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Overview

Commonly in math there are:
natural, ℕ, and integer, ℤ, numbers,
rational, ℚ, numbers,
real, ℝ, numbers, and,
complex numbers, ℂ.
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Overview (cont.)

Natural, ℕ, and integer, ℤ, numbers are all discrete, exact values and since computers
are discrete and treat integers exactly natural and integer numbers typically do not
have issues of representation.

Sometimes there are issues to be aware of and dealt with:
mixing signed and unsigned bounded values in the same expression
relying on “integer wrap-around” with signed bounded values with overflows
Typically computer integer types have no representation of not-a-number or
infinity so programs needing such must deal with such.
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Overview (cont.)

Rational, ℚ, numbers are ratios of two integers, e.g., 𝑝/𝑞.

On computers rational numbers are typically stored exactly as the two integers
that comprise the rational number.
Rational numbers on computers represented using integers are exact.
Rational numbers are typically reduced to lowest terms with each calculation.
Typically computer rational types have no representation of not-a-number or
infinity so programs needing such must deal with such explicitly.
As with integers, issues can arise especially when using bounded integers

e.g., values can easily become very large so how integer overflow is dealt with can
become an issue



Floating-point Numbers Aren’t Mathematical Real Numbers
Overview

Overview (cont.)

Real numbers, ℝ, are:
numbers that can be used to measure continuous one-dimensional quantity
continuous means that pairs of real numbers can have arbitrarily small differences
many real numbers are infinite in length, e.g., irrational numbers

Complex numbers, ℝ, are:
a number system that extends ℝ to have two components: “real” and “imaginary”
i.e., complex numbers rely on ℝ numbers and are often represented using real
numbers on computers (this presentation assumes real numbers are being used)
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Concerning representing real numbers on a computer:
Computers are discrete and finite so unless the computer is being used to
explicitly represent a ℝ or ℂ number exactly in symbolic form, the number must
be approximated on a computer.

e.g., an infinite number cannot be represented on a computer at all
On a computer, typically programs approximately represent ℝ and ℂ numbers
using a programming language’s single and/or double precision formats, e.g.,

In C, float, double, float _Complex, double _Complex
In C++, float, double, std::complex<float>, std::complex<double>
etc.



Floating-point Numbers Aren’t Mathematical Real Numbers
Overview

Overview (cont.)

Because ℝ numbers are not represented exactly on a computer, most computer
programming languages do not refer to types used to represent such as real values.

Instead such types on a computer are typically floating-point values which are “clever”
finite approximations to some limited in numeric precision rational number.

Often these approximations can work —but don’t expect them to always work!
The internal base that is used to store and operate on such numeric values can
also matter.
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Floating-Point Numbers

Floating-point numbers on computers typically use the IEEE representation and
designed to have any of the following forms:

±𝑑.𝑑𝑑𝑑𝑑𝑑𝑑 × 𝐵𝑒,
The number of digits, 𝑑, available varies with the actual representation and the base
used to represent numbers.
𝐵 is typically the base used to store the number.

This is typically 2 or 10. Assume it is 2.
C23 introduced these decimal floating-point types: _Decimal32, _Decimal64,
_Decimal128.

±∞, or,
not-a-number (NaN)
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Floating-Point Numbers (cont.)

Suffix your hard-coded floating-point constants in your code, e.g.,

Literal Std Type Description
f, F float
L, L long double

bf16, BF16 C++23 std::bfloat16_t “brain float”
f16, F16 C++23 std::float16_t half precision
f32, F32 C++23 std::float32_t single precision
f64, F64 C++23 std::float64_t double precision

f128, F128 C++23 std::float128_t quad precision
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Floating-Point Numbers (cont.)

And remember accuracy varies, e.g., with a binary, base-2, representation:

Type Precision Bits Exponent Bits Max Exponent
std::bfloat16_t 8 8 127
std::float16_t 11 5 15
std::float32_t 24 8 127
std::float64_t 53 11 1023
std::float128_t 113 15 16383
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Problems To Consider

When using floating-point numbers:
While it is nice to assume they are real numbers, remember they are not!
Floating-point numbers are commutative. (This is good.)
Floating-point numbers are not associative. (Real numbers are. This is bad.)
Floating-point numbers are not exact. Don’t compare using ==.
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Problems To Consider (cont.)

Does 𝑓(𝑥) = 1−cos𝑥
𝑥2 (where 𝑥 is close but not 0) look continuous to you in the next

slide’s graph?

Explanation: The discontinuities you see in the graph in the next slide are there due to
floating-point representation issues. Essentially, as 𝑥 approaches 0, cos𝑥 will get closer
to 1 and the subtraction 1 − cos𝑥 will result in a small value (rounded to the nearest
representable value). When divided by 𝑥2, which is twice as small as 𝑥, the rounded
value 1 − cos𝑥 gets amplified showing the visible patterned jumps you see in the graph.
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Problems To Consider (cont.)

How about calculating 𝑝𝑖?
e.g., see https://en.wikipedia.org/wiki/Floating-point_arithmetic%
23Minimizing_the_effect_of_accuracy_problems

Should you go to that URL, scroll down to see 𝑡0, the first form, and the second
form.

𝑡0 = 1/
√

3
First form: 𝑡𝑖+1 = (√𝑡2

𝑖 + 1 − 1)/𝑡𝑖
NOTE: This version is numerically unstable.

Second form: 𝑡𝑖+1 = 𝑡𝑖/(
√

𝑡2 + 1 + 1)
𝜋 ≈ 6 × 2𝑖 × 𝑡𝑖, which will converge as 𝑖 → ∞

https://en.wikipedia.org/wiki/Floating-point_arithmetic%23Minimizing_the_effect_of_accuracy_problems
https://en.wikipedia.org/wiki/Floating-point_arithmetic%23Minimizing_the_effect_of_accuracy_problems
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Writing code to implement these two forms is straight-forward, e.g., C++ some code
for the first form is:

first form C++ code
template <std::floating_point T>
std::generator<T> first_form()
{

using std::sqrt;

// compute t0...
T value{ T(1) / sqrt(T(3)) };
co_yield value;

// compute tN...
for (;;)
{
value = (sqrt(value * value + T(1)) - T(1)) / value;
co_yield value;

}
}
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some code for the second form is:
second form C++ code

template <std::floating_point T>
std::generator<T> second_form()
{

using std::sqrt;

// compute t0...
T value{ T(1) / sqrt(T(3)) };
co_yield value;

// compute tN...
for (;;)
{
value = value / (sqrt(value*value+T(1)) + T(1));
co_yield value;

}
}
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Problems To Consider (cont.)

simple code to transform each form result to 𝜋 is:
transformation to pi code

template <std::integral I, std::floating_point T>
inline T form_to_pi(I i, T t)
{

using std::pow;
return t * pow(T(2),i) * T(6);

}
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Problems To Consider (cont.)

and some example code to compute and produce output:
simple output

using REAL = double;

auto f1{ first_form<REAL>() }; auto f1it{ f1.begin() };
auto f2{ second_form<REAL>() }; auto f2it{ f2.begin() };
for (size_t i = 0; i != 28; (void)++i, (void)++f1it, (void)++f2it)

println("{} {} {}", i, form_to_pi(i,*f1it), form_to_pi(i,*f2it));

If the output code is enhanced to output using colour (for matching and non-matching
digits of 𝜋), then the output could appear like the output on the next slide…
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Problems To Consider (cont.)

In the following screen capture, white digits match 𝜋’s digits, red digits do not match,
and 𝑖 is “Step”:
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Problems To Consider (cont.)

This example shows:
One clearly wants to use numerically stable routines like the second form.
The math involved might be “fine” if done by hand but when implemented on a
computer such might yield the same results at all.
This example benefits since we know the ultimate value we are computing and so
the result can be compared.

In many situations, one does not know the result being computed.
Sometimes, but not always, the error of the computation can be used to know how
many digits of accuracy will result —but know there are times when that is not
known or cannot be used.
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Problems To Consider (cont.)

Something to Remember
When you do math by hand, you tend to figure everything out exactly (and
symbolically) until the last step where you numerically evaluate everything that
remains. This minimizes issues with errors associated numerically evaluating to a
certain (finite) precision.
When you do math on a computer using floating-point numbers, virtually all of those
numbers are approximate and therefore each has some associated error with it as the
numbers are approximate. This “approximating” is the case for everything with every
computational step —unlike doing math by hand—. It is not surprising then that some
code winds up being numerically unstable because ultimately too much error can
become introduced into the values being computed.
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Some Things To Note and Look Out For

If you are writing code using floating-point arithmetic, there are some things that you
should note with any mathematical expression being used:

subtraction of values that result in values very close 0 (zero)
This can result in “catastrophic cancellation” and shouldn’t be ignored.
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Some Things To Note and Look Out For (cont.)

division by zero or close-to-zero numbers
Values close to zero can underflow/round to zero.
Dividing by values close to zero can result in very large numbers. If these numbers
are too large the resulting computed value might be an ∞ value. (If dividing by
zero, the result could also be a NaN value not only ∞.)
Floating-point numbers might also use special “denormal” values when values very
close to zero. While this can yield additional accuracy, if such values are divided by,
then the resulting computed value can become extremely large —and if too large for
the floating-point representation being used an ∞ value will be computed.
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Some Things To Note and Look Out For (cont.)

prefer multiplication and division over addition and subtraction (when possible)
e.g., if an intermediate result would involve adding a very large positive value and a
very large negative value
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Some Things To Note and Look Out For (cont.)

when writing floating-point values to a text file/stream and those values need to
be read in later as in order to have exactly the same values that were written
earlier:

When writing the values out, be sure to write all digits of the floating-point
representation being used.
Consider using the “hexfloat” format as this format always outputs/reads the exact
number. (C calls this “hexadecimal exponent notation” and uses %𝑎 with printf()
and scanf().) This format outputs the number exactly by outputting the the
mantissa in hexadecimal form followed by the exponent in decimal form.
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A Kahan Sum Example: Overview

The Kahan sum is a compensated summation algorithm that significantly reduces
the numerical error in the total obtained by adding a sequence of floating-point values
relative to the naive way of adding numbers.

Naively summing numbers has a worst-case error that grows proportional to 𝑛.
Using the Kahan sum (with sufficient precision) the worst-case error bound is
effectively independent of 𝑛.

Effectively this means adding a large number of values can be summed with an
error that only depends on the floating-point precision of the numbers used.
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A Kahan Sum Example: Overview (cont.)

If code is already computing a sum then performing a Kahan sum in the same manner
instead will compute that sum with less error.

While floating-point (summation) is not associative, code is often written
assuming it is and the results are often acceptable. When using a Kahan sum, the
summation result will typically result in the same sum so, in effect, this also
usually allows non-commutative sums to be computed.
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A Kahan Sum Example: Overview (cont.)

NOTE:
Many, but not all, modern programming languages’ reduce and prefix sum operations
(sequential and parallel versions) are non-commutative (and non-associative). Such
operations will typically execute more quickly than performing the same operations in a
way that preserves commutativity and associativity especially since the latter may
require more sequential execution.
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A Kahan Sum Example: Overview (cont.)

What are the costs of using one of the variants of the Kahan sum?

As explored for this presentation, the costs of doing a compensatated sum on modern
computers (sequentially) are approximately:

Algorithm Relative Time Number of Variables
Normal sum 1 1

Kahan sum (original) 6 2
Kahan-Babushka-Neumaier sum 3 2

Kahan-Babushka-Klein sum 18 3
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A Kahan Sum Example: Overview (cont.)

NOTE:
Be aware that the particulars of the function(s) being computed and the capabilities of
the hardware being used will also affect the amount of time required and the relative
times mentioned here are only approximate, however, your own results should be
similar.
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A Kahan Sum Example: Overview (cont.)

The names of the Kahan sums used in these slides are based on those in this Wikipedia
article:

https://en.wikipedia.org/wiki/Kahan_summation_algorithm

These slides’ code is meant to illustrate computing the various sums although, in
practice, one would need/want more functions, move operations defined, etc. for
efficiency reasons as not all floating-point types are efficiently copied and moved by
value. Implementating such is beyond the scope of this presentation.

https://en.wikipedia.org/wiki/Kahan_summation_algorithm
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Sum

Normally to compute a sum using modern libraries/programming languages one needs
the ability to do two things:

1 add a value with another value to continue computing a sum, and,
2 add an existing sum to another sum in order to continue computing a sum.

The second item is required in order to use many reduction and prefix sum libraries.
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Sum (cont.)

This can be achieved similarly to the following code:
sum

template <std::floating_point T>
class normal_sum {
private:

T sum_;

public:
normal_sum() : sum_(0) { }
// ...
void add(T const& other) { sum_ += other; }
void add(normal_sum const& other) { sum_ += other.sum_; }
T sum() const { return sum_; }

};
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Kahan Sum

A traditional Kahan sum could be implemented similarly to the following code:
Kahan sum

template <std::floating_point T>
class kahan_sum {
private:

T sum_;
T compensation_;

public:
kahan_sum() : sum_(0), compensation_(0) { }
// ...
void add(T value) {

T y{ value - compensation_ };
T volatile t{ sum_ + y }; // keep this volatile
T volatile z{ t - sum_ }; // keep this volatile
compensation_ = z - y;
sum_ = t;

}
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Kahan Sum (cont.)

void add(kahan_sum const& other) {
add(other.compensation_); // add other.compensation_ amount to this sum
add(other.sum_); // add other.sum_ amount to this sum

}

T sum() const { return sum_; }
};
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Kahan Sum

Kahan Sum (cont.)

Concerning the Kahan sum:
The volatile variables need to be volatile in order to prevent the compiler
from optimizing away the operations they depend on as those operations must be
done.

The volatile used here is what the C and C++ languages define and use. The
volatile keyword in Java is not the same. Other programming languages may or
may not have an equivalent construct. It is extremely important that the
computation of the compensated sum are not optimized away.

Although literature discusses performing a Kahan sum, such does not usually
discuss how to combine those sums. The latter is often also necessary to use
modern libraries / programming languages so such appears here. (In these slides
the compensation and then sum are added to the current sum to combine two
Kahan sums.)



Floating-point Numbers Aren’t Mathematical Real Numbers
A Kahan Sum Example

Kahan-Babushka-Neumaier Sum

Kahan-Babushka-Neumaier Sum

Kahan-Babushka-Neimaier sum
template <std::floating_point T>
class kahan_babushka_neumaier_sum {
private:

T sum_;
T compensation_;

public:
kahan_babushka_neumaier_sum() : sum_(0), compensation_(0) { }
// ...
void add(T value) {

T volatile t{ sum_ + value };
if (std::abs(value) < std::abs(sum_))
{

// sum is larger, low-order digits of value are lost...
T volatile z{ sum_ - t };
compensation_ += z + value;

}
else
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Kahan-Babushka-Neumaier Sum (cont.)

{
// sum is smaller, low-order digits of sum are lost...
T volatile z{ value - t };
compensation_ += z + sum_;

}
sum_ = t;

}

void add(kahan_babushka_neumaier_sum const& other) {
add(other.compensation_); // add other.compensation_ amount to this sum
add(other.sum_); // add other.sum_ amount to this sum

}

// NOTE: Asking for the sum always adds the compensation amount to sum...
T sum() const { return sum_ + compensation_; }

};
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Kahan-Babushka-Klein Sum

The Kahan-Babushka-Klein sum is a double compensation sum, e.g., something like
computing a Kahan sum of a Kahan sum.
It requires an additional variable and many more operations to be performed and so it
runs more slowly than using a single compensation sum.

Kahan-Babushka-Klein sum
template <std::floating_point T>
class kahan_babushka_klein_sum {
private:

T sum_;
T cs_;
T ccs_;

public:
kahan_babushka_klein_sum() : sum_(0), cs_(0), ccs_(0) { }
// ...
void add(T value) {
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Kahan-Babushka-Klein Sum (cont.)

T volatile t{ sum_ + value };
T c;
if (std::abs(value) < std::abs(sum_)) {
T volatile z{ sum_ - t };
c = z + value;

} else {
T volatile z{ value - t };
c = z + sum_;

}
sum_ = t;
t = cs_ + c;
T cc;
if (std::abs(c) < std::abs(cs_)) {
T volatile z{ cs_ - t };
cc = z + c;

} else {
T volatile z{ c - t };
cc = z + cs_;
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Kahan-Babushka-Klein Sum (cont.)

}
cs_ = t;
ccs_ = ccs_ + cc;

}

void add(kahan_babushka_klein_sum const& other) {
add(other.ccs_);
add(other.cs_);
add(other.sum_);

}

T sum() const { return sum_ + cs_ + ccs_; }
};
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Some Results

The aforementioned Kahan sums were used to numerically integrate some functions
including 𝑓(𝑥) = 4/(1 + 𝑥2) from 0 to 1 (whose result is 𝜋) using
std::transform_reduce() and double floating-point values.
The time result to compute 1,000,000,000 (one billion) intervals using one CPU core
was:

Sum Algorithm Integration Method Time
Normal sum midpoint 1.3s

Kahan sum (original) midpoint 6.5s
Kahan-Babushka-Neumaier sum midpoint 2.8s

Kahan-Babushka-Klein sum midpoint 20.0s
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Some Results (cont.)

Sum Algorithm Integration Method Time
Normal sum Simpson’s 1.25s

Kahan sum (original) Simpson’s 6.6s
Kahan-Babushka-Neumaier sum Simpson’s 2.8s

Kahan-Babushka-Klein sum Simpson’s 19.8s

Hardware Used: AMD Ryzen Threadripper PRO 3955WX (4.4 GHz max)
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Some Results (cont.)

Takeaways:
Benchmark your code —it may well run fast enough without using parallel
constructs.
These sums only use operations involving the floating-point type used so they all
also can be used with GPUs not just CPUs.

e.g., using NVIDIA’s HPC SDK with -stdpar
e.g., using CUDA’s or ROCm’s Thrust libraries

While the above results were from sequential runs, the same code strategy
continues to work when std::transform_reduce() is used to run code in
parallel.



Floating-point Numbers Aren’t Mathematical Real Numbers
A Kahan Sum Example

Some Results

Some Results (cont.)

Using the Kahan-Babushka-Neumaier sum is about 3 times slower than not using
any compensated sum at all. In many cases such times will be acceptable and will
have less summation error. That said, if done in parallel those sums can be done
faster.
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