
March 11, 2020 General interest seminar: Julia – Part III 1 / 54

Julia: A third perspective
Parallel computing explained

Ge Baolai
SHARCNET | Compute Ontario | Compute Canada
Western University

A language for both prototyping and performance



March 11, 2020 General interest seminar: Julia – Part III 2 / 54

Outline
We try to cover the following 

 A quick review of what’s covered in the previous talks
 Automatic parallelization in linear algebra operations
 Parallel and distributed computing
 Running julia on CCF systems

What’s NOT covered
 Threaded computing (next separate talk)
 MPI and others

This is not a complete, systematic introduction but a collection of pointers for ones to explore.



March 11, 2020 General interest seminar: Julia – Part III 3 / 54

A quick review



March 11, 2020 General interest seminar: Julia – Part III 4 / 54

A quick review
 Available for Windows, Linux and Mac OS X 

(intel processors fully supported, limited support 
for ARM based processors).

 Rich programming language support.
 Support for parallel programming paradigms via 

the underlying MPI library.
 Support for linear algebra operations.
 Support data frames.
 Very fast, compared to R, Python, Matlab and 

even C/C++ and Fortran.
 Available on CCF systems.



March 11, 2020 General interest seminar: Julia – Part III 7 / 54

A quick review
Structure

struct Person
    name::AbstractString
    id::Int
end

people = Person[] # Create an empty array
push!(people,Person("Ge B",88544))
push!(people,Person("Tyson W",78910))

julia> people
2-element Array{Person,1}:
 Person("Ge B", 88544)      
 Person("Tyson W", 78910)



March 11, 2020 General interest seminar: Julia – Part III 8 / 54

A quick review
Dictionaries (Pair of key, value)

# Create a dictionary containing two entries
d = Dict("a"=>1,"b"=>2)

# Get the value corresponding to key “a”, otherwise return -1
get(d,"a",-1)

# Add an entry or a dictionary, but the original d does not change 
merge(d,Dict(“c”=>99))

# Add an entry or a dictionary, now d has changed
merge!(d,Dict(“c”=>99))



March 11, 2020 General interest seminar: Julia – Part III 9 / 54

A quick review
Operations MATLAB R Julia Note

Slicing A(i,j), B(i:j,m:n) A[i,j], B[i:j,m:n] A[i,j], B[i:j,m:n]

A(end) A[length(A)] A[end] The last element.

A(1:end ~=k) A[~k] A[1:end .!=k] All but the kth element.

A(i,:), A(:,j) A[i,], A[,j] A[i,:], A[:,j]

Assignment B = A B = A copyto!(B,A) With B=A, B is an alias to A. Use 
copyto!() to create a copy.

Sequence from,by,to seq(from,to,by) collect(from,by,to)

Filtering A > b A > b A .> b Return indices of elements > b.

A(A > b) A[A > b] A[A .> b] Return a subarray of elements > b.

Replacement A(A > b)=val A[A > b]=val A[A .> b] .= val Replace elements > b with val.

Delete an 
object

clearvar(A) rm(A) A=nothing Just replace with one taking less mem 
and run garbage collection with gc()



March 11, 2020 General interest seminar: Julia – Part III 10 / 54

Automatic parallelization
in

linear algebra operations



March 11, 2020 General interest seminar: Julia – Part III 11 / 54

Matrix-vector operations via OpenBLAS

We run this simple code first

n = 5000

A = randn(n,n)

B = randn(n,n)

C = zeros(n,n)

using LinearAlgebra

for i=1:4

    @time C = A*B

end

Linear algebra operations
And then set environment variable

   export OMP_NUM_THREADS=4

and run it again to see if there's any performance 
changes.

Do not spawn julia threads!



March 11, 2020 General interest seminar: Julia – Part III 12 / 54

Linear algebra operations
Solving linear dense system

using LinearAlgebra

A = [2.0 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 2]

x = ones(5)

b = A*x

sol = A\b

Solving linear sparse system

using LinearAlgebra

A = [2.0 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 2]

using SparseArrays

A1 = sparse(A)

x = ones(5)

b = A1*x

sol = A1\b



March 11, 2020 General interest seminar: Julia – Part III 13 / 54

Parallel computing
Implicit

 Less effort, no need to write explicit parallel 
code.

 Using built-in libraries, e.g. OpenBLAS for linear 
algebra operations using multi-cores.

 Using shared and distributed data objects.
 Debugging?

Explicit 

 Need extra effort to write parallel code, having to 
know what you are doing.

 Explicit control of data transfers via send/recv 
operations among processes.

 One-sided communication via put/get 
operations.

 Debugging can be challenging.



March 11, 2020 General interest seminar: Julia – Part III 14 / 54

Parallel and distributed computing



March 11, 2020 General interest seminar: Julia – Part III 15 / 54

Matrix-vector operations via OpenBLAS

We run this simple code first

n = 5000

A = randn(n,n)

B = randn(n,n)

C = zeros(n,n)

using LinearAlgebra

for i=1:4

    @time C = A*B

end

Parallel computing: Implicit parallelism
And then set environment variable

   export OMP_NUM_THREADS=4

and run it again to see if there's any performance 
changes.

Do not spawn julia threads!

If all your work is like this, then you 
are done. The rest is more advanced.



March 11, 2020 General interest seminar: Julia – Part III 16 / 54

Parallel computing: Starting multiple processes
Launching from command line when starting julia

julia -p 8

or

julia --machine-file hostfile

Launching from within a julia process

using Distributed

# Start extra 8 processes to have 9 in total
addprocs(8) 



March 11, 2020 General interest seminar: Julia – Part III 17 / 54

Parallel computing: Starting multiple processes
Launching from command line when starting julia

julia -p 8

or

julia --machine-file hostfile

Launching from within a julia process

using Distributed

# Start extra 8 processes to have 9 in total
addprocs(8) 

Dynamically creating or increasing the 
number of processes is not 
recommended. 

This is for all jobs, e.g. R, Matlab, 
Python, etc on systems where the job 
schedule controls.



March 11, 2020 General interest seminar: Julia – Part III 18 / 54

Parallel computing: Broadcasting a value to all processes
# Broadcast a value to all processes

using Distributed

@everywhere x = 12345 # This works

x0 = 12345

@everywhere x = x0 # This will fail, as x0 is local

@everywhere x = $x0 # This works! By "copying" x0 value



March 11, 2020 General interest seminar: Julia – Part III 19 / 54

Parallel computing: Executing a function on all processes
Execute a locally defined function

using Distributed

# The scope of this function is within this process

function showid()

    println("My ID: ", myid())

end

# This is likely to fail on other processes

@everywhere showid()

Execute a globally defined function

using Distributed

# This function is defined on every process

@everywhere function showid()

    println("My ID: ", myid())

end

# Execute this procedure on every process

@everywhere showid()



March 11, 2020 General interest seminar: Julia – Part III 20 / 54

Parallel computing: Executing a function on all processes
Execute a locally defined function

using Distributed

# The scope of this function is within this process

function showid()

    println("My ID: ", myid())

end

# This is likely to fail on other processes

@everywhere showid()

Execute a globally defined function

using Distributed

# This function is defined on every process

@everywhere function showid()

    println("My ID: ", myid())

end

# Execute this procedure on every process

@everywhere showid()

@everywhere stmt



March 11, 2020 General interest seminar: Julia – Part III 21 / 54

Parallel computing: Executing a procedure remotely
using Distributed

println("Number of cores: ", nprocs())
println("Number of workers: ", nworkers())

# Fetch the ID of each worker and host the worker running on
for i in workers()
    id, pid, host = fetch(@spawnat i (myid(), getpid(), gethostname()))
    println(id, " " , pid, " Hello from ", host)
end



March 11, 2020 General interest seminar: Julia – Part III 22 / 54

Parallel computing: Executing a procedure remotely
Julia uses the concept "future" referring to the remote execution.

To run a procedure on an automatically chosen process

f = @spawn (x.^2, myid())

To run a procedure on a specific process n

f = @spawnat n (x.^2, myid())

To get the result, one needs to "fetch" it by the reference.

fetch(f)



March 11, 2020 General interest seminar: Julia – Part III 23 / 54

Parallel computing: Executing a procedure remotely
Julia uses the concept "future" referring to the remote execution.

To run a procedure on an automatically chosen process

f = @spawn (x.^2, myid())

To run a procedure on a specific process n

f = @spawnat n (x.^2, myid())

To get the result, one needs to "fetch" it by the reference.

fetch(f)

@spawn stmt
@spawnat proc stmt



March 11, 2020 General interest seminar: Julia – Part III 24 / 54

Parallel computing: Programming model
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

1 2 3 4 5

Tasks are dispatched and computed on workers, like jobs are done on compute nodes. 

Code starts here;
Define variables, functions;
Broadcast variables, define 
global functions;
Dispatch tasks to workers;

@everywhere foo(x,...)

@spawn bar(u,...)

@spawn bar(v,...)



March 11, 2020 General interest seminar: Julia – Part III 25 / 54

Parallel computing: Programming model

Who am I?

1 2



March 11, 2020 General interest seminar: Julia – Part III 26 / 54

Parallel computing: Placing a remote call
Asynchronous call, non-blocking, returns immediately

f = remotecall( maximum, WorkerPool(workers()),   x   )

To get the result

r = fetch(f)

Synchronous call, combines remotecall() and fetch()

r = remotecall_fetch(maximum,WorkerPool(workers()),x)

call where var



March 11, 2020 General interest seminar: Julia – Part III 27 / 54

Parallel computing: Producer-consumer model
A communication channel between “tasks” Channel  
can be used for communication between tasks. 

c1=Channel(1024)

c2=Channel(1024)

Define a function that wraps producer-consumer 
pattern

function foo()

    while condition==true

        data = take!(c1)  # Take a task from c1

        Process data. If this is the last data set condition=false

        put!(c2, result)  # Put result to c2

    end

end



March 11, 2020 General interest seminar: Julia – Part III 28 / 54

Parallel computing: Producer-consumer model
A communication channel between “tasks” Channel  
can be used for communication between tasks. 

c1=Channel(1024)

c2=Channel(1024)

Define a function that wraps producer-consumer 
pattern

function foo()

    while condition==true

        data = take!(c1)  # Take a task from c1

        Process data. If this is the last data set condition=false

        put!(c2, result)  # Put result to c2

    end

end

Then schedule n instances of foo to be active 
concurrently on local machine

for _ in 1:n

    @async foo()

end



March 11, 2020 General interest seminar: Julia – Part III 29 / 54

Parallel computing: Calculating the approximation of pi
We compute the approximation of pi by counting the points uniformly tossed inside an 1/4 circle vs total 
number of points over the unit square (See Marc Marano Maza 2017).



March 11, 2020 General interest seminar: Julia – Part III 30 / 54

Parallel computing: Calculating the approximation of pi
Create a file "pi_dist.jl", define a function that counts 
the number of points falling inside the circle

function points_inside_circle(n)
    n_in = 0
    for i=1:n
        x, y=rand(), rand()
        n_in += (x*x + y*y) <= 1
    end
    return n_in
end

In the same file, define a function wrapper that 
computes the approximation of pi in parallel

function pi_p(n)
    p = nworkers()
    n_in = @distributed (+) for i=1:p # A reduction call
        points_inside_circle(n/p)
    end
    return 4*n_in/n # The approximation of pi
end

This function executes on multiple cores in parallel 
and collects the result by reduction

@distributed op procedure



March 11, 2020 General interest seminar: Julia – Part III 31 / 54

Parallel computing: Calculating the approximation of pi
Create a file "pi_dist.jl", define a function that counts 
the number of points falling inside the circle

function points_inside_circle(n)
    n_in = 0
    for i=1:n
        x, y=rand(), rand()
        n_in += (x*x + y*y) <= 1
    end
    return n_in
end

In the same file, define a function wrapper that 
computes the approximation of pi in parallel

function pi_p(n)
    p = nworkers()
    n_in = @distributed (+) for i=1:p # A reduction call
        points_inside_circle(n/p)
    end
    return 4*n_in/n # The approximation of pi
end

N.B. This function executes on multiple cores in 
parallel and collects the result by reduction

@distributed op procedure

@distributed op procedure



March 11, 2020 General interest seminar: Julia – Part III 32 / 54

Parallel computing: Calculating the approximation of pi
Now we start julia with 4 workers using command

julia -p 4

Within julia, use the commands below

julia> using Distributed
julia> @everywhere include("pi_dist.jl") # Load functions on all processes

julia> pi_p(1_000_000) # pi_p() is defined in file “pi_dist.jl”
3.1419629999999996



March 11, 2020 General interest seminar: Julia – Part III 33 / 54

Parallel computing: Distributed arrays
Example: A matrix stored across 4 processes on a 2x2 Cartesian processor grid

1 2

43

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

Proces 1 has the 
blue portion.

But it also has 
access to other 
portions stored 
remotely, simply via 
indices.

Suitable for 
handling large data 
sets that can NOT 
fit on a single 
machine.



March 11, 2020 General interest seminar: Julia – Part III 34 / 54

Parallel computing: Distributed arrays
using Distributed, DistributedArrays

@everywhere using LinearAlgebra

@everywhere function aa(n)

    la = zeros(n,n)

    la[diagind(la,0)] .= 2.0

    la[diagind(la,-1)] .= -1.0

    la[diagind(la,1)] .= -1.0

    return la

end

@everywhere function b1(n)

    la = zeros(n,n); la[1,n] = -1.0;

    return la

end

@everywhere function b2(n)

    la = zeros(n,n); la[n,1] = -1.0;

    return la

end

Matrix A distributed on 4 processors on a 2x2 grid

1 2

43

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2



March 11, 2020 General interest seminar: Julia – Part III 35 / 54

Parallel computing: Distributed arrays
# Call functions on workers to created local portions

d11 = @spawnat 2 aa(4)

d12 = @spawnat 3 b1(4)

d21 = @spawnat 4 b2(4)

d22 = @spawnat 5 aa(4)

# Create a distributed matrix on a 2x2 processor grid

DA = DArray(reshape([d11 d21 d12 d22],(2,2)));

NB:
 No (large) data communications between Main and workers;
 d11,d12,d21,d22 are not matrices, but handles – futures. 

They are NOT taking up spaces;
 DA is NOT the whole matrix either, it’s a reference;
 But one can access the entire matrix by simply using the 

index, e.g. DA[5000,5050] even though it’s not local.

Matrix A distributed on 4 processors on a 2x2 grid

1 2

43

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2



March 11, 2020 General interest seminar: Julia – Part III 36 / 54

Parallel computing: Distributed arrays
Julia always uses 1+p processes: A control or Main process, plus p Worker processes

varinfo()

@everywhere using InteractiveUtils
fetch(@spawnat p varinfo())

To see vars on “me”

To see vars on others

1 2 3 4 5



March 11, 2020 General interest seminar: Julia – Part III 37 / 54

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

Parallel computing: Distributed arrays
# Call functions on workers to created local portions

n=100

d11 = @spawnat 2 aa(n)

d12 = @spawnat 3 b1(n)

d21 = @spawnat 4 b2(n)

d22 = @spawnat 5 aa(n)

# Create a distributed matrix on a 2x2 processor grid

DA = DArray(reshape([d11 d21 d12 d22],(2,2)));

# Examine storage on Main

varinfo()

Matrix A distributed on 4 processors on a 2x2 grid

1 2

43

Examining the storage on Main (Process 1):
julia> varinfo()

  Name size summary                                   

  –––––––––––––––– ––––––––––– ––––––––––––––––––––––––––––––––––––––––––

  Base Module                                    

  Core Module                                    

  DA             544 bytes 200×200 DArray{Float64,2,Array{Float64,2}}

  Distributed             2.021 MiBModule                                    

  InteractiveUtils         162.090 KiB Module                                    

  Main Module                                    

  aa   0 bytes typeof(aa)                                

  ans                  544 bytes 200×200 DArray{Float64,2,Array{Float64,2}}

  b1   0 bytes typeof(b1)                                

  b2   0 bytes typeof(b2)                                

  d11 32 bytes Future                                    

  d12 32 bytes Future                                    

  d21 32 bytes Future                                    

  d22 32 bytes Future                                    

  n   8 bytes Int64                                     



March 11, 2020 General interest seminar: Julia – Part III 38 / 54

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

Parallel computing: Distributed arrays
# Call functions on workers to created local portions

n=100

d11 = @spawnat 2 aa(n)

d12 = @spawnat 3 b1(n)

d21 = @spawnat 4 b2(n)

d22 = @spawnat 5 aa(n)

# Create a distributed matrix on a 2x2 processor grid

DA = DArray(reshape([d11 d21 d12 d22],(2,2)));

# Examine remote storage on Worker 2

fetch(@spawnat 2 varinfo())

Matrix A distributed on 4 processors on a 2x2 grid

1 2

43

Examining the storage on Worker 2:
julia> fetch(@spawnat 2 varinfo())

  Name size summary                                                     

  –––––––––––--------- –––––––––– ––––––––––––––––––––––––––––––––––––––––––––––––––––––

  Base Module                                                      

  Core Module                                                      

  DA           78.656 KiB 200×200 DistributedArrays.DArray{Float64,2,Array{Float64,2}}

  Distributed             1.421 MiBModule                                                      

  Main Module                                                      

  aa   0 bytes typeof(aa)                                                  

  b1   0 bytes typeof(b1)                                                  

  b2   0 bytes typeof(b2)                                                  

  n   8 bytes Int64                                                  



March 11, 2020 General interest seminar: Julia – Part III 39 / 54

Parallel computing: Distributed arrays
julia> # Perform A*A directly on distributed arrays

julia> DB = dzeros(8,8)

julia> DB = DA*DA

julia> # Check remote values on process 3

julia> f = @spawnat 3 DB.localpart # Remote call returns a future

julia> fetch(f)

4×4 Array{Float64,2}:

 0.0  0.0  1.0  -4.0

 0.0  0.0  0.0   1.0

 0.0  0.0  0.0   0.0

 0.0  0.0  0.0   0.0

julia> remotecall_fetch(localpart,3,DB) # Alternative

Result of A*A distributed on 4 processors

1 2

43

5 -4 1

-4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4

1 -4 5



March 11, 2020 General interest seminar: Julia – Part III 40 / 54

Parallel computing: Distributed arrays
julia> # Access components owned remotedly

julia> DB[5:8,1:4]

4×4 view(::DArray{Float64,2,Array{Float64,2}}, 5:8, 1:4) with eltype 
Float64:

 0.0  0.0  1.0  -4.0

 0.0  0.0  0.0   1.0

 0.0  0.0  0.0   0.0

 0.0  0.0  0.0   0.0

Result of A*A distributed on 4 processors

1 2

43

5 -4 1

-4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4 1

1 -4 6 -4

1 -4 5



March 11, 2020 General interest seminar: Julia – Part III 41 / 54

Parallel computing: Distributed arrays
Summary:

 Define functions to be executed on workers, e.g. via @everywhere;
 Define global variables and broadcast to workers, e.g. via @everywhere;
 Create distributed arrays, by calling functions on workers, via @spawnat or remotecall();
 Perform the operations on the distributed arrays, as if they were local;
 This is a very different concept from the SPMD model (often seen in scientific applications, e.g. written in 

MPI)



March 11, 2020 General interest seminar: Julia – Part III 42 / 54

Parallel computing: Distributed arrays
Summary (cont’d):

 So far not much self-contained functionalities are available, but only allows one to reference to global 
spaces by indexing to the elements.

 Each process has a global view of any distributed objects.
 It uses one-sided communication via underlying libraries (e.g. MPI). The other prominent programming 

language that supports global address access is Fortran.
 Support from third party libraries are expected.
 A few packages to look at

– Elemental – hides the communication APIs and one can do linear algebra operations as is, such as 
svdvals(A) to get SVD values.  

– PETSc – contains explicit MPI like APIs.
– Trilinos – contains explicit MPI like APIs.



March 11, 2020 General interest seminar: Julia – Part III 43 / 54

Parallel computing: Shared arrays
Shared arrays via module SharedArrays provide a convenient way of accessing data among processes. The 
following creates a 5x4 integer array on each process

using SharedArrays

A = SharedArray{Int,2}((5,4))

Changes to A in one process also happen to A on other processes.



March 11, 2020 General interest seminar: Julia – Part III 46 / 54

Parallel computing: Shared arrays
Example: 1D heat equation. A rod heated in the middle, the temperature distribution over time can be 
simulated by the following

Using a 2D array u[i,j] to store the temperature at spatial points (1st dim) and over time steps (2nd dim), 

The spatial points are partitioned into p, e.g. 4, worker groups, the temperature in each is updated concurrently 
independent of other groups.

1 2 3 4

for i=i1:in
    u[i,k+1] = (1.0-2r)*u[i,k] + r*(u[i-1,k] + u[i+1,k])
end



March 11, 2020 General interest seminar: Julia – Part III 47 / 54

Parallel computing: Shared arrays
NB: The loop

for i=2:n-1
    u[i,k+1] = (1.0-2r)*u[i,k] + r*(u[i-1,k] + u[i+1,k])
end

can be replaced by the vectorized form

u[2:n-1,k+1] = (1.0-2r)*u[2:n-1,k] + r*(u[1:n-2,k] + u[3:n,k])

See our Python, Matlab/Octave and Fortran courses.

NB: 2r is not a typo, it is a legitimate literal expression in julia



March 11, 2020 General interest seminar: Julia – Part III 48 / 54

Parallel computing: Shared arrays
Serial code (sketch)

u = zeros(n,nt);

… ...

for k=1:nt-1

    u[2:n-1,k+1] = (1.0-2r)*u[2:n-1,k] + r*(u[1:n-2,k]+u[3:n,k])

    if (k % nt_disp == 0)

        display(plot(x,u[:,k],lw=3,ylim=(0,1)))

    end    

end

Parallel code (sketch)

u = SharedArray{Float64,2}(n,nt);

u .= 0;

@everywhere function update(u,k,p) 

    i1 = np*(p - 1) + 1; # Start index

    if (p == 1) # Skip the boundary point

        i1 = 2;

    end

    in = i1 + np + n % num_workers - 1; # End index

    if (p == num_workers) # Skip the boundary point

        in = n - 1;

    end 

    u[i1:in-1,k+1] = (1.0-2r)*u[i1:in-1,k] + r*(u[i1-1:in-2,k]+u[i1+1:in,k])

end

NB: Although the data of u is 
shared, but u itself is not. It 
must be passed to workers.

p-1 p p+1



March 11, 2020 General interest seminar: Julia – Part III 49 / 54

Parallel computing: Shared arrays
Serial code (sketch)

for k=1:nt-1

    u[2:n-1,k+1] = (1.0-2*r)*u[2:n-1,k] + r*(u[1:n-2,k]+u[3:n,k])

    if (k % nt_disp == 0)

        display(plot(x,u[:,k],lw=3,ylim=(0,1)))

    end    

end

Parallel code (sketch)

for k=1:nt-1

    @sync begin

        for p=1:num_workers

            @async remotecall(update,p+1,u,k,p);

        end

    end           

    if (k % nt_disp == 0)

        display(plot(x,u[:,k+1],lw=3,ylim=(0,1)))

    end

end

remotecall(func, pid, args_of_func) – returns immediately

Three args passed to update().
NB: Although the data of u is 
shared, but the u itself as a 
reference must be passed to 
workers.



March 11, 2020 General interest seminar: Julia – Part III 50 / 54

Parallel computing: Shared arrays
Summary 

 Shared arrays are for the local computer only (Fortran’s co-arrays can be across nodes);
 Shared arrays can be accessed via global indexing, hence convenient for parallel algorithms;
 For A = SharedArray{Float64,2}(n,n), the data is shared, but A is not. It’s a reference and must be passed 

to participating workers via any of the following

@everywhere function … end or @everywhere var=...

@everywhere include(code_script)

@remotecall(func, worker_set, var_list)
 Math and linear algebra operations apply to shared array objects as regular arrays;
 Lastly the diffusion example can also be implemented using distributed arrays, so it can run on clusters.



March 11, 2020 General interest seminar: Julia – Part III 51 / 54

Threads in julia



March 11, 2020 General interest seminar: Julia – Part III 52 / 54

Parallel computing: Threads
Example: Parallel loop. First start julia with say 4 
threads by setting environment variable

export JULIA_NUM_THREADS=4

Then run jula. In julia, run the following commands

using Base.Threads

threadid() # Should be 1

nthreads() # Should be 4

n=10

a = zeros(n)

@threads for i=1:n

    a[i] = threadid()

end

Results

julia> a

10-element Array{Float64,1}:

 1.0

 1.0

 1.0

 2.0

 2.0

 2.0

 3.0

 3.0

 4.0

 4.0



March 11, 2020 General interest seminar: Julia – Part III 53 / 54

Parallel computing: Threads
Example: Create threads with

export JULIA_NUM_THREADS=4

and have each one do some work in a function

using Base.Threads

nthreads()

function do_something()

    println(“In Thread “, threadid())

    sleep(1)

end

@threads for _ in 1:nthreads()

    do_something()

end

Results

In Thread 4

In Thread 1

In Thread 2

In Thread 3

NB: Julia seems to only create threads up to the number of available 
physical cores.



March 11, 2020 General interest seminar: Julia – Part III 54 / 54

Summary 
 So far the threads module in julia is still experimental;
 The number of threads can be created seems to be limited by the physically available cores;
 There doesn’t to be a way of creating more threads on demand;
 We will have a separate talk dedicated to julia multi-threading programming;
 See Jeff Bezanson (Julia Computing), Jameson Nash (Julia Computing), Kiran Pamnany (Intel), 

“Announcing composable multi-threaded parallelism in Julia”, 2019.



March 11, 2020 General interest seminar: Julia – Part III 55 / 54

Running julia on CCF systems



March 11, 2020 General interest seminar: Julia – Part III 56 / 54

Running julia on CCF systems
Loading modules

Run the following commands

module spider julia

module spider julia/1.3.1

Then load dependencies and jula

module load julia/1.3.1

Example: “hello.jl” - Displaying IDs of all worker processes

using Distributed

println("Number of cores: ", nprocs())

println("Number of workers: ", nworkers())

# Each worker gets its id, process id and hostname

for i in workers()

    id, pid, host = fetch(@spawnat i (myid(), getpid(), gethostname()))

    println(id, " " , pid, " ", host)

end

# Remove the workers

for i in workers()

    rmprocs(i)

end



March 11, 2020 General interest seminar: Julia – Part III 57 / 54

Running julia on CCF systems
Slurm job script: run_julia.sh – run across nodes, containing the 
following lines

#!/bin/bash

#SBATCH --ntasks=64 # Number processes

#SBATCH --cpus-per-task=1

#SBATCH --mem-per-cpu=1024M  # Memory, default 4GB

#SBATCH --time=0-00:05 # Run time (DD-HH:MM)

#SBATCH --account=def-bge # Billing account

#SBATCH --output=hello.log

srun hostname -s > hostfile

julia --machine-file ./hostfile ./hello.jl

Submitting jobs

sbatch run_julia.sh



March 11, 2020 General interest seminar: Julia – Part III 58 / 54

References
[1] Marc Marano Maza, Lecture Notes: Distributed and parallel systems, Department of Compute Science, 

Western University, 2017.
[2] Julia documentations: https://docs.julialang.org/en/v1/. 
[3] Julia cheat sheet: https://juliadocs.github.io/Julia-Cheat-Sheet/. 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

