobs to execute next
 - You CANNOT "bank" priority, but you should still be allowed to catch up

Previous talks and assumptions: summary

Researchers often experience wait times without knowing what is causing them

This can be addressed by:

- Understanding priority and job shapes
 - For example, age in queue does practically nothing
- Better CLI tools like cluster-stats
- Python packages and tools to produces visualizations

The strongest way to minimize wait times is to minimize waste and optimize your job shape

Wait times and where to find them

First most important principle: wait times are NORMAL in a fair system

The question is: what is an acceptable wait time?

- Depends entirely on your field of study
- If you need a heuristic: if you can rerun your entire thesis in less than a week you likely don't need to go further

As before: "The strongest way to minimize wait times is to minimize waste and optimize your job shape"

1	[tk11br@narva	al2 ~]\$ sacc	ct -aX -u \$USER	-5 20	24-06-01 -	o jobid,st	ate,submit,s	sta
	JobID	State	S	ubmit		Start		
	30388368	CANCELLED+	2024-06-13T13:	39:26		None		
	30388398	TIMEOUT	2024-06-13T13:	39:34	2024-06-13	T13:39:36		
	30389903	TIMEOUT	2024-06-13T13:	58:25	2024-06-13	T13:58:28		
	30394038	CANCELLED+	2024-06-13T14:	41:16		None		
	30394056	CANCELLED+	2024-06-13T14:	41:41	2024-06-13	T14:41:41		
	30405712	FAILED	2024-06-13T16:	41:07	2024-06-13	T16:41:09		
	30407921	CANCELLED+	2024-06-13T17:	16:01		None		
	30407922	FAILED	2024-06-13T17:	16:09	2024-06-13	T17:16:11		
	30409103	CANCELLED+	2024-06-13T17:	29:39	2024-06-13	T17:29:51		
	30409140	CANCELLED+	2024-06-13T17:	30:21	2024-06-13	T17:30:21		
	30423161	TIMEOUT	2024-06-13T20:	27:41	2024-06-13	T20:27:43		
	30423250	COMPLETED	2024-06-13T20:	31:35	2024-06-13	T20:31:36		
	30423251	COMPLETED	2024-06-13T20:	31:35	2024-06-13	T20:31:36		
	30455841	COMPLETED	2024-06-14T13:	09:07	2024-06-14	T13:09:09		
	30455967	FAILED	2024-06-14T13:	09:39	2024-06-14	T13:09:41		
	30456545	FAILED	2024-06-14T13:	13:27	2024-06-14	T13:13:28		
	30458595	COMPLETED	2024-06-14T13:	54:35	2024-06-14	T13:54:36		
	30462317	FAILED	2024-06-14T14:	29:14	2024-06-14	T14:29:15		
	30463925	CANCELLED+	2024-06-14T14:	56:35		None		
	30463942	TIMEOUT	2024-06-14T14:	56:53	2024-06-14	T14:56:55		
	30468554	OUT_OF_ME+	2024-06-14T15:	57:46	2024-06-14	T15:59:33		
	30468555	OUT_OF_ME+	2024-06-14T15:	57:46	2024-06-14	T16:02:11		
	30870881	TIMEOUT	2024-06-25T09:	41:10	2024-06-25	T09:41:12		
	30872226	COMPLETED	2024-06-25T10:	43:39	2024-06-25	T10:49:27		
	31418041	COMPLETED	2024-07-10T12:	31:28	2024-07-10	T12:31:29		
	31418061	COMPLETED	2024-07-10T12:	32:24	2024-07-10	T12:32:24		
	31570662	FAILED	2024-07-15T10:	59:20	2024-07-15	T10:59:21		
	32032183	COMPLETED	2024-07-25T10:	34:30	2024-07-25	T10:34:32		
	32032550	FAILED	2024-07-25T10:	39:16	2024-07-25	T10:53:49		
	32035548	FAILED	2024-07-25T11:	54:35	2024-07-25	T11:54:37		
	32038645	FAILED	2024-07-25T13:	03:17	2024-07-25	T13:24:56		
	32201184	FAILED	2024-07-29T10:	39:07	2024-07-29	T10:48:19		
	32204052	FAILED	2024-07-29T11:	31:12	2024-07-29	T11:31:13		
	32318796	COMPLETED	2024-07-31T23:	59:54	2024-07-31	T23:59:57		
	32319625	CANCELLED+	2024-08-01T00:	30:51	2024-08-01	T00:30:51		
	32319740	FAILED	2024-08-01T00:	34:28	2024-08-01	T00:34:31		
	32319866	FAILED	2024-08-01T00:	38:09	2024-08-01	T00:38:10		
	32319930	COMPLETED	2024-08-01T00:	39:29	2024-08-01	T00:39:29		
	32320212	CANCELLED+	2024-08-01T00:	48:05		None		
	32320233	CANCELLED+	2024-08-01T00:	49:02	2024-08-01	T00:49:03		
	32320304	CANCELLED+	2024-08-01T00:	50:38		None		
	32320423	OUT_OF_ME+	2024-08-01T00:	54:59	2024-08-01	T01:09:47		
	32332065	COMPLETED	2024-08-01T09:	21:16	2024-08-01	T09:21:18		
	32332113	OUT_OF_ME+	2024-08-01T09:	25:52	2024-08-01	T09:29:16		
	32342555	COMPLETED	2024-08-01T12:	41:46	2024-08-01	T12:54:42		
	32590018	CANCELLED+	2024-08-06T16:	08:47		None		
	32590024	COMPLETED	2024-08-06T16:	08:54	2024-08-06	T16:08:57		
	32696518	COMPLETED	2024-08-08T23:	41:37	2024-08-08	T23:54:44		
	[tk11br@narva	al2 ~]\$						

nt.

Wait times and where to find them: my account

Some quick ways to see your jobs and job history:

- "squeue -u \$USER"
- "sacct -aX -u \$USER -s 2024-06-01 -o jobid,state,submit,start"
 - Write output to file and pass to excel
 - View our previous talks for Python packages that can calculate these summaries

If you're with me so far, let's begin diagnosing that waste!

Let's pretend I have been sent a ticket that seeks to minimize wait times

But WHY am I waiting?

First step is to simply check the priority over time of the account you are submitting to

This is best done via the portal developed by Sergiy Khan located at: portal.alliancecan.ca

Portal Options

- SLURM Account fields change which group you are investigating
- System and dates are self explanatory
- Parameters box allow for exploring CPU/GPU billing as well as view cumulative usage
- Allocation information will be pulled from our databases and populate with the correct targets

Select system and dates					
System					
Narval					
Start date (incl.)	End date (incl.)				
2024-07-15	2024-08-14				

Parameters	
Metric	
CPU-equivalent	v
Summation	
Total	•
Include running jobs	
Yes	~
Display allocation target	by default
Yes	Ŧ

Account filter	
Select	-
Select user's account	
Select a SLURM account	Ŧ
Reset	
Allocation information	
No account found.	

A regular healthy account

An underserved account

A large overserved account

A large overserved account: cumulative

Priority problems

Two main cases, and a third hidden corner case:

- 1. The account is not at its allocation target and is experiencing wait times
 - a. 99.9999% of the time this is fixable with better job shape parameters
- 2. The account is at or over its allocation target and is experiencing wait times
 - a. 80% of the time this is fixable with better job shape parameters
 - b. The other 20% is a good place to start a ticket with us
- 3. You are competing against other smaller jobs WITHIN your account
 - a. Chat with your supervisor or explore using another system
 - b. Can still consider optimizing job shape to make your own jobs more favorable

Recalling previous talks

Eliminating waste is your best bet in all cases

Consider that a job that can run anywhere with less specifications has more chances to "jump the queue"

These questions often make really good tickets, don't hesitate to reach out

Let's move on to metrics that actually represent waste

Eliminating waste: low hanging fruit

- Actually look at the run times and provide a more accurate estimate
 - If you know that everything runs in 3-hours 5% of the time, submit them all, and resubmit the ones that fail with a slightly longer interval, OR better yet, checkpointing
- Use "seff" to look at your memory and core efficiency
 - Seff isn't always accurate and can be confused by multi-node jobs, strange memory allocation patterns, etc

What if it's a complex job?	[tk11br@narval1 ~]\$ seff 32696518 Job ID: 32696518
	Cluster: narval
	User/Group: tk11br/tk11br
	State: COMPLETED (exit code 0)
	Nodes: 1
	Cores per node: 4
	CPU Utilized: 02:45:36
	CPU Efficiency: 25.12% of 10:59:20 core-walltime
	Job Wall-clock time: 02:44:50
	Memory Utilized: 1.56 GB
SUADONET: Tyler Colling	Memory Efficiency: 15.58% of 10.00 GB
SHARCINET. TYTER COMMIS	[tk11br@narval1 ~]\$ [

Oops...

0010	Leapsed	T Che C Chi C C
0388368	00:00:00	01:00:00
0388398	01:00:10	01:00:00
0389903	01:00:00	01:00:00
0394038	00:00:00	06:00:00
0394050	05:48:57	00:00:00
0405712	00:32:53	01:00:00
0407921	00:00:00	01:00:00
0407922	00:13:10	01:00:00
0409103	00:00:11	00:00:00
0409140	03:00:46	00:00:00
0423161	01:00:00	01:00:00
0423250	04:24:54	00:00:00
0423251	04:08:27	06:00:00
0455841	00:00:05	01:00:00
0455967	00:03:28	01:00:00
0456545	00:41:01	01:00:00
0458595	00:32:25	01:00:00
0462317	00:27:16	01:00:00
0463925	00:00:00	01:00:00
0463942	01:00:24	01:00:00
0468554	00:03:20	06:00:00
0468555	00:04:55	06:00:00
0870881	01:00:26	01:00:00
0872226	02:39:39	08:00:00
1418041	00:00:01	03:00:00
1418061	00:00:05	03:00:00
1570662	00:17:58	01:00:00
2032183	00:04:36	01:00:00
2032550	00:47:15	08:00:00
2035548	00:40:16	08:00:00
2038645	00:38:24	08:00:00
2201184	00:39:29	08:00:00
2204052	00:37:11	08:00:00
2318796	00:27:24	01:00:00
2319625	00:03:07	01:00:00
2319740	00:06:46	01:00:00
2319866	00:00:58	01:00:00
2319930	00:09:07	01:00:00
2320212	00:00:00	1-08:00:00
2320233	00:01:03	1-08:00:00
2320304	00:00:00	1-08:00:00
2320423	00:56:43	1-08:00:00
2332065	00:04:35	01:00:00
2332113	01:22:48	1-08:00:00
2342555	02:39:33	1-08:00:00
2590018	00:00:00	01:00:00
2590024	00:02:26	01:00:00
2696518	02:44:50	12:00:00
tk11br@narva	l1 ~]\$	

[tk11br@narval1 ~]\$ sacct -aX -u tk11br -S 2024-06-01 -o jobid,elapsed,timelimit

Introducing the userportal

Primarily developed by Simon Guilbault

- Can be found at: <u>https://portail.narval.calculquebec.ca/</u>
- Leverages Prometheus and Thanos to report metrics from different sources
 - Compute nodes, login nodes, filesystem resources, etc
- Very high temporal resolution
 - Do not need to wait for the job to complete
- Most features available on Narval and Beluga, with a development version deployed for Graham
 - Principles learned from these principles will generalize to every system

Allow users to see exactly what a job is doing at a low level

Userportal architecture

Codebase for the userportal

Can be found on github here: <u>https://github.com/guilbaults/TrailblazingTurtle</u>

My own personal userportal page

Let's take a look at my own personal page and explore what can be found on the homepage of the portal

Filesystems performance
Logins nodes
Scheduler
Scientific software
Data transfer nodes

Filesystem usage and quotas

At a glance job summaries

Your latest 10 jobs (More details)

Job ID	Status	Job name	Submit time	Start time	End time	Asked time	Used time
32696518	Complete	job.sh	4 days, 23 hours ago 🛈	4 days, 23 hours ago 🛈	4 days, 20 hours ago 🛈	12.0h	164.8m
32590024	Complete	interactive	1 week ago 🕢	1 week ago 🛈	1 week ago 🕢	60.0m	2.4m
32590018	Cancelled	interactive	1 week ago 🛈	0	1 week ago 🛈	60.0m	
32342555	Complete	job.sh	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	32.0h	159.6m
32332113	OOM	job.sh	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	32.0h	82.8m
32332065	Complete	interactive	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	60.0m	4.6m
32320423	OOM	job.sh	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	32.0h	56.7m
32320304	Cancelled	job.sh	1 week, 5 days ago 🛈	0	1 week, 5 days ago 🛈	32.0h	
32320233	Cancelled	job.sh	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	1 week, 5 days ago 🛈	32.0h	1.1m
32320212	Cancelled	job.sh	1 week, 5 days ago 🛈	Ū	1 week, 5 days ago 🕢	32.0h	

Picking a single job and exploring

Job analysis

Less than 1 core was used on average but 4 were asked for, this look like a serial job

Less than half the CPU compute cycle were used

Out of memory, increase memory asked and retry this job

This job is running on average 1.0 threads on 4 cores, the cores might be underused

Application /cvmfs/restricted.computecanada.ca/easybuild/software/2020/Core/matlab/2021a.5/bin/glnxa64/MATLAB used 1.0 cores on average

Tabular summary information

Scheduler info

Account	Submit time	Queue time	Start time		End time		Priority 🛈
def-tk11br_cpu	1 week, 5 days ago 🛈	0:03:24	1 week, 5 days	ago 🛈	1 week, 5 days ago 🕃)	0.003139
Resources							
Туре				Allocated		Used	
Time				32.0h		82.8m	
Nodes				1			
CPU cores				4		0.96	
CPU cores by node				nl10803: 4			
Memory				100.0 GB		100.0 GB	
Energy						υ	
Electric car range equivalent						υ	
CO2 emissions						U	

CPU waste within my own job

CPU

Ratio of cycles consumed on each CPU core by all processes in this job. This graph should be all filled up most of the time, if not, you can lower the cores requested to the scheduler. Unused cycles does not improve your job performance and will lower your priority when cores are wasted.

Less wasting of memory, but strange pattern

Filesystem figures that help illustrate a bug

Some case studies

Let's explore what your own jobs may show when looked at through the user portal

- These are handpicked real legacy cases
- Users were experiencing wait time they were concerned with
- Through eliminating waste, throughput increased significantly

From these examples it should be there what would need to be adjusted to minimize waste

Core/memory waste: ~16-24 hour waits per job

Core waste due to fall off: 3-day wait

CPU

Memory problems: over a week of waiting

GPU waste: 100+ hours of waiting per week

GPUs

Userportal conclusions

This platform is not just good for finding where jobs are wasting resources, but can also help with debugging too

- Interactive jobs are supported
- Filtering by state
- For more advanced jobs, there are other resources like infiniband performance, etc

If anyone is feeling brave we can take a look at the accounts of some volunteers

Takeaways

- Eliminating waste via job shape optimization is the best way to reduce wait times
- The account usage portal offers a complete historical picture of usage
- The userportal offers an excellent in depth look at exactly what jobs are doing
- Users have an easier time than ever before to see exactly what their jobs are doing both within an account and within a job

Questions?

