
Serial farming from A to Z

Sergey Mashchenko
(SHARCNET / Compute Ontario / Compute Canada)

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

2/64

Outline

● Introduction
– What is serial farming?

– Examples of serial farming

● Simple solutions
– Command line

– BASH scripting

– Array jobs

● Advanced serial farming
– Small number of cases

– Large number of cases

– Using the scripts

● Word of caution

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

3/64

Introduction

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

4/64

What is serial farming?

● Serial farming is running multiple instances of a
serial code (serial jobs on a cluster), when the
order of execution is not important (no data
dependencies between the jobs).

● It can be trivially extended to cover batches of
independent parallel jobs, which one might call
“MPI farming”, “OpenMP farming”, “GPU
farming” etc.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

5/64

Examples of serial farming

● One common situation when serial/parallel farming
is needed is when the code output depends on a
few poorly constrained parameters, and the task is
to either find a global solution(s), or the global
maximum or minimum.

● When the number of unknown parameters is small
(say <5) one can attempt a brute force approach:
running separate jobs corresponding to different
points on a grid in the multi-dimensional parameter
space.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

6/64

Examples of serial farming

● How many grid points in each dimension
depends on the expected properties of
the solution: for a uni-modal situation
one can use as few as three grid points
per dimension.

● In a more general (multi-modal) case
number of grid points will be determined
by practical considerations (maximum
number of cpu hours one can spare for
the project).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

7/64

Examples of serial farming

● In a larger dimensionality case
(say >4) one can resort to Monte
Carlo (random guessing) way of
sampling the parameter space.

● In either regular grid or Monte Carlo approaches,
one can run just one batch of jobs, or run one,
analyze the results, and then run the next batch,
where one is zooming in onto the region(s) of
interest in the parameter space.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

8/64

Examples of serial farming

● Another typical situation when one needs serial
farming is when one has to post-process multiple
“snapshots” (from a time evolution) produced by a
large parallel simulation code – to get some global
quantitities, or perhaps to produce a movie. These
tasks do not have data dependencies, so are
perfect for serial/parallel farming.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

9/64

Simple solutions

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

10/64

Command line

● Using SHARCNET's job manipulation scripts
(sqsub, sqjobs, sqkill) plus BASH commands
(loops etc.).

● Required sqsub arguments (serial jobs):
 sqsub -r 1d -o out.log ./code

● We will need one optional argument, “--idfile”,
(for the full options' list, execute “sqsub -h”):
 sqsub --idfile=idfile

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

11/64

Command line

● Here “idfile” is the name of the file which will
store the jobid.

● To submit a batch of serial jobs from the
command line, using BASH' “for” loop
command, one can do something like this:

$$ for ((i=0; i<25; i++)); do sqsub -r 1d \
 -o out.${i} ./code ic.${i}; done

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

12/64

Command line

● Here it is assumed that 25 different initial
condition files, with names ic.0 ... ic.24, are
provided, and that the code is executed as
“./code ic.xxx”.

● It is very useful to use the “--idfile” option here;
this will enable subsequent meta-job
operations:
$$ \rm idfile; for ((i=0; i<25; i++)); do sqsub \
-r 1d -o out.${j} --idfile=id ./code ic.${i}; \
cat id >> idfile; done

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

13/64

Command line

● Now we have file “jobid” containing all jobid's of
the jobs in the batch.

● This file can be used to do query for the batch
status:
 sqjobs `cat jobid`

● And we can kill all the jobs in the batch with a
single command:
 sqkill `cat jobid`

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

14/64

Command line

● If we want to launch one job per each initial
conditions file in the current directory (say, with
names ic.*), we can use a different flavor of the
“for” loop command:
$$ for name in ic.*; do sqsub -r 1d \
 -o ${name}.log ./code ${name}; done

● Here the standard output from each job will go
to files “ic.*.log”. As before, one can add
“--idfile” stuff to enable meta-job manipulation.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

15/64

Command line

● For FORTRAN codes (which typically use
standard input instead of command line
arguments), the previous example can be re-
written as follows:

$$ for name in ic.*; do sqsub -r 1d \
 -o ${name}.log -i ${name} ./code; done

● Here we use the sqsub option “-i input_file” to
provide the file for the job's standard input.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

16/64

Command line

● In another common scenario – when arguments
to be used in serial farming are stored in one
text file, one line per job, it is convenient to use
BASH's “while” loop command.

● E.g. your code needs three numbers as its
command line arguments. Your IC table (say
“IC.dat”) might look like this:
 10 4.5 1.1e9
 20 3.7 7.5e8
 ...
 50 4.8 1.1e9

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

17/64

Command line

● “While” loop can be used here as follows:
$$ i=0; while read a b c; do i=$(($i+1)); \
sqsub -r 1d -o out.${i} ./code $a $b $c; done \
< IC.dat

● Here the standard output will go to files out.1 ...
out.N (N – number of jobs). You can add
“--idfile” as before.

● “read a b c” reads all the three columns from
the file IC.dat to shell variables $a, $b, $c, one
line at a time.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

18/64

Command line

● As the most complex (and perhaps the most
realistic) scenario, let's consider the case when
each job needs to run in a separate sub-
directory (because it creates one or more
output files).

● Expanding upon the previous slide's example,
we can accomplish this task as follows:
$$ i=0; while read a b c; do i=$(($i+1)); \
mkdir RUN$i; cd RUN$i; sqsub -r 1d -o out \
../code $a $b $c; cd ..; done < IC.dat

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

19/64

BASH scripting

● The previous example shows that the
command line approach has its limitations; it
becomes too difficult to deal with a single line
when the number of commands becomes too
large.

● Instead, one can put all these commands in a
text file – BASH script. Instead of using the
command line's separator “;”, in a script one
can place different commands on separate
lines.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

20/64

BASH scripting

● The previous example, written as a BASH
script, will become
#!/bin/bash
i=0
while read a b c
 do
 i=$(($i+1))
 mkdir RUN$i
 cd RUN$i
 sqsub -r 1d -o out ../code $a $b $c
 cd ..
 done < IC.dat

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

21/64

BASH scripting

● Here “#!/bin/bash” tells the OS that this is a
BASH script (for Python you'd put
“#!/usr/bin/python”).

● The script file (say, “metajob.sh”) should be
made executable:
$$ chmod u+x metajob.sh

● Then one can run it as follows:
$$./metajob.sh

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

22/64

BASH scripting

● BASH scripts can accept command line
arguments.

● E.g. the previous script can be modified to
accept two arguments: the full path to the code,
and the directory where the script should run
(where the file IC.dat is located).

● One would run the script like this:
$$./metajob.sh /home/user/bin/code \
/work/user/case1

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

23/64

BASH scripting

● The required changes to the metajob.sh file
are:
#!/bin/bash
CODE=$1
WD=$2
cd $WD
i=0
while read a b c
 do
 i=$(($i+1))
 mkdir RUN$i
 cd RUN$i
 sqsub -r 1d -o out $CODE $a $b $c
 cd ..
 done < IC.dat

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

24/64

Array jobs

● Schedulers often provide a way to submit a
whole array of jobs in a single submission step.

● These are called “job arrays” or “array jobs”,
and are designed to handle serial/parallel
farming scenarios.

● Typically an array job would launch N instances
of a user-provided script, and initialize a special
environment variable to be equal to the job
“rank” within the array.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

25/64

Array jobs

● The task of the user script is to read the rank
variable, and use it to customize the job
execution (e.g., by making the user's code read
the IC.$rank file).

● To run array jobs on SHARCNET clusters one
has to use directly the underlying scheduler
commands (like qsub) instead of the
SHARCNET wrappers sqsub, sqkill etc.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

26/64

Array jobs

● For example, to submit an array job one has to
add “-t” switch to qsub:

 qsub -t x-y
● Here x and y are array bounds (define the

range of “ranks”).
● For more information, you can check

http://wiki.hpc.ufl.edu/doc/Torque_Job_Arrays

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

27/64

Advanced serial farming

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

28/64

Small number of cases

● Let's call a single execution of the code in a
serial/parallel farm a “case”.

● When the total number of cases, N_cases, is
fairly small (say, <500) it is convenient to
dedicate a separate job to each case – the way
it was handled in the previous section
(“Command line”).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

29/64

Small number of cases

● I created a set of BASH scripts utilizing both the
“one case – one job” approach (works for cases
when the number of jobs is <500 or so) and
“dynamic workload balancing” approach (best
for larger number of cases).

● The scripts can be found on our clusters in the
following directory:
 ~syam/Serial_farming/META

● The two essential scripts are “submit.run” and
“single_case.run”.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

30/64

Small number of cases

● “submit.run” has two obligatory command line
arguments.

● The first one is the path to the cases table,
containing information (command line arguments,
and/or the name(s) of the input file(s)) for your
code, each line corresponding to a case to be
executed.

● The second argument (when used in the “one job
per case” mode) should be “-1”, e.g.

 $$./submit.run /work/user/dir/cases.dat -1

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

31/64

Small number of cases

● The other principal script, “single_case.run”, is
the only script which might need customization.

● Its task is to read the corresponding line from
the case table, parse it, and use these data to
launch your code for this particular case.

● The version of the file provided literally
executes one full line from the case table
(meaning that the line should also include path
to your code) in a separate subdirectory,
RUNyyy (yyy being the case number).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

32/64

Small number of cases
● “single_case.run”:

...

++++++++++++ This part can be customized: ++++++++++++++++

$ID contains the case id from the original table

$COMM is the line corresponding to the case $ID in the original table, without
the ID field

mkdir RUN$ID

cd RUN$ID

Executing the command:

$COMM &> out.log

Exit status of the code:

STATUS=$?

cd ..

++

...

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

33/64

Small number of cases

● Your “cases.dat” table can look like this:

/home/user/bin/code1 1.0 10 2.1
./code2 < IC.2
sleep 10m
...

● In other words, any executable statement which
can be written on one line can go there.

● Note: “submit.run” will modify your cases table
once (add line # at the beginning of each line).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

34/64

Small number of cases

● What is “$STATUS” for in “single_case.run”?
– It is a shell variable which should be equal to “0” if

your case was computed correctly, and >0
otherwise.

– It is very important: it is used by “resubmit.run” to
figure out which cases failed, so they can be re-
computed.

– In the provided version of “single_case.run”,
$STATUS only reflects the exit code of your
program. This likely won't cover all problems.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

35/64

Small number of cases

● (continued)
– You can always change or augment $STATUS

derivation in “single_case.run”.

– E.g., if your code creates a new file (say, “out.dat”)
at the very end of a case run, the existence of such
a file can be used to judge if the case failed or not:

 STATUS=$?
 if test ! -s out.dat
 then
 STATUS=1
 fi

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

36/64

Small number of cases

● The “submit.run” script will generate some files
in the current directory:
– out.cluster.xxx files (one file per job): standard

output from jobs;

– status.yyy files (one file per case): files containing
the status of processed cases; yyy is the case
number in the original table.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

37/64

Small number of cases

● Other auxiliary scripts are also provided for
your convenience.

● “list.run” will list all the jobs with their current
state for the serial/parallel farm (no arguments).

● “query.run” will provide a one line summary
(number of queued / running / done jobs) in the
farm, which is more convenient than using
“list.run” when the number of jobs is large. It will
also “prune” queued jobs if warranted (see the
next slide).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

38/64

Small number of cases

● “kill.run”: will kill all the running/queued jobs in
the farm.

● “prune.run”: will only kill queued jobs.
● “Status.run” (capital “S”!) will list statuses of all

processed cases.
● Finally, script “resubmit.run” is run the same

way as “submit.run”, e.g.:

 $$./resubmit.run /work/user/dir/cases.dat -1

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

39/64

Small number of cases

● “resubmit.run”:
– will analyze all those status.* files;

– figure out which cases failed and which never ran
for whatever reason (e.g. because of the 7d runtime
limit);

– create a new case table (adding “_” at the end of
the original table name), which lists only the cases
which still need to be run;

– uses “submit.run” internally to launch a new farm,
for the unfinished/failed jobs.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

40/64

Small number of cases

● Notes:
– You won't be able to run “resubmit.run” until all the

jobs from the original run are done or killed.

– If some cases still fail or do not run, one can
resubmit the farm again and again, with the same
arguments as before:

$$./resubmit.run /work/user/dir/cases.dat -1

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

41/64

Small number of cases

● Previous slides described the situation when
you run your farm on a single cluster.

● This is the default behaviour when the current
directory doesn't have file “clusters.lst”.

● If the file “clusters.lst” is present and is not
empty, the scripts switch to a “meta-cluster”
mode.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

42/64

Small number of cases

● Proper “clusters.lst” file should contain a list of
clusters which you wish to use for you serial
farm, one cluster per line. E.g.:

 kraken
 saw
 redfin

● The current (local) cluster doesn't have to be in
the list.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

43/64

Small number of cases

● When you both use “-1” argument (one job per
case mode) and provide “clusters.lst” file,
“submit.run” and “resubmit.run” will submit
2*N_cases jobs across all the clusters in the
list.

● Only the first N_cases jobs to start will do the
computations; the rest will get pruned or die
instantly.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

44/64

Small number of cases

● This is how it works:
– The very first job which runs (on any cluster) will

request a case to process (case #1 initially);

– The second job to run will ask for the next available
case (#2), and so on.

– To accomplish this, certain operations need to be
serialized (only one job at a time can do it):

● Read “currently served” case number from a file.
● Update it (add “1”), and write it back to the file.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

45/64

Small number of cases

● To serialize file-related operations, you need a
special binary program, “lockfile”.
– It is included in the META package.

– It should be placed in a directory listed in your
$PATH environment variable. You can accomplish
this by
 $$ mkdir ~/bin
 $$ cp lockfile ~/bin
 $$ echo 'export PATH=/home/$USER/bin:$PATH' \
 >> ~/.bashrc
 $$. ~/.bashrc

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

46/64

Large number of cases

● The “one job per case” works fine when the
number of cases is fairly small (<500).

● When N_cases >> 500, the following problems
arise:

● There is a limit on the number of jobs submitted (for orca, it
is 5000).

● Job submission becomes very slow. (With 5000 jobs and
~2s per job submission, the submission will last ~3 hours!).

● With very large number of cases, each case run is typically
short. If one case runs for <30 min, you start wasting cpu
cycles due to scheduling overheads (~30s per job).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

47/64

Large number of cases

● The solution: instead of submitting a separate
job for each case, one should submit a smaller
number of jobs, each of which would process
multiple cases.

● As cases can take different time to process, it is
highly desirable to utilize a dynamic workload
balancing scheme.

● Let's see how it is implemented.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

48/64

Large number of cases
submit.run: submits N

task.run jobs to cluster(s)

Job #1
task.run:

Loop over
multiple cases

...

Job #2
task.run:

Loop over
multiple cases

Job #N
task.run:

Loop over
multiple cases

Serialized queue to get the next available case number

single_case.run:
solve one case

single_case.run:
solve one case

single_case.run:
solve one case

User
code

User
code

User
code

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

49/64

Large number of cases

● Dynamic workload balancing at work:

Time

Job #1:

Job #2:

Job #3:

Job #4:

Case 1 Case 7 Case 10 Case 16 Case 22

Case 2 Case 5 Case 12 Case 18

 Case 3 Case 8 Case 14 Case 20

Case 4 Case 6 Case 9 Case 11 Case 13 Case 15 Case 17 Case 19 Case 21

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

50/64

Large number of cases

● To enable the “multiple cases per job” mode
(with dynamic workload balancing), the second
argument to “submit.run” script should be the
number of “task.run” jobs requested, e.g.:

 $$./submit.run /work/user/dir/cases.dat 32
– If file “clusters.lst” is present, listing multiple

clusters, one per line, the number of submitted jobs
will be the above number x2, and is limited to
256*2=512 jobs.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

51/64

Using the scripts

● Simple usage scenario:
– Copy directory /home/syam/Serial_farming/META to

your file space (usually in /work/$USER).

– Put “lockfile” utility on your $PATH (see slide 45).

– Copy your code and initial conditions files to the
META directory (optional; you can use full paths
instead).

– Create a cases table (text file, one case per line).

– (To run another farm in parallel to the first one,
create another directory - say, META1 - and repeat
the above steps.)

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

52/64

Using the scripts

● (continued)
– Modify “single_case.run” accordingly (so it will

parse all the information the code needs from a
specific line in the cases table).

– Create file “clusters.lst” if you plan to use the meta-
cluster feature. Don't put requin (it is not
compatible with the scripts).

– Probably a good idea to initially run on a single
cluster (no “clusters.lst” file), with just a few jobs, to
see if everything works.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

53/64

Using the scripts

● What if you need to use additional sqsub
arguments (like --mpp, -q mpi, -q threaded, -n
etc.)?
– Simple: just add all those arguments at the end of

“submit.run” and “resubmit.run” command line, and
they will be passed to sqsub, e.g.:

$$./submit.run test.dat -1 -q mpi -n 4

– You can also override the default job runtime value
(encoded to be 7 days in “submit.run”), by adding a
“-r” argument.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

54/64

Using the scripts

● How to do “multi-threaded farming” (OpenMP
etc.)?
– Add these sqsub arguments to “(re)submit.run”:

 -q threaded -n N

– Here “N” is the number of cpu cores/threads to use.

– Nothing special needs to be done inside
“single_case.run”: run the code as in the serial
case.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

55/64

Using the scripts

● What about “MPI farming”?
– Use these sqsub arguments with “(re)submit.run”:

 -q mpi -n N --nompirun

– Inside “single_case.run”, add “mpirun” before your
code, e.g.:

 mpirun $COMM &> out.log

– (Alternatively, you can prepend “mpirun” on each
line of your cases table.)

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

56/64

Using the scripts

● You have a FORTRAN serial code, “fcode”; each
case needs to read a separate file from standard
input – say “data.xxx” (in /work/user/IC directory),
where xxx goes from 1 to N_cases.
– Place “fcode” on your $PATH (e.g., in ~/bin, make

sure /home/$USER/bin is added to $PATH in .bashrc).

– Create the cases table (inside META directory) like this:
 fcode < /work/user/IC/data.1
 fcode < /work/user/IC/data.2
 ...
 fcode < /work/user/IC/data.N_cases

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

57/64

Using the scripts

● (continued)
– The task of creating the table can be greatly

simplified if you use a BASH loop command, e.g.:

$$ for ((i=1; i<=10; i++)); do echo \
 "fcode < /work/user/IC/data.$i"; done >table.dat

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

58/64

Using the scripts

● Finally, another typical FORTRAN code
situation: you need to copy a file (say,
/path/to/data.xxx) to each case subdirectory.
– Your cases table can look like this:

/path/to/code
/path/to/code
...

– Add one line to your “single_case.run”:

\cp /path/to/data.$ID .
$COMM &> out.log
STATUS=$?

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

59/64

Word of caution

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

60/64

Word of caution

● Please use common sense when using the
“meta-cluster” mode of the scripts.
– Most of the jobs you submit should be expected to

run (don't submit many more jobs than you might
need - “just in case”).

– The “$Overcommit_factor” variable defined in
“submit.run” (=2) was introduced to force you to be
reasonably compliant with the above point.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

61/64

Word of caution

● (continued)
– After submitting a farm to multiple clusters, regularly

check its state with “query.run” script.
● First, it will keep you informed about the overall “health”

of your farm, and if things don't look right you can do
something about it.

● As importantly, “query.run” script will run “prune.run”
script internally when it detects that you won't need the
jobs which are still queued.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

62/64

Word of caution

● Make sure your code only accesses /work or
/home.

● Always start with a much smaller test farm run,
to make sure everything works, before
submitting a large production run farm.

● Stay away from orca (when using meta-cluster
mode): it is very busy because of NRAC jobs.

● Don't include requin (the scripts don't work
there).

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

63/64

Word of caution

● How to use contributed systems?
– Some contributed systems (like brown and redfin)

apparently still accept 7 day jobs, so use them as
any other cluster.

– Many contributed systems (perhaps all in the future)
will only accept short – up to 4h – jobs.

– To make full advantage of the contributed systems,
● add “-r 4h” argument to “(re)submit.run”, and either
● use “-1” mode of “(re)submit.run” if your cases take

between 0.5 and 4 hours to run each, or
● use “many cases per job” mode if each case takes <0.5h.

February 18, 2015 “Serial farming from A to Z”
Sergey Mashchenko, SHARCNET

64/64

Questions?

● You can always contact me directly
(syam@sharcnet.ca) if you need any help with
job farming in general, or META scripts in
particular.

mailto:syam@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

