
 Accelerating Graph Analysis on GPUs

Jinhui Qin

SHARCNET | Compute Ontario | Digital Research Alliance of Canada

jhqin@sharcnet.ca

What is a Graph?

● A data structure to model

relationships between data

entities in a network

○ Nodes (Vertices) and edges

○ Directed, undirected,

weighted, etc.

What is Graph Analytics?
● Graph Analytics helps understand complex

relationships between linked entities
○ Centrality analysis
○ Community detection
○ Connectivity analysis
○ Path analysis

● Combining with ML/AI techniques, e.g GML,
GNN, etc.

○ Graph classification
○ Node classification
○ Link prediction
○ etc.

NetworkX

● A Python package for the creation,
manipulation, and study of the structure,
dynamics, and functions of complex
networks

● The most popular python graph analytics
library available
○ More than 40M PyPI downloads per

month

>>> import networkx as nx

>>> G = nx.Graph()

>>> G.add_edge("A", "B", weight=4)

>>> G.add_edge("B", "D", weight=2)

>>> G.add_edge("A", "C", weight=3)

>>> G.add_edge("C", "D", weight=4)

>>> nx.shortest_path(G, "A", "D",

weight="weight")

['A', 'B', 'D']

https://networkx.org/documentation/stable/reference/index.html
https://pypistats.org/packages/networkx

When dataset / graph sizes grow …

cuGraph

● Accelerating Graph analysis on GPUs
● With API similar to NetworkX

○ creating a graph
○ finding influencers
○ finding communities
○ exploring a graph
○ etc.

● Part of the RAPIDS suite
● Scalable
● Supported algorithms

import cugraph

import cudf

load graph data

datafile = "./my-graph-data.csv"

gdf = cudf.read_csv(datafile,

 names=["src", "dst"],

 delimiter='\t',

 dtype=["int32","int32"])

Creat a graph

G = cugraph.from_cudf_edgelist(gdf,

 source='src',

 destination='dst')

call an algorithm

gdf_page = cugraph.pagerank(G)

https://github.com/rapidsai/cugraph/blob/branch-24.04/docs/cugraph/source/graph_support/algorithms.md

CuGraph: NetworkX Compatibility

● Mimic NetworkX API

● Support NetworkX graph objects

● Suggestions

○ Replacing existing code with

cuGraph as much as possible

○ Or simply update the calls to graph

algorithms with cuGraph

● Differences in algorithms

import networkx as nx

import cugraph as cnx

create a random graph

G = nx.barabasi_albert_graph(N,M)

… do some NetworkX stuff …
…
call cugrpah algorithms

bc = cnx.betweenness_centrality(G)

import networkx as nx

create a random graph

G = nx.barabasi_albert_graph(N,M)

… do some NetworkX stuff …
…
call nx algorithms

bc = nx.betweenness_centrality(G)

https://docs.rapids.ai/api/cugraph/stable/basics/nx_transition/#differences-in-algorithms

nx-cugraph

● Using cuGraph as a backend to NetworkX on GPUs

○ Connects pylibcugraph and CuPy to NetworkX’s API

■ pylibcugraph: a python wrapper around cuGraph low-level CUDA-based API

■ CuPy: a GPU-accelerated array library

● Setting an environment variable with zero code changes
○ Running on GPU when cuGraph and an algorithm is supported

○ Otherwise, falling back to CPU-based NetworkX

● Supported Algorithms

https://github.com/rapidsai/cugraph/blob/branch-24.04/readme_pages/pylibcugraph.md
https://cupy.dev/
https://github.com/rapidsai/cugraph/blob/branch-24.04/python/nx-cugraph/README.md

Enabling nx-cugraph backend
● Via an environment variable with zero code changes

● Via a keyword argument in function calls

● Via a type-based dispatching

$ NETWORKX_AUTOMATIC_BACKENDS=cugraph python my_networkx_script.py

import networkx as nx

...

nx.betweennees_centrality(G, k=1000, backend="cugraph")

'''

import networkx as nx

import nx_cugraph

G = nx.Graph()

...

nxcg_G = nx_cugraph.from_networkx(G) # Graph type conversion

nx.betweenness_centrality(nxcg_G, k=1000) # using cugraph backend

Work on the clusters

● Building an Apptainer container from a RAPIDS Docker container

● Both cuGraph and NetworkX are included in a RAPIDS container

○ Docs wiki: https://docs.alliancecan.ca/wiki/RAPIDS

● nx-cugraph needs to be added to a RAPIDS container

○ CUDA 11.2 or up, Python 3.9 or up, and NetworkX v.3.2 or up

○ or RAPIDS v. 23.10 or up

https://docs.alliancecan.ca/wiki/RAPIDS

Adding nx-cugraph to a RAPIDS container

● Select a RAPIDS docker container from NVIDIA
● Build an Apptainer sandbox for RAPIDS
● Install nx-cugraph in the sandbox
● Convert the sandbox into an Apptainer image

$ apptainer build --sandbox rapids-sandbox docker://<rapids-docker-image-tag>
$ sudo apptainer shell --writable rapids-sandbox

Apptainer> source /opt/conda/etc/profile.d/conda.sh

Apptainer> conda install -c rapidsai-nightly -c conda-forge -c nvidia nx-cugraph

Apptainer> exit

$ apptainer build rapids-nx-cugraph.sif rapids-sandbox

Note: Above steps need to be done on your own computer (https://apptainer.org/docs/user/latest/)
 Submit a ticket (help@sharcnet.ca) for help if needed.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/rapidsai/containers/notebooks/tags
https://apptainer.org/docs/user/latest/
https://apptainer.org/docs/user/latest/
mailto:help@sharcnet.ca

A RAPIDS-nx-cugraph container

● Based on a RAPIDS docker container from NVIDIA:

○ Docker image tag: nvcr.io/nvidia/rapidsai/notebooks:24.02-cuda11.8-py3.10

○ RAPIDS v.24.02 with a notebook server on Ubuntu 20.04

○ Working with CUDA 11.8 and Python 3.10

● Image file, rapidsas-24.02-nx-cugraph.sif, is available at:

○ https://staff.sharcnet.ca/jhqin/GIS-cuGraph/

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/rapidsai/containers/notebooks/tags
https://staff.sharcnet.ca/jhqin/GIS-cuGraph/

Demo example

A large graph
○ a citation graph of a U.S. patent dataset
○ ~ 4 million nodes, and 16+ million edges
○ Compute betweenness centrality with approximation
○ Comparing the performance

■ NetworkX vs. cuGrapah vs. nx-cugraph

https://snap.stanford.edu/data/cit-Patents.html

Betweenness-Centrality

A measure of the relative importance of a node or an edge in a graph
● counting the number of shortest paths that pass through a node (or

an edge) vs total number of shortest paths for all node pairs

 ● Function in NetworkX
 nx.betweenness_centrality(G, k, …)

○ k, int, optional (default=None); k ≤ the total number of nodes;
○ higher k gives better approximation

Code examples: NetworkX vs cuGraph
nx-bc-demo.py

import sys

import time

import networkx as nx

import pandas

k = int(sys.argv[1])

Reading dataset into Pandas DataFrame as an edgelist...

pandas_edgelist = pandas.read_csv("cit-Patents.txt",

 skiprows=4, delimiter="\t", names=["src", "dst"],

 dtype={"src": "int32", "dst": "int32"})

Creating Graph from Pandas DataFrame edgelist...

G = nx.from_pandas_edgelist(pandas_edgelist, source="src",

 target="dst", create_using=nx.DiGraph)

Calculating betweenness_centrality

st = time.time()

bc_result = nx.betweenness_centrality(G, k=k)

print(f"BC time with {k=} was: {(time.time() - st):.2f} s")

cg-bc-demo.py

import sys

import time

import cugraph as cg

import cudf

k = int(sys.argv[1])

Reading dataset into CuDF DataFrame as an edgelist...

cudf_edgelist = cudf.read_csv("cit-Patents.txt",

 skiprows=4, delimiter="\t", names=["src", "dst"],

 dtype={"src": "int32", "dst": "int32"})

Creating Graph from cuDF DataFrame edgelist...

G = cg.from_cudf_edgelist(cudf_edgelist, source="src",

 destination ="dst", create_using=cg.Graph(directed=True))

Calculating betweenness_centrality

st = time.time()

bc_result = cg.betweenness_centrality(G, k=k)

print(f"BC time with {k=} was: {(time.time() - st):.2f} s")

Submit a batch job

[jhqin@gra-login1 Demo]$ tree

.

├── submit-job.sh # slurm job script
└── workdir # to be copied to a compute node
 ├── cg_bc_demo.py # a demo cugraph python script
 ├── cit-Patents.txt # a large graph dataset
 ├── nx_bc_demo.py # a demo networkX python script
 ├── rapidsai-24-nx-cugraph.sif # container image file
 └── run-job.sh # script to run in the container

Demo directory contents:

Submit job:

[jhqin@gra-login1 Demo]$ sbatch submit-job.sh

Submit a batch job

#!/bin/bash

#SBATCH --gres=gpu:1 # gpu request

#SBATCH --cpus-per-task=N # number of CPU cores

#SBATCH --mem=M # host memory

#SBATCH --time=DD-HH:MM # execution time

#SBATCH --account=def-user # project account

module load StdEnv/2023 apptainer

src_dir=</full/path/to>/workdir

cp -r $src_dir $SLURM_TMPDIR # copy workdir to local disk on compute node

work_dir=$SLURM_TMPDIR/workdir

cd $work_dir

container=rapidsai-24-nx-cugraph.sif # included in workdir

apptainer exec --nv $container $work_dir/run-job.sh # launching job execution

Slurm script:

submit-job.sh

Submit a batch job

Script to run in the container

run-job.sh

#!/bin/bash

source /opt/conda/etc/profile.d/conda.sh

nvidia-smi

echo "=======networkX test========="

python nx_bc_demo.py 10

python nx_bc_demo.py 50

echo "=======cuGraph test========="

python cg_bc_demo.py 10

python cg_bc_demo.py 50

python cg_bc_demo.py 500

echo "=======nx-cugraph test========="

NETWORKX_AUTOMATIC_BACKENDS=cugraph python nx_bc_demo.py 10

NETWORKX_AUTOMATIC_BACKENDS=cugraph python nx_bc_demo.py 50

NETWORKX_AUTOMATIC_BACKENDS=cugraph python nx_bc_demo.py 500

[jhqin@gra-login1 Demo]$ chmod +x workdir/run-job.sh

Note:

 run-job.sh should be executable.

Reference

● CuGraph documentation: https://docs.rapids.ai/api/cugraph/stable/

● CuGraph notebooks: https://github.com/rapidsai/cugraph/tree/main/notebooks

● RAPIDS 23.10 Release: https://medium.com/rapids-ai/rapids-23-10-release-075aa5a50570

● RAPIDS Docker Containers: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/rapidsai/containers/notebooks

● NVIDIA Technical Blog (Data Science): Accelerating NetworkX on NVIDIA GPUs for High Performance Graph

Analytics, Nov. 2023 by Rick Ratzel

● NVIDIA Technical Blog (Data Science): Beginner’s Guide to GPU Accelerated Graph Analytics in Python, Mar.

2021 by Tom Drabas

● Medium Blog: Introduction to Graph Analysis using cuGraph, Jul. 2023 by Don Acosta

● Medium Blog: Intro to Graph Analysis using cuGraph: Similarity Algorithms, Oct. 2023 by Don Acosta

https://docs.rapids.ai/api/cugraph/stable/
https://github.com/rapidsai/cugraph/tree/main/notebooks
https://medium.com/rapids-ai/rapids-23-10-release-075aa5a50570
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/rapidsai/containers/notebooks
https://developer.nvidia.com/blog/accelerating-networkx-on-nvidia-gpus-for-high-performance-graph-analytics/
https://developer.nvidia.com/blog/accelerating-networkx-on-nvidia-gpus-for-high-performance-graph-analytics/
https://developer.nvidia.com/blog/accelerating-networkx-on-nvidia-gpus-for-high-performance-graph-analytics/
https://developer.nvidia.com/blog/accelerating-networkx-on-nvidia-gpus-for-high-performance-graph-analytics/
https://medium.com/rapids-ai/introduction-to-graph-analysis-using-cugraph-a9dc2fbc3c5e
https://medium.com/rapids-ai/intro-to-graph-analysis-using-cugraph-similarity-algorithms-64fa923791ac

