
New Developments in OpenMP

Jemmy Hu

SHARCNET HPC Consultant

University of Waterloo

May 22, 2019

General Interest Seminar

OpenMP overview

OpenMP: An API for Writing Multithreaded Applications

§ A set of compiler directives, library routines, and environment variables

for parallel application programming

§ Greatly simplifies writing multi-threaded (MT) programs

in Fortran, C and C++

§ Ease of Use: Provide capability to incrementally parallelize a serial
program, unlike message-passing libraries which typically require an all or
nothing approach

§ Standardizes established SMP practice + vectorization and

heterogeneous device programming

OpenMP Brief History

OpenMP

Fortran 1.0

OpenMP

Fortran 1.1

OpenMP

C/C++ 1.0

OpenMP

C/C++ 2.0

OpenMP

Fortran 2.0

OpenMP

2.5

OpenMP

3.0

OpenMP

3.1

OpenMP

4.5

OpenMP

5.0

OpenMP

4.0

1997

1998

1999 2000

2002

2005

2008

2011

2013 2015

2018

Past

Present

Future

OpenMP: Fork-Join Model

• OpenMP uses the fork-join model of parallel execution:

FORK: the master thread then creates a team of parallel threads

The statements in the program that are enclosed by the parallel region construct

are then executed in parallel among the various team threads

JOIN: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

DO / for - shares iterations of a

loop across the team.

Represents a type of "data

parallelism".

SECTIONS - breaks work into

separate, discrete sections.

Each section is executed by a

thread. Can be used to

implement a type of "functional

parallelism".

SINGLE -

serializes a

section of

code

Types of Work-Sharing Constructs (Past):

Loop Parallelism

The OpenMP Common Core (Past)

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads

int omp_get_thread_num()

int omp_get_num_threads()

Number of threads, thread ID

double omp_get_wtime() Walltime, speedup measure

#pragma omp barrier

#pragma omp critica

Synchronization

#pragma omp for

#pragma omp parallel for

Worksharing, parallel loops

reduction(op:list) Reduction

schedule(dynamic [,chunk])

schedule (static [,chunk])

Loop schedules

private(list), firstprivate(list), shared(list) Data environment

nowait Disable implied barrier

Not all programs have simple loops OpenMP

can parallelize

• Consider a program to traverse a linked list:

p=head;

while (p) {

processwork(p);

p = p->next;

}

• OpenMP can only parallelize loops in the basic standard form

with loop counts known at runtime

Example: Fibonacci numbers

int fib (int n)

{

int x,y;

if (n < 2) return n;

x = fib(n-1);

y = fib (n-2);

return (x+y);

}

int main()

{

int NW = 1000;

fib(NW);

}

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive

implementation!

What are tasks?

• Tasks are independent units of work

• Tasks are composed of:

– code to execute

– data to compute with

• Threads are assigned to perform the work of each task.

– The thread that encounters the task construct

may execute the task immediately.

– The threads may defer execution until later

Serial Parallel

Task constructs in OpenMP

#pragma omp task
- Creates a new task, Task added to task queue

- Available thread picks next task from queue to execute

#pragma omp taskwait
- Acts like barrier

- Waits until all child tasks have finished

• The task construct was added to support irregular programs:

– While loops or loops whose iteration limits are not known at

compiler time.

– Recursive algorithms

– divide and conquer problems.

• The task construct has expanded over the years with new features to

support irregular problems with tasks in each new release of OpenMP

OpenMP 4.x

OpenMP has been significantly modernized since the OpenMP 4.0

(July 2013) and OpenMP 4.5 (Nov 2015) specification releases.

Major additions include: SIMD, task dependencies, task groups,

thread affinity, user defined reductions, taskloop, doacross.

Target device support was first introduced in OpenMP 4.0 and was

the focus for enhancement for OpenMP 4.5.

Task Groups Task Dependencies Taskloop Task Priority

Thread Affinity SIMD Target Device Support

Doacross Fortran 2003 Support

OpenMP 4.0 Major Additions

• Task dependences and task groups

• SIMD constructs

• Device constructs

• Thread affinity control

• User-defined reductions

• Initial support for Fortran 2003

• Support for array sections (including in C and C++)

• Sequentially consistent atomics

• Display of initial OpenMP internal control variables

OpenMP 4.5 Focused on Device Support

• Unstructured data mapping

• Asynchronous execution

• Scalar variables are firstprivate by default

• Improvements for C/C++ array sections

• Device runtime routines: allocation, copy, etc.

• Clauses to support device pointers

• Ability to map structure elements

• New combined constructs

• New way to map global variables (link)

OpenMP 4.5 Other New Features

• Many clarifications and minor enhancements

- SIMD extensions

- Addition of schedule modifiers: simd, monotonic, nonmonotonic

- Clarifications of thread affinity policies

- Support for if clause on combined/composite constructs

- Reductions for C/C++ arrays

- Runtime routines to support affinity

• Support for doacross loops

• Divide loop into tasks with taskloop construct

• Task priorities

OpenMP Programming Model

• Directive-based programming model:

- Multi-level parallelism supported (cpus, threads, SIMD)

- Task-based is the modern approach to parallelism

- High-level access to parallelism

• Hybrid MPI/OpenMP

- Running on devices such as CPUs and GPUs.

The task construct (OpenMP 4.5)

where clause is one of the following:

if([task :]scalar-expression)

untied

default(shared | none)

private(list)

firstprivate(list)

shared(list)

final(scalar-expression)

mergeable

depend(dependence-type : list)

priority(priority-value)

#pragma omp task [clause[[,]clause]...]

structured-block
Generates an

explicit task

Task consists of
Code to execute

Data environment

#pragma omp taskloop

#pragma omp taskyield

#pragma omp taskgroup

• Binary tree of tasks

• Traversed using a recursive

function

• A task cannot complete until all

tasks below it in the tree are

complete (enforced with taskwait)

• x,y are local, and so by

default

they are private to current task
– must be shared on child tasks so they

don’t create their own firstprivate

copies at this level!

Parallel Fibonacci
35

int fib (int n)

{

int x,y;

if (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib (n-2);

#pragma omp taskwait

return (x+y);

}

int main()

{ int NW = 1000;

#pragma omp parallel

{

#pragma omp master

fib(NW);

}

}

Linked lists with tasks

#pragma omp parallel

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p)

processwork(p);

p = p->next;

}

}

}

Creates a task with its

own copy of “p”

initialized to the value

of “p” when the task is

defined

taskloop Example: saxpy Operation

blocking

for (i = 0; i<SIZE; i+=1)

{ A[i]=A[i]*B[i]*S;

}

taskloop

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS) ? SIZE : i+TS;

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS) ? SIZE : i+TS;

#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ Manual transformation is cumbersome
and error prone

◼ Applying blocking techniques for large
loops can be tricky

◼ taskloop: improved programmability

Parallelizing doacross Loop

• Help with cross-

iteration dependencies

• Use “ordered” clause

to ensure structured

blocks are executed on

lexical order

Vectorization?

Vectorization is an on-node, in-core way of exploiting data

level parallelism in programs by applying the same

operation to multiple data items in parallel.

DO I= 1, N

Z(I) = X(I) + Y(I)

ENDDO

• Requires transforming a program so that a

single instruction can launch many operations

on different data

• Applies most commonly to array operations

in loops

• SIMD=single instruction applies the same operation to multiple data
concurrently

• vectorization = processing multiple elements of an array
at the same time.

• OpenMP can enable vectorization of both serial as well as
parallelized loops

• OpenMP uses SIMD constructs.

SIMD loop construct in OpenMP

#progma omp simd [clause [[,] clause], …]

for-loops

Example

void sprod(float *a, float *b, int n)

{

float sum=0.0;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

- Vectorize a loop nest is to cut loop into chunks that fit a SIMD

vector register

- No parallelization of the loop body

SIMD Worksharing Construct

void sprod(float *a, float *b, int n){

float sum=0.0;

#pragma omp for simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

parallelize
Thread 0 Thread 1 Thread 2

#progma omp for simd [clause [[,] clause], …]

for-loops

- Distribute a loop’s iteration

across a thread team

- Subdivide loop chunks to fit a

SIMD vector register

Example: loops

#include <stdio.h>
#define N 10000
int main()
{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;

for (int i=0;i<N;i++)
d1+=i*(N+1-i);

for (int i=0; i<N;i++) {
a[i]=i;
b[i]=N+1-i;

}

for (int i=0; i<N; i++)
d2+=a[i]*b[i];

printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);
}

OpenMP SIMD Loop Example
#include <stdio.h>
#include <omp.h>

#define N 10000
int main()
{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)

d1+=i*(N+1-i);
#pragma omp simd

for (int i=0; i<N;i++) {
a[i]=i;
b[i]=N+1-i;

}
#pragma omp parallel for simd reduction(+:d2)

for (int i=0; i<N; i++)
d2+=a[i]*b[i];

printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);
}

Existing Parallel Loop Constructs

◼ Existing parallel loop constructs are tightly bound to execution model:

#pragma omp for #pragma omp simd #pragma omp taskloop

for (i=0; i<N;++i) {…} for (i=0; i<N;++i) {…} for (i=0; i<N;++i) {…}

fork generate tasks

OpenMP for Accelerators: host/device Model

 Host-centric: the execution of an OpenMP program starts on the host device and

it may offload target regions to target devices

In principle, a target region also begins as a single thread of execution: when a

target construct is encountered, the target region is executed by the implicit device

thread and the encountering thread/task [on the host] waits at the construct

until the execution of the region completes

If a target device is not present, or not supported, or not available, the target region is executed

by the host device

If a construct creates a data environment, the data environment is created at the time the

construct is encountered

 When an OpenMP program begins, each device has an initial device data

environment

 Directives accepting data-mapping attribute clauses determine how an original

variable is mapped to a corresponding variable in a device data environment
original: the variable on the host

corresponding: the variable on the device

the corresponding variable in the device data environment may share storage with

the original variable

Device Target constructs

 Creates a device data environment for the extent of the region
when a target data construct is encountered, a new device data environment

is created, and the encountering task executes the target data region

when an if clause is present and the if-expression evaluates to false,

the device is the host

More Directives and Functions for Devices

omp target data: Creates a device data environment and execute the construct on the

same device. The target construct specifies that the region is executed by a device and the

encountering task waits for the device to complete the target region

omp target update: Makes the corresponding list items in the device data

environment consistent with their original list items

omp distribute: distributes a loop over the teams in the league

omp declare target: marks function(s) that can be called on the device

omp teams: Creates a league of thread teams where the master thread of each team

executes the region, associated with num_teams and num_threads clause

omp get team num()

omp get team size()

omp get num devices()

omp_get_default_device()

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

Example

OpenMP 5.0 updates: https://www.openmp.org

• Full support for accelerator devices. OpenMP now has full support for

accelerator devices, including mechanisms to require unified shared memory

between the host system and coprocessor devices, the ability to use device-

specific function implementations, better control of implicit data mappings, and

the ability to override device offload at runtime. In addition, it supports reverse

offload, implicit function generation, and the ability to copy object-oriented

data structures easily.

• Improved debugging and performance analysis. Two new tool

interfaces enable the development of third party tools to support intuitive

debugging and deep performance analysis.

OPENMP 5.0 IS A MAJOR LEAP FORWARD
Full Support for Accelerators and New Tool APIs

https://www.openmp.org/

• Support for the latest versions of C, C++, and Fortran. OpenMP now supports

important features of Fortran 2008, C11, and C++17.

• Support for a fully descriptive loop construct. The loop construct lets the

compiler optimize a loop while not forcing any specific implementation. This

construct allows the compiler more freedom to choose a good implementation for

a specific target than do other OpenMP directives.

• Multilevel memory systems. Memory allocation mechanisms are available that

place data in different kinds of memories, such as high-bandwidth memory. New

OpenMP features also make it easier to deal with the NUMA-ness of modern HPC

systems.

• Enhanced portability. The declare variant directive and a new meta-directive

allow programmers to improve performance portability by adapting OpenMP

pragmas and user code at compile time.

OpenMP 5.0 updates

OpenMP 5.0: Some Main Features

Task

Reductions

Memory Allocators

Detachable Tasks

Tools APIs:

OMPD,OMPTC++14 and C++17

support

Dependence Objects

Unified Shared Memory
loop

Construct

Fortran 2008

support

Collapse non-rect. Loops

Task-to-data

Affinity
Multi-level

Parallelism

Data Serialization for Offload

Parallel Scan

Meta-

directives Display Affinity

“Reverse

Offloading”

User Defined

Function Variants Improved Task Dependences

Task Reductions

Task reductions

extend traditional

reductions to arbitrary

task graphs

Extend the existing

task and taskgroup

constructs

Also work with the

taskloop construct

int res = 0;

node_t* node = NULL;

...

#pragma omp parallel

{

#pragma omp single

{

#pragma omp taskgroup task_reduction(+: res)

{

while (node) {

#pragma omp task in_reduction(+: res) \

firstprivate(node)

{

res += node->value;

}

node = node->next;

}

}

}

}

Memory Allocators

Example: Using Memory Allocators

void allocator_example(omp_allocator_t *my_allocator) {

int a[M], b[N], c;

#pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)

#pragma omp allocate(b) // controlled by OMP_ALLOCATOR and/or omp_set_default_allocator

double *p = (double *) ompmalloc(N*M*sizeof(*p));alloc(N*M*sizeof(*p), my_allocator);

#pragma omp parallel private(a) allocate(my_allocator:a)

{

some_parallel_code();

}

#pragma omp target firstprivate(c) allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr

{

#pragma omp parallel private(a) allocate(omp_high_bw_mem_alloc:a)

{

some_other_parallel_code();

}

}

omp_free(p);

Requires Unified Shared Memory

•Single address space over CPU and GPU memories

•Data migrated between CPU and GPU memories transparently to the
application - no need to explicitly copy data

#pragma omp target teams distribute parallel for

for (j=0; j<ARRAY_SIZE; j++) {

a[j] = b[j] + scalar * c[j];

}

}

// No data directive needed.

#pragma omp requires unified_shared_memory

for (k=0; k < NTIMES; k++)

{

GNU/GCC 9, 2019, only partial support will be ready.

Intel: upcoming versions

OpenMP Compilers and Tools

Vendor Compiler/Language Information

GNU GCC

C/C++/Frotran

Free and open source

From GCC 6.1, OpenMP 4.5 is fully

supported for C and C++.

Compile with -fopenmp to enable OpenMP.

Intel C/C++/Frotran OpenMP 4.5 C/C++/Fortran supported in

version 17.0, 18.0, and 19.0 compilers

Compile with -qopenmp on Linux

https://www.openmp.org/resources/openmp-compilers-tools/

OpenMP 5.0:

https://www.openmp.org/resources/openmp-compilers-tools/

Resources

OpenMP specifications for C/C++ and Fortran, http://www.openmp.org/

https://www2.cisl.ucar.edu/sites/default/files/MultiCore8_HelenHe.pdf

https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.Examples.pdf

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

https://ukopenmpusers.co.uk/wp-content/uploads/uk-openmp-users-2018-
OpenMP45Tutorial_new.pdf

http://www.openmp.org/
https://www2.cisl.ucar.edu/sites/default/files/MultiCore8_HelenHe.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.Examples.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
https://ukopenmpusers.co.uk/wp-content/uploads/uk-openmp-users-2018-OpenMP45Tutorial_new.pdf

