

Introduction to

LINUX/SHELL in SHARCNET

Isaac Ye, High Performance Technical Consultant SHARCNET, York University

isaac@sharcnet.ca

Outlines

- Intro to WHAT/WHY/WHICH LINUX
- Understanding CLUSTER environment
- LINUX basics
 - Login (SSH)
 - Filesystem
 - Basic command
- SHELL Intro
 - Basic command-line operation
 - Text editor (nano/vi)
 - Pipes

What is Linux?

- History
 - A famous professor Andrew Tanenbaum developed Minix, a simplified version of UNIX that runs on PC
 - In Sept 1991, Linus Torvalds developed the preliminary kernel of Linux, known as Linux version 0.0.1
 - Recent (2007) estimates about 30M users in the world.
 - 95% of Top500 supercomputers running on Linux

Why Linux?

- A fully-networked 64-Bit Unix-like OS
- Excellent system stability
- Unix tools and compilers
- Strong network tools and support
- Multi-user, Multitasking, Multiprocessor
- Has the network-based X Windows GUI
- Runs on multiple platforms(hardware)
- Plentiful software
- Includes the source code and documents
- FREE !!!

Which Linux

- Red Hat Linux: One of the original Linux distribution.
- Debian GNU/Linux : A free software distribution.
- · Ubuntu Linux: an immensely popular Debian-based distribution.
- CentOS: an Enterprise-class Linux Distribution derived from sources freely provided to the public. (SHARCNET uses)
- SuSE Linux: primarily available for pay because it contains many commercial programs.

CLUSTER Environment - GRAHAM

GRAHAM (I)

	Hardware specification
Processors	32136 CPUs and 320 GPUs
Interconnect	100Gb/s Mellanox FDR InfiniBand Interconnect 56Gb/s Mellanox EDR InfiniBand Interconnect
CPU Nodes	800 nodes(128GB base) : 32 cores/node
	56 nodes(256GB large): 32 cores/node
	24 nodes(512GB bigmen500): 32 cores/ node
	3 nodes(3000GB bigmen3000: 56 cores/ node
GPU Nodes	160 nodes: 24 cores/node 2 NVIDIA P100 Pascal GPUs/node

GRAHAM (II)

- Named in honour of Prof. Wes Graham, the first director of U. Waterloo's computing centre.
- >1K nodes and 33K CPU cores
- 2.6 petaFLOPs of peak theoretical computational performance (< Top 50 in Top500 supercomputer list)
- Total 149 TB memory
- Liquid Cooling system using rear-door heat exchangers
- Big data ready 5 petabyte parallel storage system
- Cloud computing using OpenStack

GRAHAM- Storage

Home	Scratch	Project
 Standard home directory. Small, standard quota. Not allocated via RAS or RAC. Larger requests go to Project space. 	 For active or temporary (/scratch) storage. Available to all nodes. Not allocated. Inactive data will be purged. Huawei OceanStor storage system with approximately 3.6PB usable capacity and aggregate performance of approximately 30GB/s. 	 Part of the National Data Cyberinfrastructure. Allocated via RAS or RAC. Available to all nodes. Not designed for parallel I/O workloads. Use Scratch space instead.

National Data Cyberinfrastructure

Filesystem Quotas and Policies

Filesystem	Quotas	Backu p?	Purged?	Default?	Mounted on CC
Home	50 GB, 500 K files	Yes	No	Yes	Yes
Scratch	20 TB,1000K files 100 TB,10M files(G)	No	Yes	Yes	Yes
Project	500K files 10 TB, 5M files(G)	Yes	No	Yes (certain amount)	Yes
Nearline (Tape)	5 TB per group	Yes	No	No	No

Software environment

- This applies to new national CC systems, in particular to cedar and graham
- Operating system: LINUX CentOS 7
- Languages for development: C/C++, Fortran, Python, Java, Matlab, all available in different versions and flavours

JOB, SCHEDULER, RESOURCE

Graham.computecanada.ca

Client PC SSH

Login node Submitting a job

SLURM

- SSH Client (Putty, MobaXterm)
- Module load
- Compilation
- Checking jobs
- Job submission

- Run-time
- # of cores
- Memory
- Writing files

Logging In/Out in Desktop

Desktop snapshot

Logging In/Out to a Server

Connect to the server (SSH only in SHARCNET)

[isaac@cfdpc8 isaac]\$ ssh isaac@saw.sharcnet.ca isaac@saw.sharcnet.ca's password:

Last login: Tue May 25 11:36:11 2010 from bas9-toronto12-1128700169.dsl.bell.ca

Last login info

Welcome to Saw, a SHARCNET cluster.

Please see the following URL for status of this and other clusters: https://www.sharcnet.ca/my/systems

Welcome message

ALL Sharcnet users must now also have a Compute Canada account. Please visit http://ccdb.sharcnet.ca for instructions.

[isaac@saw377 ~]\$

Exit from the server (Don't forget !)

[isaac@saw377 ~]\$ exit logout

The Command Prompt

- Commands are the way to "do things" in Unix
- A command consists of a command name and options called "flags"
- Commands are typed at the command prompt
- In Unix, everything (including commands) is case-sensitive

Note: In Unix, you're expected to know what you're doing. Many commands will print a message only if something went wrong.

Two Basic Commands for Help

- The most useful commands you'll ever learn:
 - man (short for "manual")
 - info
- They help you find information about other commands
 - man <cmd> or info <cmd> retrieves detailed information
 about <cmd>
 - man -k <keyword> searches the man page summaries (faster, and will probably give better results)
 - man -K <keyword> searches the full text of the man pages
- command --help

```
[isaac@saw377 ~]$ Is --help
Usage: Is [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor -sort...
```

What is Shell?

 Shell is the interface between end user and the syst

[isaac@saw377 ~]\$ echo \$SHELL /bin/bash

Linux File System Basics

- Linux files are stored in a single rooted, hierarchical file system
- Data files are stored in directories (folders)
- Directories may be nested as deep as needed

What's new in Filesystem?

- The CernVM File System provides a scalable, reliable and lowmaintenance software distribution service
- All installations are done centrally at one location and automatically distributed to all remote resource centers.
 Basically an install once, run anywhere ability is provided.

What's new in Module?

- LMOD tool developed at TACC replaces 'Environment modules' (flat structure) in most legacy servers
- LMOD is a Lua based module system that easily handles the MODULEPATH Hierarchical problem
- Similar to the module in legacy system
- Supports flat layout of modules and software hierarchy
- A "modulefile" contains the information needed to make an application or library available in the user's login session. Typically a module file contains instructions that modify or initialize environment variables such as PATH and LD_LIBRARY_PATH in order to use different installed programs.

The Command Prompt

- Commands are the way to "do things" in UNIX
- A command consists of a command name and options called "flags"
- Commands are typed at the command prompt
- In Unix, everything (including commands) is case-sensitive

Note: In UNIX, you're expected to know what you're doing. Many commands will print a message only if something went wrong.

Two Basic Commands for Help

- The most useful commands you'll ever learn:
 - man (short for "manual")
 - info
- They help you find information about other commands
 - man <cmd> or info <cmd> retrieves detailed information
 about <cmd>
 - man -k <keyword> searches the man page summaries (faster, and will probably give better results)
 - man -K <keyword> searches the full text of the man pages
- command --help

```
[isaac@saw377 ~]$ Is --help
Usage: Is [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor -sort...
```

Some Special File Names

- Some file names are special:
 - The root directory (not to be confused with the root user)
 - The current directory
 - .. The parent (previous) directory
 - ~ My home directory
- Examples:
 - ./a same as a
 - ../isaac/x go up one level then look in directory isaac for x

Command for Directories

• 1s

- LiSts the contents of the specified directories (or the current directory if no files are specified)
- Syntax: ls [<file> ...]
- Example: 1s backups

• pwd

- shows the present directory info
- Print Working Directory

• cd

- Change Directory (or your home directory if unspecified)
- Syntax: cd <directory>
- Examples:
 - cd backups/unix-tutorial
 - cd ../class-notes

(cont'd)

• mkdir

- MaKe DIRectory
- Syntax: mkdir <directories>
- Example: mkdir backups class-notes

• rmdir

- ReMove DIRectory, which must be empty
- Syntax: rmdir <directories>
- Example: rmdir backups class-notes

Files

- Unlike Windows, in Unix file types (e.g. "executable files," "data files," "text files") are *not* determined by file extension (e.g. "foo.exe", "foo.dat", "foo.txt")
- Thus, the file-manipulation commands are few and simple
- Many commands only use 2 letters
- rm
 - ReMoves a file, without a possibility of "undelete!"
 - Syntax: rm [options] <file(s)>
 - Example: rm tutorial.txt backups/old.txt
 - r option: recursive (delete directories)
 - f option: force. Do no matter what

Files (cont'd)

cp

- CoPies a file, preserving the original
- Syntax: cp [options] <sources> <destination>
- Example: cp tutorial.txt tutorial.txt.bak
- -r option: recursive (copies directories)

• mv

- MoVes (renames) a file or directory, destroying the original
- Syntax: mv [options] <sources> <destination>
- Examples:
 - mv tutorial.txt tutorial.txt.bak
 - mv tutorial.txt tutorial-slides.ppt backups/

Note: Both of these commands will over-write existing files without warning you!

More Commands

- **diff** attempts to determine the minimal set of changes needed to convert a file specified by the first argument into the file specified by the second argument
 - Syntax: diff [options] <FILES>
 - Example: diff a.txt al.txt
- **find** Searches a given file hierarchy specified by path, finding files that match the criteria given by expression
 - Syntax: find [path...] [expression]
 - Example: find ./ -name "tes.h" -print

Text editor in command line interface

This is a text editor Namo!

File Permissions

- Linux provides three kinds of permissions:
 - Read (r, 4) users with read permission may read the file or list the directory
 - Write (w, 2) users with write permission may write to the file or new files to the directory
 - Execute (x, 1) users with execute permission may execute the file or lookup a specific file within a directory

File Permissions

 The long version of a file listing (1s −1) will display the file permissions:

```
1 rvdheij
                        rvdheij
                                     5224 Dec 30 03:22 hello
-rwxrwxr-x
             1 rvdheij
                      rvdheij
                                      221 Dec 30 03:59 hello.c
-rw-rw-r--
                      rvdheij
                                     1514 Dec 30 03:59 hello.s
-rw-rw-r--
            1 rvdheij
             7 rvdheij
                      rvdheij
                                     1024 Dec 31 14:52 posixuft
drwxrwxr-x
Permissions
                         Group
             Owner
```


Interpreting File Permissions

Changing File Permissions

- Use the chmod command to change file permissions
 - The permissions are encoded as an octal number

```
chmod 755 file # Owner=rwx Group=r-x Other=r-x
chmod 500 file2 # Owner=r-x Group=--- Other=---
chmod 644 file3 # Owner=rw- Group=r-- Other=r--

chmod +x file # Add execute permission to file for all
chmod o-r file # Remove read permission for others
chmod a+w file # Add write permission for everyone
```

Processes

Foreground

 When a command is executed from the prompt and runs to completion at which time the prompt returns is said to run in the foreground

Background

- When a command is executed from the prompt with the token "&" at the end of the command line, the prompt immediately returns while the command continues is said to run in the background
- Check the process
 - Command: ps, top, kill

Processes

Command for Processes

- kill sends a signal to a process or process group
- You can only kill your own processes unless you are root

```
UID
               PPID
                      C STIME TTY
           PID
                                            TIME CMD
          6715 6692 2 14:34 ttyp0
                                        00:00:00 sleep 10h
root
          6716
               6692 0
                                        00:00:00 ps -ef
                        14:34 ttyp0
root
[root@penguinvm log] # kill 6715
      Terminated
[1] +
                               sleep 10h
```


Environment Variables

- Environment variables are global settings that control the function of the shell and other Linux programs. They are sometimes referred to global shell variables.
- Check your environment

```
[isaac@saw377 ~]$ env

MKLROOT=/opt/sharcnet/intel/11.0.083/ifc/mkl

MODULE_VERSION_STACK=3.2.6

MANPATH=/opt/sharcnet/octave/current/share/man:/opt/sharcnet/netcdf/current/man:

FOAM_SOLVERS=/work/isaac/OpenFOAM/OpenFOAM-1.6/applications/solvers

FOAM_APPBIN=/work/isaac/OpenFOAM/OpenFOAM-1.6/applications/bin/linux64GccDPOpt

FOAM_TUTORIALS=/work/isaac/OpenFOAM/OpenFOAM-1.6/tutorials

FOAM_JOB_DIR=/work/isaac/OpenFOAM/jobControl

HOSTNAME=saw377

snrestart=--nosrun /opt/sharcnet/blcr/current/bin/sn_restart.sh

IPPROOT=/opt/sharcnet/intel/11.0.083/icc/ipp/em64t

INTEL_LICENSE_FILE=/opt/sharcnet/intel/11.0.083/ifc/licensesADFBIN=/opt/sharcnet/adf/current/bin
```

Environment Variables

- Using Environment Variables:
 - echo \$VAR
 - cd \$VAR
 - cd \$HOME
- Displaying use the following commands:
 - set (displays local & env. Vars)
 - export
- Vars can be retrieved by a script or a program

Some Important Environment

- HOME
 - Your home directory (often be abbreviated as "~")
- TERM
 - The type of terminal you are running (for example vt100, xterm, and ansi)
- PWD
 - Current working directory
- PATH
 - List of directories to search for commands

PATH Environment Variable

- Controls where commands are found
 - PATH is a list of directory pathnames separated by colons. For example:
 - PATH=/bin:/usr/bin:/usr/X11R6/bin:/
 usr/local/bin:/home/alex/bin
 - If a command does not contain a slash, the shell tries finding the command in each directory in PATH. The first match is the command that will run

Modules

- What is a module system?
 - A user interface to provide for the dynamic modification of a user's environment via modulefiles.

Modules (Example: loading WRF)

Module list – list up the presently loaded modules

```
[isaac@hnd50:~] module list

Currently Loaded Modulefiles:

1) moab/5.4.2 7) r/2.10.0 13) gromacs/4.0.5

2) sq-tm/2.4 8) namd/2.7b3 14) vmd/1.8.7

3) intel/11.0.083 9) ansys/12.1.1 15) util/2.0

4) openmpi/intel/1.4.2 10) lsdyna/ls971dR5.0 16) user-environment/1.0.0

5) compile/1.3 11) fftw/intel/2.1.5

6) octave/3.2.4 12) lammps/10.08.2010
```

Module avail – list up all available modules

Modules (Cont'd)

Module show [module] – load the module into the env

```
[isaac@hnd50:\sim] module show wrf/3.2
/opt/sharcnet/modules/wrf/3.2:
module-whatis
                Provide WRF/WPS 3.2 built using intel 11.0.083 and openmpi 1.4.2 on centos.
conflict
           wrf
          intel/11.0.083
prereq
          openmpi/intel/1.4.2
prereq
                load gmp/4.3.2
module
                load mpfr/2.4.2
module
module
                load netcdf/intel/4.1.2
                PATH /opt/sharcnet/wrf/3.2/wrfv3/main:/opt/sharcnet/wrf/3.2/wrfv3/run:/opt/
prepend-path
sharcnet/wrf/3.2/wrfv3/tools:/opt/sharcnet/wrf/3.2/wps:/opt/sharcnet/wrf/3.2/wps/util
                LD_RUN_PATH /opt/sharcnet/wrf/3.2/wps_libs/lib
prepend-path
                --delim LDFLAGS -L/opt/sharcnet/wrf/3.2/wps_libs/lib -L/opt/sharcnet/wrf/3.2/
prepend-path
wrfv3/main
prepend-path
                --delim CPPFLAGS -I/opt/sharcnet/wrf/3.2/wps_libs/include -I/opt/sharcnet/wrf/
3.2/wrfv3/inc
```


Modules (Cont'd)

Module load [module] – load the module into the env

[isaac@hnd50:~] module load wrf/3.2 [isaac@hnd50:~] module list Currently Loaded Modulefiles:

1) moab/5.4.2

6) octave /3.2.4

11) fftw/intel/2.1.5

2) sq-tm/2.4

7) r/2.10.0

12) lammps/10.08.2010

3) intel/11.0.083

8) namd/2.7b3

13) gromacs /4.0.5

4) openmpi/intel/1.4.2

9) ansys/12.1.1

14) vmd/1.8.7

5) compile /1.3

10) lsdyna/ls971dR5.0

15) util/2.0

16) user-environment/1.0.0

17) gmp/4.3.2

18) mpfr/2.4.2

19) netcdf/intel/4.1.2

20) wrf/3.2

Modules (Cont'd)

Module unload [module] - unload the module from the env

[isaac@hnd50:~] module unload wrf [isaac@hnd50:~] module list **Currently Loaded Modulefiles:**

1) moab/5.4.2

5) compile 1.3

- 2) sq-tm/2.4
- 6) octave/3.2.4
- 3) intel/11.0.083 7) r/2.10.0

environment/1.0.0

- 4) openmpi/intel/1.4.2 8) namd/2.7b3
- 9) ansys/12.1.1 13) gromacs/4.0.5
- 10) lsdyna/ls971dR5.0 14) vmd/1.8.7
- 11) fftw/intel/2.1.5 15) util/2.0
 - 12) lammps/10.08.2010 16) user-

Editing Text

- Which text editor is "the best" is a holy war. Pick one and get comfortable with it.
- Three text editors you should be aware of:
 - nano An improved 'pico' editor
 - To quit: Ctrl-x
 - emacs/xemacs A heavily-featured editor commonly used in programming
 - To quit: Ctrl-x Ctrl-c
 - vim/vi Another editor, also used in programming
 - To quit: <Esc> : q <Enter> (or QQ -- capitals matter)

Knowing the basics of emacs and vim will help with the rest of Unix; many programs have similar key sequences.

Pipe and Redirection

Redirection (< or >)

```
% Is -I > Isoutput.txt (save output to Isoutput.txt)
```

% ps >> Isoutput.txt (append to Isoutput.txt)

% more < killout.txt (use killout.txt as parameter to more)

Pipe ()

Process are executed concurrently

```
% ps | sort | more
```

% ps -xo comm | sort | uniq | grep -v sh | more

% cat mydata.txt | sort | uniq | > mydata.txt (generates an empty file !)

'for' Loops

```
for var in list
do
statements
done
```

statements are executed with var set to each value in the list.

```
#!/bin/bash
let sum=0
for num in 1 2 3 4 5
do
let "sum = $sum + $num"
done
echo $sum
```


For-loop like a C-program

Conditional statement

if [expression]; then statements elif [expression]; then statements else statements fi

```
#!/bin/bash
echo -n "Enter your login name:"
read name
if [ "$name" = "$USER" ];
then
echo "Hello, $name. How are you today?"
else
echo "You are not $USER, so who are you ?"
fi
```