
Linear Algebra on the GPU

Pawel Pomorski, HPC Software Analyst
SHARCNET, University of Waterloo

SHARCNET seminar 2017

SHARCNET seminar 2017 Pawel Pomorski

Overview

• Brief introduction to GPUs

• CUBLAS and MAGMA libraries

• Developing efficient linear algebra code for the GPU - case
study of matrix transpose

SHARCNET Seminar 2017 Pawel Pomorski

Oak Ridge National Labs - operational in October 2012
18,688 Opteron 16-core CPUs
18,688 NVIDIA Tesla K20 GPUs
17.6 peta FLOPS

#1 system on Fall 2012 TOP500 list - Titan

SHARCNET seminar 2017 Pawel Pomorski

2 large, brand new clusters opened in June, 2017

Graham (University of Waterloo) includes:

160 GPU nodes (each 32 core, 128 GB RAM, 2 Tesla P100 GPUs)

Cedar (Simon Fraser University) includes:

114 GPU nodes (each 32 core, 128 GB RAM, 4 Tesla P100 GPUs)
plus large memory nodes
32 GPU nodes (each 32 core, 256 GB RAM, 4 Tesla P100 GPUs)

Older, smaller GPU systems still available

GPUs at Compute Canada

SHARCNET seminar 2017 Pawel Pomorski

Different paradigm, data parallelism (vs. task parallelism on CPU)

Stream processing, hardware capable of launching MANY threads

However, GPUs also have significant limitations and not all code
can run fast on them

If a significant portion of your code cannot be accelerated, your
speedup will be limited by Amdahl’s Law

Low price of the CPU makes “supercomputing at home” possible

Why are GPUs fast?

SHARCNET seminar 2017 Pawel Pomorski

Comparing GPUs and CPUs

• CPU
– “Jack of all trades”
– task parallelism (diverse tasks)
– minimize latency
– multithreaded
– some SIMD

• GPU
– excel at number crunching
– data parallelism (single task)
– maximize throughput
– super-threaded
– large-scale SIMD

SHARCNET Seminar 2017 Pawel Pomorski

How to get running on the GPU?

• Easiest case: the package you are using already has a GPU-
accelerated version. No programming needed.

• Medium case: your program spends most of its time in library
routines which have GPU accelerated versions. Use libraries
that take advantage of GPU acceleration. Small programming
effort required.

• Hard case: You cannot take advantage of the easier two
possibilities, so you must convert some of your code to CUDA
or OpenCL

• Newly available OpenACC framework is an alternative that
should make coding easier.

SHARCNET seminar 2017 Pawel Pomorski

Speedup
• What kind of speedup can I expect?

– 0x – 2000x reported
– 10x – 80x considered typical
– >= 30x considered worthwhile (if coding required)
– maximum 5-10x speedup for fully optimized libraries

• Speedup depends on
– problem structure

• need many identical independent calculations
• preferably sequential memory access

– level of intimacy with hardware
– time investment

SHARCNET Seminar 2017 Pawel Pomorski

Be aware of memory bandwidth bottlenecks

• The connection between CPU and GPU has low bandwidth
– need to minimize data transfers
– important to use asynchronous transfers if possible (overlap

computation and transfer)
– good idea to test bandwidth (with tool from SDK)

128 GB
 RAM

CPU

12 GB
RAM

GPU

~100 GB/s ~380 GB/s

PCI
~12 GB/s

SHARCNET seminar 2017 Pawel Pomorski

CUDA programming model
• The main CPU is referred to as the host

• The compute device is viewed as a coprocessor capable of
executing a large number of lightweight threads in parallel

• Computation on the device is performed by kernels, functions
executed in parallel on each data element

• Both the host and the device have their own memory
– the host and device cannot directly access each other’s memory, but

data can be transferred using the runtime API

• The host manages all memory allocations on the device, data
transfers, and the invocation of kernels on the device

SHARCNET seminar 2017 Pawel Pomorski

GPU as coprocessor

• Basic paradigm
– host uploads inputs to device
– host remains busy while device performs computation

• prepare next batch of data, process previous results, etc.
– host downloads results

• Can be iterative or multi-stage

Kernel execution is
asynchronous

Asynchronous memory
transfers also available

!"#$(?$5&C%&5>??&%$

•  M(?*5$C(%(3*')$
–  .&?-$6CB&(3?$*+C6-?$-&$3>2*5>$
–  .&?-$%>)(*+?$G6?@$,.*B>$3>2*5>$C>%A&%)?$5&)C6-(-*&+$

•  C%>C(%>$+>L-$G(-5.$&A$3(-(7$C%&5>??$C%>2*&6?$%>?6B-?7$>-5R$
–  .&?-$3&,+B&(3?$%>?6B-?$

•  /(+$G>$*->%(-*2>$&%$)6B-*F?-('>$
86))>%$85.&&B$OPQP 0R$45/(6'.(+

*+,-" ./012/"

k>%+>B$>L>56-*&+$*?$
(?@+5.%&+&6?$

1?@+5.%&+&6?$)>)&%@$
-%(+?A>%?$(B?&$(2(*B(GB>$

SHARCNET Seminar 2017 Pawel Pomorski

Language and compiler

• CUDA provides a set of extensions to the C programming
language
– new storage quantifiers, kernel invocation syntax, intrinsics, vector

types, etc.

• CUDA source code saved in .cu files
– host and device code and coexist in the same file
– storage qualifiers determine type of code

• Compiled to object files using nvcc compiler
– object files contain executable host and device code

• Can be linked with object files generated by other C/C++
compilers

SHARCNET Seminar 2017 Pawel Pomorski

Compiling

• nvcc -arch=sm_60 -O2 program.cu -o program.x
• -arch=sm_60 means code is targeted at Compute

Capability 6.0 architecture (on graham and cedar)
• -O2 optimizes the CPU portion of the program
• There are no flags to optimize CUDA code
• Various fine tuning switches possible
• Cluster have module installed to provide CUDA

environment. See what it does by executing:  
module show cuda

• add -lcublas to link with CUBLAS libraries

SHARCNET seminar 2017 Pawel Pomorski

Linear algebra on the GPU

• Linear algebra on the CPU: BLAS, LAPACK
• GPU analogues: CUBLAS, CULA, MAGMA
• CUSPARSE library for sparse matrices
• Use of highly optimized libraries is always better than writing

your own code, especially since GPU codes cannot yet be
efficiently optimized by compilers to achieve acceptable
performance

• Writing efficient GPU code requires special care and
understanding the peculiarities of underlying hardware

14

SHARCNET seminar 2017 Pawel Pomorski

CUBLAS
• Implementation of BLAS (Basic Linear Algebra Subprograms)

on top of CUDA
• Included with CUDA (hence free)
• Workflow: 

1. allocate vectors and matrices in GPU memory  
2. fill them with data  
3. call sequence of CUBLAS functions  
4. transfer results from GPU memory to host

• Helper functions to transfer data to/from GPU provided

15

SHARCNET seminar 2017 Pawel Pomorski

Data layout

• for maximum compatibility with existing Fortran environments,
CUBLAS library uses column-major storage and 1-based
indexing (C/C++ uses row-major storage and 0-based indexing)

• use macro to convert  
 
#define'IDX2F(i,j,ld)'((((j)21)*(ld))'+'((i)21))  

• CUBLAS library can be used by applications written in Fortran,
via wrappers

16

SHARCNET seminar 2017 Pawel Pomorski

CUBLAS in CUDA 4.0+

• new API, uses header file cublas_v2.h
• better suited to multi-thread and multi-GPU cases
• generally improved and simplified

17

SHARCNET seminar 2017 Pawel Pomorski 18

CUBLAS in CUDA 6.0+

• multiple GPU support - cuBLAS-XT
• supports scaling across multiple  

GPUs connected to same motherboard
• linear performance scaling with number  

of GPUs
• matrix has to be distributed among  

the GPU memory spaces

SHARCNET seminar 2017 Pawel Pomorski

Error checks

• in following example most error checks were removed for
clarity

• each CUBLAS function returns a status object containing
information about possible errors

• It’s very important these objects to catch errors, via calls like
this:  
 
if (status != CUBLAS_STATUS_SUCCESS) { 
print diagnostic information and exit}  

19

SHARCNET seminar 2017 Pawel Pomorski

Initialize program

20

/* Includes, system */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Includes, cuda */
#include <cuda_runtime.h>
#include <cublas_v2.h>

/* Matrix size */
#define N (275)

/* Main */
int main(int argc, char** argv)
{
 cublasStatus_t status;
 float* h_A;
 float* h_B;
 float* h_C;
 float* d_A = 0;
 float* d_B = 0;
 float* d_C = 0;
 float alpha = 1.0f;
 float beta = 0.0f;
 int n2 = N * N;
 int i;
 cublasHandle_t handle;

 /* Initialize CUBLAS */

 status = cublasCreate(&handle);

SHARCNET seminar 2017 Pawel Pomorski

Allocate and initialize memory on CPU/GPU

21

 /* Allocate host memory for the matrices */
 h_A = (float*)malloc(n2 * sizeof(h_A[0]));
 h_B = (float*)malloc(n2 * sizeof(h_B[0]));

 /* Fill the matrices with test data */
 for (i = 0; i < n2; i++) {
 h_A[i] = rand() / (float)RAND_MAX;
 h_B[i] = rand() / (float)RAND_MAX;
 }

 /* Allocate device memory for the matrices */
 if (cudaMalloc((void**)&d_A, n2 * sizeof(d_A[0])) != cudaSuccess) {
 fprintf (stderr, "!!!! device memory allocation error (allocate A)\n");
 return EXIT_FAILURE;
 }
 if (cudaMalloc((void**)&d_B, n2 * sizeof(d_B[0])) != cudaSuccess) {
 fprintf (stderr, "!!!! device memory allocation error (allocate B)\n");
 return EXIT_FAILURE;
 }
 if (cudaMalloc((void**)&d_C, n2 * sizeof(d_C[0])) != cudaSuccess) {
 fprintf (stderr, "!!!! device memory allocation error (allocate C)\n");
 return EXIT_FAILURE;
 }

 /* Initialize the device matrices with the host matrices */
 status = cublasSetVector(n2, sizeof(h_A[0]), h_A, 1, d_A, 1);
 status = cublasSetVector(n2, sizeof(h_B[0]), h_B, 1, d_B, 1);

SHARCNET seminar 2017 Pawel Pomorski

Call main CUBLAS function, get result

22

 /* Performs operation using cublas */
 status = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, d_A, N, d_B, N,
&beta, d_C, N);

 /* Allocate host memory for reading back the result from device memory */
 h_C = (float*)malloc(n2 * sizeof(h_C[0]));

 /* Read the result back */
 status = cublasGetVector(n2, sizeof(h_C[0]), d_C, 1, h_C, 1);

SHARCNET seminar 2017 Pawel Pomorski

Cleanup

23

 /* Memory clean up */
 free(h_A);
 free(h_B);
 free(h_C);
 if (cudaFree(d_A) != cudaSuccess) {
 fprintf (stderr, "!!!! memory free error (A)\n");
 return EXIT_FAILURE;
 }
 if (cudaFree(d_B) != cudaSuccess) {
 fprintf (stderr, "!!!! memory free error (B)\n");
 return EXIT_FAILURE;
 }
 if (cudaFree(d_C) != cudaSuccess) {
 fprintf (stderr, "!!!! memory free error (C)\n");
 return EXIT_FAILURE;
 }

 /* Shutdown */
 status = cublasDestroy(handle);

 return EXIT_SUCCESS;
}

SHARCNET seminar 2017 Pawel Pomorski

CUBLAS performance - matrix multiplication

• multiplying single-precision (SP)/double precision (DP)
matrices (24576 x 32) and (32 x 24576), result is a (24576 x
24576) matrix

• CPU Intel MKL library (11.3.4) - single core and threaded
• CUBLAS library (CUDA 8.0 version)
• GPU timing results with and without memory transfer
• tested on graham P100 Tesla (1 GPU)
• cudaMallocHost used to allocate CPU memory
• NOTE: non-Tesla cards generally offer poor DP performance

(DP calculations 10x slower)

24

SHARCNET seminar 2017 Pawel Pomorski

CUBLAS performance - matrix multiplication

25

SP time (s) DP time (s)

CPU - 1 core 1.53 3.07

CPU - 16 core 0.13 0.25

CUBLAS - without
memory transfer 0.021 0.025

CUBLAS - with memory
transfer 0.43 0.62

SHARCNET seminar 2017 Pawel Pomorski

CUBLAS performance - matrix multiplication

26

SP time (s) DP time (s)

CPU - 1 core 0.08x 0.08x

CPU - 16 core 1.0x 1.0x

CUBLAS - without
memory transfer 6.2x 10.0x

CUBLAS - with memory
transfer 0.3x 0.4x

SHARCNET seminar 2017 Pawel Pomorski

CUBLAS batching kernels

• allows to execute multiple kernels simultaneously
• can use streams to batch execution of small kernels
• useful for cases where computing many smaller matrices

needed

27

SHARCNET seminar 2017 Pawel Pomorski

CUSPARSE

• included with CUDA (free)
• set of basic linear algebra subroutines for handling sparse

matrices on top of CUDA
• analogue of CUBLAS, but more basic in functionality

28

SHARCNET seminar 2017 Pawel Pomorski

MAGMA library

29

• The MAGMA project aims to develop a dense linear algebra library
similar to LAPACK but for heterogeneous/hybrid architectures,
starting with current "Multicore+GPU" systems.

• http://icl.cs.utk.edu/magma/
• free and open source
• implementations for CPU, NVIDIA GPU, Intel Phi, OpenCL
• check MAGMA documentation for which routines implemented

where
• multi-GPU support for certain routines

http://icl.cs.utk.edu/magma/

SHARCNET seminar 2017 Pawel Pomorski

MAGMA library at CC systems

30

• MAGMA is installed as a module on new clusters
• To load: 

module load cuda/8.0.44 
module load magma/2.2.0

• To use the extensive testing suite, compile MAGMA from source.
Please ask CC staff for assistance with this.

SHARCNET seminar 2017 Pawel Pomorski

MAGMA example

31

// Solve dA * dX = dB, where dA and dX are stored in GPU device memory.
// Internally, MAGMA uses a hybrid CPU + GPU algorithm.
void gpu_interface(magma_int_t n, magma_int_t nrhs)
{
 magmaDoubleComplex *dA=NULL, *dX=NULL;
 magma_int_t *ipiv=NULL;
 magma_int_t ldda = ((n+31)/32)*32; // round up to multiple of 32 for best GPU performance
 magma_int_t lddx = ldda;
 magma_int_t info = 0;

 // magma malloc (GPU) routines are type-safe,
 // but you can use cudaMalloc if you prefer.
 magma_zmalloc(&dA, ldda*n);
 magma_zmalloc(&dX, lddx*nrhs);
 magma_imalloc_cpu(&ipiv, n); // ipiv always on CPU
 if (dA == NULL || dX == NULL || ipiv == NULL) {
 fprintf(stderr, "malloc failed\n");
 goto cleanup;
 }

 zfill_matrix_gpu(n, n, dA, ldda);
 zfill_rhs_gpu(n, nrhs, dX, lddx);

 magma_zgesv_gpu(n, 1, dA, ldda, ipiv, dX, ldda, &info);
 if (info != 0) {
 fprintf(stderr, "magma_zgesv_gpu failed with info=%d\n", info);
 }
cleanup:
 magma_free(dA);
 magma_free(dX);
 magma_free_cpu(ipiv);
}

SHARCNET seminar 2017 Pawel Pomorski

MAGMA performance

32

• ZGESV (complex linear system solver) from the testing suite
• - full CPU (red)
• - 1 GPU (blue)
• - 2 GPU (green)

•

SHARCNET seminar 2017 Pawel Pomorski

OPTIMIZATION CASE STUDY: MATRIX
TRANSPOSE

SHARCNET seminar 2017 Pawel Pomorski

Matrix transpose
• Write the rows of matrix A as columns of matrix AT

• A bandwidth-limited problem
– most of the time is spent moving data in memory rather than

number crunching

• Utilizing the memory architecture effectively tends to be
the biggest challenge for GPU algorithms

• Available as one of NVIDIA samples included with CUDA

SHARCNET seminar 2017 Pawel Pomorski

Matrix transpose
4(-%*L$-%(+?C&?>$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

Q$ O$ V$ f$ `$ d$

Q$
O$
V$
f$
`$
d$

I*(=1,.580,2.),8.:11)*,20,
65/=3*0,:*,14),5=1(=1,321.:D,

SHARCNET seminar 2017 Pawel Pomorski

The naïve matrix transpose

__global__ void transpose_naive(float *odata, float *idata, int width,int height)
{
 int xIndex, yIndex, index_in, index_out;

 xIndex = blockDim.x * blockIdx.x + threadIdx.x;
 yIndex = blockDim.y * blockIdx.y + threadIdx.y;

 if (xIndex < width && yIndex < height)
 {
 index_in = xIndex + width * yIndex;
 index_out = yIndex + height * xIndex;
 odata[index_out] = idata[index_in];
 }
}

SHARCNET seminar 2017 Pawel Pomorski

Performance
• Transposing 8192x8192 matrix of SP floats, using P100

GPU on graham, not counting memory transfers
• Naive implementation - 7.51 ms
• CUBLAS cublasSgeam implementation - 1.46 ms
• Naive implementation is 5 times slower
• Can we fix this?

SHARCNET seminar 2017 Pawel Pomorski

Optimizing access to global memory
• A GPU has a large number of cores with great

computational power, but they must be “fed” with data from
global memory

• If too little computation done on core relative to memory
transfer, then it becomes the bottleneck.
– most of the time is spent moving data in memory rather than

number crunching
– for many problems this is unavoidable

• Utilizing the memory architecture effectively tends to be
the biggest challenge in CUDA-fying algorithms

SHARCNET seminar 2017 Pawel Pomorski

GPU memory is high bandwidth/high latency
• A GPU has potentially high bandwidth for data transfer

from global memory to cores. However, the latency for this
transfer for any individual thread is also high (hundreds of
cycles)

• Using many threads, latency can be overcome by hiding it
among many threads.
– group of threads requests some memory, while it is waiting for it

to arrive, another group is computing
– the more threads you have, the better this works

• The pattern of global memory access is also very important,
as cache size of the GPU is very limited.

SHARCNET seminar 2017 Pawel Pomorski

Global memory access is fast when coalesced
• It is best for adjacent threads belonging to the same warp

(group of 32 threads) to be accessing locations adjacent in
memory (or as close as possible)

• Good access pattern: thread i accesses global memory array
member a[i]

• Inferior access pattern: thread i accesses global memory
array member as a[i*nstride] where nstride >1

• Clearly, random access of memory is a particularly bad
paradigm on the GPU

SHARCNET seminar 2017 Pawel Pomorski

For some problems coalesced access is hard
• Example: matrix transpose
• A bandwidth-limited problem that is dominated by memory

access

4(-%*L$-%(+?C&?>$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

Q$ O$ V$ f$ `$ d$

Q$
O$
V$
f$
`$
d$

I*(=1,.580,2.),8.:11)*,20,
65/=3*0,:*,14),5=1(=1,321.:D,

SHARCNET seminar 2017 Pawel Pomorski

Naïve matrix transpose (cont.)
;(u2>$)(-%*L$-%(+?C&?>$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

Q$ O$ V$ f$

Q$ O$ V$ f$ N$

N$

J:*6),14),321.:6)0,2.),015.);,20,
K%,2..270L,4).)M0,8421,:0,
261=2//7,42(()*:*9N,

SHARCNET seminar 2017 Pawel Pomorski

Can this problem be a avoided?

• Yes, by using a special memory which does not have a
penalty when accessed in a non-coalesced way

• On the GPU this is the shared memory  
• Shared memory accesses are faster than even coalesced

global memory accesses. If accessing same data multiple
times, try to put it in shared memory.

• Unfortunately, it is very small (48 KB or 16KB)  
• Must be managed by the programmer

SHARCNET seminar 2017 Pawel Pomorski

Shared memory

• Each multiprocessor has some fast
on-chip shared memory

• Threads within a thread block can
communicate using the shared
memory

• Each thread in a thread block has R/
W access to all of the shared
memory allocated to a block

• Threads can synchronize using the
intrinsic

__syncthreads();

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved | http://www.in-stat.com Page 7

Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This

diagram explains why CUDA cores can get by without their own register files, caches, or load/store

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll

explain below.)

Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80

architectures. All 32 cores share the resources of their streaming multiprocessor, such as

registers, caches, local memory, and load/store units. The “special function units” (SFUs)

handle complex math operations, such as square roots, reciprocals, sines, and cosines.

SHARCNET seminar 2017 Pawel Pomorski

Using shared memory

• To coalesce the writes, we will partition the matrix into
32x32 tiles, each processed by a different thread block

• A thread block will temporarily stage its tile in shared
memory by copying ti from the input matrix using
coalesced reads

• Each tile is then transposed as it is written out to its
properly location in the output matrix

• The main difference here is that the tile is written out using
coalesced writes

SHARCNET seminar 2017 Pawel Pomorski

Optimized matrix transpose

Summer School 2011 Pawel Pomorski

Optimized matrix transpose

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

Copy of tile in shared
memory

Input matrix Output matrixtranspose on write
copy

SHARCNET seminar 2017 Pawel Pomorski

Optimized matrix transpose (1)
__global__ void transpose(float *odata, float *idata,
 int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM];
 unsigned int xIndex, yIndex, index_in, index_out;

 /* read the matrix tile into shared memory */
 xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 if ((xIndex < width) && (yIndex < height))
 {
 index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];
 }

 __syncthreads();

 /* write the transposed matrix tile to global memory */
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 if ((xIndex < height) && (yIndex < width))
 {
 index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
 }
}

SHARCNET seminar 2017 Pawel Pomorski

Optimized matrix transpose (cont.)

Summer School 2011 Pawel Pomorski

Optimized matrix transpose (cont.)

(1,0)

Copy of tile in shared memory

The input tile is copied into shared
memory row-wise (coalesced reads).

Each row of the input tile becomes a
row in the shared memory tile.

Input tile
Copy

SHARCNET seminar 2017 Pawel Pomorski

Optimized matrix transpose (cont.)

Summer School 2011 Pawel Pomorski

Optimized matrix transpose (cont.)

(1,0)

Copy of tile in shared memory

The output tile is written row-wise
(coalesced writes) by copying the
corresponding columns from shared
memory.

Output tile

Transpose

SHARCNET seminar 2017 Pawel Pomorski

One additional complication: bank conflicts

• Not a big concern but something to keep in mind
• Shared memory bank conflicts occur when the tile in

shared memory is accessed column-wise
• Illustration of the need to really know the hardware

when coding for GPU
• Bank conflicts matter only in highly optimized code

where other sources of inefficiency have been
eliminated

SHARCNET seminar 2017 Pawel Pomorski

Shared memory banks

• To facilitate high memory bandwidth, the shared memory
on each multiprocessor is organized into equally-sized
banks which can be accessed simultaneously

• However, if more than one thread tries to access the same
bank, the accesses must be serialized, causing delays
– this situation is called a bank conflict

• The banks are organized such that consecutive 32-bit
words are assigned to consecutive banks

SHARCNET seminar 2017 Pawel Pomorski

Shared memory banks (cont.)

• There are 32 banks, thus:

bank# = address % 32

• The number of shared memory banks is equal to warp size

SHARCNET seminar 2017 Pawel Pomorski

Bank conflict solution

• In the matrix transpose example, bank conflicts occur when the
shared memory is accessed column-wise as the tile is being
written

• The threads in each warp access addresses which are offset
from each other by BLOCK_DIM elements (with BLOCK_DIM
= 32)

• Given 32 shared memory banks, that means that all accesses hit
the same bank!

SHARCNET seminar 2017 Pawel Pomorski

Bank conflict solution

• The solution is surprisingly simple – instead of allocating a
BLOCK_DIM x BLOCK_DIM shared memory tile, we allocate
a BLOCK_DIM x (BLOCK_DIM+1) tile

• The extra padding breaks the pattern and forces concurrent
threads to access different banks of shared memory
– the columns are no longer aligned on 32-word offsets
– no additional changes to the device code are needed

SHARCNET seminar 2017 Pawel Pomorski

Optimized matrix transpose (2)
 __global__ void transpose(float *odata, float *idata,
 int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM + 1];
 unsigned int xIndex, yIndex, index_in, index_out;

 /* read the matrix tile into shared memory */
 xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 if ((xIndex < width) && (yIndex < height))
 {
 index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];
 }

 __syncthreads();

 /* write the transposed matrix tile to global memory */
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 if ((xIndex < height) && (yIndex < width))
 {
 index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
 }
}

SHARCNET seminar 2017 Pawel Pomorski

Performance

• Tesla P100 GPU on graham, transpose of 8192x8192
matrix of SP floats

• Averaged over 100 runs:

– timings don’t include data transfers!!!

Size time (ms) Speedup
simple memory copy 1.30 —

simple memory copy +shared 1.32 —
naive 7.51 x 1.0

coalesced 1.77 x 4.2
coalesced, bank optimized 1.61 x 4.7

CUBLAS 1.46 x 5.1

