
HPC Programming Language Chapel:
Parallel Approaches

Jemmy Hu

SHARCNET/Compute Canada

Oct. 07, 2020

Previous Base Language Overview:

https://www.youtube.com/watch?v=FG0L4XmkmI4

Example codes are available on Graham under
/home/jemmyhu/chapel/

https://www.youtube.com/watch?v=FG0L4XmkmI4

What is Chapel?

Chapel: A productive parallel programming language

● developed by Cray Inc.

● portable & scalable

● open-source & collaborative

Goals:
● Support general parallel programming

- “any parallel algorithm on any parallel hardware”

● Make parallel programming at scale far more productive

Designed around a high-level abstraction and multi-resolution philosophy.

Users can incrementally add more detail to their original code prototype.

Partitioned Global Address Space (PGAS) Languages

A programming model suited for shared and distributed memory parallel machines

● support a shared namespace on distributed memory
- permit parallel tasks to access remote variables by naming them

● establish a strong sense of ownership
- every variable has a well-defined location
- local variables are cheaper to access than remote ones

Traditional PGAS languages have been SPMD in nature
● best-known examples: Fortran Co-Arrays, UPC

Chapel is PGAS, but unlike most, it’s not inherently SPMD
● not “the other copies of the program”
● “global name/address space” comes from lexical scoping

- as in traditional languages, each declaration yields one variable
- variables are stored on the locale where the task declaring it is executing

● Communication though implicit, users can reason about communication
- semantic model is explicit about where data is placed / tasks execute
- execution-time queries support reasoning about locality ● e.g., here, x.locale

Chapel is a compiled language, Chapel source code

must be compiled to generate a binary or executable

to be run on the computer.

Chapel source code must be written in text files with

the extension .chpl.

Chapel compiler command is chpl.

chpl -o hello hello.chpl

chpl --fast -o hello hello.chpl

--fast indicates the compiler to optimise the binary to

run as fast as possible in the given architecture.

[jemmyhu@gra-login1 chapel]$ chpl -o hello hello.chpl

[jemmyhu@gra-login1 chapel]$./hello

Hello World from Chapel!

If we can see this, everything works!

//Chapel hellow.chpl

writeln('Hello World from Chapel!');

writeln('If we can see this, everything works!');

Chapel compiler

On Compute Canada clusters Cedar and Graham we have

two versions of Chapel:

one is a single-locale (single-node) Chapel,

chapel-single/1.15.0

the other is a multi-locale (multi-node) Chapel,

chapel-slurm-gasnetrun_ibv/1.15.0

module spider chapel

Interactive job for testing, e.g., serial

salloc --time=01:00:00 --ntasks=1 --mem-per-cpu=3G

--account=def-username

./hello

[jemmyhu@gra-login1 chapel]$ module load

nixpkgs/16.09 gcc/5.4.0

[jemmyhu@gra-login1 chapel]$ module load chapel-

single/1.15.0

[jemmyhu@gra-login1 chapel]$ which chpl

/cvmfs/soft.computecanada.ca/easybuild/software/2017/av

x2/Compiler/gcc5.4/chapel-single/1.15.0/bin/linux64/chpl

[jemmyhu@gra-login1 chapel]$ chpl -o hello hello.chpl

[jemmyhu@gra-login1 chapel]$./hello

Hello World from Chapel!

If we can see this, everything works!

Chapel on CC clusters

4 cpus on one node/locale

salloc --time=01:00:00 --cpus-per-task=4 --mem-per-

cpu=3G --account=def-username

2 nodes/locales, 2 cpus per locale

salloc --time=01:00:00 --nodes=2 --cpus-per-task=2

--mem-per-cpu=3G --account=def-username

For production jobs, submit a batch script to the queue

sbatch hello.sh

Task: a unit of computation that can/should execute in parallel with other tasks

Thread: a system resource that executes tasks
● not exposed in the language
● occasionally exposed in the implementation

Task Parallelism: a style of parallel programming in which parallelism is driven by
programmer-specified tasks

(in contrast with):
Data Parallelism: a style of parallel programming in which parallelism is driven by
computations over collections of data elements or their indices

A few terms:

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit the user to intermix layers arbitrarily Domain Maps Data Parallelism

Chapel’s Multiresolution Philosophy

Chapel language concepts

Domain Maps
Data Parallelism
Task Parallelism

Base Language
Locality Control

Target Machine

Locales in Chapel:

Definition:
● Abstract unit of target architecture
● Supports reasoning about locality

defines “here vs. there” / “local vs. remote”
● Capable of running tasks and storing variables

i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

Using locales:

● Users specify # of locales when running Chapel programs

a.out --numLocales=4

a.out -nl 4

● Chapel provides built-in locale variables

config const numLocales: int = …;
const Locales: [0..#numLocales] locale = …;

Locales: L0 L1 L2 L3

● User’s main() begins executing on locale #0

Parallel loops: forall, coforall

forall loops: Central concept for data parallelism

● use when a loop should be executed in parallel…
…but can legally be executed serially

● use when desired # tasks << # of iterations,
typically executed using 1 < #tasks << #iters

coforall loops: create a new task per iteration,
executed using a task per iteration

● use when the loop iterations must be executed in
parallel

● use when you want # tasks == # of iterations
● use when each iteration has substantial work

var counter = 0;
forall i in 1..100 with (+ reduce counter) {
counter += i;

}
writeln(“sum of the index = ", counter);

config const numTasks = here.numPUs();

coforall tid in 0..#numTasks do
writeln("Hello, world! from task ", tid, " of ",

numTasks);

[jemmyhu@gra768 Parallel]$./coforall_2
Hello, world! from task 3 of 4
Hello, world! from task 2 of 4
Hello, world! from task 1 of 4
Hello, world! from task 0 of 4

[jemmyhu@gra796 single_locale]$ chpl -o forall forall.chpl
[jemmyhu@gra796 single_locale]$./forall
sum of the index = 5050

Serial for loop code: pi.chpl

// forall parallel to calculate Pi

const pi = 3.14159265358979323846;

config const n = 1000;

var h, sum = 0.0, i: int;

h = 1.0 / n;

forall i in 1..n with (+ reduce sum) {

var x = h * (i - 0.5);

sum += 4.0 / (1.0 + x**2);

}

sum *= h;

writef("%.12n %.6n\n", sum, abs(sum-pi));

[jemmyhu@gra768 single_locale]$ chpl -o pi_forall
pi_forall.chpl
[jemmyhu@gra768 single_locale]$./pi_forall
3.14159273692 8.33333e-08
[jemmyhu@gra768 single_locale]$./pi_forall --n=100000
3.1415926536 8.33378e-12
[jemmyhu@gra768 single_locale]$./pi_forall --n=1000000
3.14159265359 8.26006e-14

Simple loop parallel: for to forall

Parallel tasks statement: begin

begin:

● Use to create a dynamic task with an
unstructured lifetime
● “fire and forget” (or at least “leave
running for awhile”)

A Chapel program always start as a single
main thread. You can then start
concurrent tasks with the begin
statement. A task spawned by the begin
statement will run in a different thread
while the main thread continues its
normal execution.

var x=0;
writeln("This is the main thread starting first task");
begin{

var c=0;
while c<5 {

c+=1;
writeln('thread 1: ',x+c);

}
}
writeln("This is the main thread starting second task");
begin{

var c=0;
while c<5 {

c+=1;
writeln('thread 2: ',x+c);

}
}
writeln('this is main thread, I am done...');

begin statements run asynchroniously

This is the main thread starting first task
This is the main thread starting second task
This is the main thread, I am done!
thread 2: 101
…
thread 1: 6
…

Parallel tasks: cobegin

cobegin:
● Use to create a related set of heterogeneous
tasks …or a small, fixed set of homogenous tasks
● The parent task depends on the completion of
the tasks

cobegin statements are different in that the
calling code waits for the cobegin's block of
parallelized code to finish before continuing.

Essentially, the cobegin example above is almost
equivalent to the begin example because all
the writeln statements run asynchroniously, yet
the main difference is that no code can run until
the cobegin block has finished. Thus,
the writeln statement outside the cobegin block
will always run last.

var x=0;
writeln("This is the main thread, my value of x is ",x);

cobegin{
{

var x=5;
writeln("this is task 1, my value of x is ",x);

}
writeln("this is task 2, my value of x is ",x);

}

writeln("this message won't appear until all tasks are done...");

Output:

This is the main thread, my value of x is 0
this is task 2, my value of x is 0
this is task 1, my value of x is 5
this message won't appear until all tasks are done...

Synchronization: sync

The keyword sync provides all sorts of
mechanisms to synchronise tasks in Chapel.

sync can be applied to a variable, statement or
block of code. We can simply use sync to force
the parent task to stop and wait until its
spawned-child-task ends.

var x=0;
writeln("This is the main thread starting a synchronous task");
sync {

begin{
var c=0;
while c<3{

c+=1;
writeln('thread 1: ',x+c);

}
}

}
writeln("The first task is done...");
writeln("This is the main thread starting an asynchronous
task");
begin{

var c=0;
while c<3{

c+=1;
writeln('thread 2: ',x+c);

}
}
writeln('this is main thread, I am done...');

Output:

This is the main thread starting a synchronous task
thread 1: 1
thread 1: 2
thread 1: 3
The first task is done...
This is the main thread starting an asynchronous task
this is main thread, I am done...
thread 2: 1
thread 2: 2
thread 2: 3

Sync statement with loops

Example: computes the value of pi by adding
up the area of many rectangles under half of a
circle and doubling that value.

const numRect = 10000000;
const width = 2.0 / numRect; // rectangle width
const numThreads = here.numPUs(); // no of cores the
computers processor has
var globalSum: real = 0.0;

proc calculateArea(init) {
var partialSum: real = 0.0;
var x: real;
var i: int = init;
do {

x = -1 + (i + 0.5) * width;
partialSum += sqrt(1.0 - x*x) * width;
i += numThreads;

} while (i < numRect-1);
globalSum += partialSum;
writeln("Thread: ", init, " globalSum: ", globalSum);

}

for i in 1..numThreads {
begin calculateArea(i);

}

writeln("This code estimates pi as ", globalSum*2);

Task begin implementation, race condition;
the code might print the value of globalSum*2
before the tasks launched with begin all add
their partial sum to the globalSum.

[jemmyhu@gra768 single_locale]$./pi_1
This code estimates pi as 0.0
Thread: 4 globalSum: 0.392699
Thread: 3 globalSum: 0.785398
Thread: 1 globalSum: 1.1781
Thread: 2 globalSum: 1.5708

Fix this race condition by adding a sync
statement to the for loop that creates the
tasks:

sync for i in 1..numThreads { ... }

const numRect = 10000000;
const width = 2.0 / numRect; // rectangle width
const numThreads = here.numCores; // number of cores the
computers processor has
var globalSum: real = 0.0;

proc calculateArea(init) {
var partialSum: real = 0.0;
var x: real;
var i: int = init;
do {

x = -1 + (i + 0.5) * width;
partialSum += sqrt(1.0 - x*x) * width;
i += numThreads;

} while (i < numRect-1);
globalSum += partialSum;
writeln("Thread: ", init, " globalSum: ", globalSum);

}

sync for i in 1..numThreads {
begin calculateArea(i);

}

writeln("This code estimates pi as ", globalSum*2);

[jemmyhu@gra768 single_locale]$./pi_1_sync
Thread: 3 globalSum: 0.392699
Thread: 4 globalSum: 0.785398
Thread: 2 globalSum: 1.1781
Thread: 1 globalSum: 1.5708
This code estimates pi as 3.14159

[jemmyhu@gra-login3 single_locale]$ chpl -o pi_1_forall
pi_1_forall.chpl
[jemmyhu@gra-login3 single_locale]$./pi_1_forall
Thread: 16 globalSum: 0.0981748
Thread: 9 globalSum: 0.19635
Thread: 8 globalSum: 0.294524
Thread: 11 globalSum: 0.392699
Thread: 10 globalSum: 0.490874
Thread: 12 globalSum: 0.589049
Thread: 14 globalSum: 0.687223
Thread: 6 globalSum: 0.785398
Thread: 5 globalSum: 0.883573
Thread: 15 globalSum: 0.981748
Thread: 2 globalSum: 1.07992
Thread: 1 globalSum: 1.1781
Thread: 3 globalSum: 1.27627
Thread: 4 globalSum: 1.37445
Thread: 13 globalSum: 1.47262
Thread: 7 globalSum: 1.5708
This code estimates pi as 3.14159

const numRect = 10000000;
const width = 2.0 / numRect; // rectangle width
const numThreads = here.numPUs(); // number of cores
the computers processor has
var globalSum: real = 0.0;

proc calculateArea(init) {
var partialSum: real = 0.0;
var x: real;
var i: int = init;
do {

x = -1 + (i + 0.5) * width;
partialSum += sqrt(1.0 - x*x) * width;
i += numThreads;

} while (i < numRect-1);
globalSum += partialSum;
writeln("Thread: ", init, " globalSum: ", globalSum);

}

forall i in 1..numThreads {
calculateArea(i);

}
writeln("This code estimates pi as ", globalSum*2);

Parallel for loops: forall

* Chapel utilises all shared memory cores on a node

Task Parallelism, Locality Control, by example

Domain Maps

Data Parallelism
Task Parallelism

Base Language
Locality Control

Target Machine

[jemmyhu@gra796 multi_locale]$ srun ./taskParallel_real -nl 2
Hello from task 2 of 2 running on gra796
Hello from task 1 of 2 running on gra796
Hello from task 2 of 2 running on gra800
Hello from task 1 of 2 running on gra800

[jemmyhu@gra800 single_locale]$./taskParallel
Hello from task 1 of 2 running on gra800
Hello from task 2 of 2 running on gra800

//taskParallel.chpl

coforall loc in Locales do

on loc {

const numTasks = here.numPUs();

coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n", tid, numTasks, here.name);

}

Data Parallelism, by example

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;

forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

[jemmyhu@gra-login1 single_locale]$./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

Distributed Data Parallelism, by example

dataParallel.chpl

use CyclicDist;

config const n = 1000;

var D = {1..n, 1..n}

dmapped Cyclic(startIdx = (1,1));

var A: [D] real;

forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A); [jemmyhu@gra796 multi_locale]$ srun ./dis_dataParallel_real --n=5 -nl 2
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

[jemmyhu@gra796 multi_locale]$ srun ./dis_dataParallel_real --n=5 -nl 3
1.1 1.3 1.5 1.7 1.9
2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

https://chapel-lang.org/

https://learnxinyminutes.com/docs/chapel/

https://hpc-carpentry.github.io/hpc-chapel/01-intro/

References

http://faculty.knox.edu/dbunde/teaching/chapel/tutorial-1.9.html

https://chapel-lang.org/docs/

https://chapel-lang.org/
https://learnxinyminutes.com/docs/chapel/
https://hpc-carpentry.github.io/hpc-chapel/01-intro/
http://faculty.knox.edu/dbunde/teaching/chapel/tutorial-1.9.html
https://chapel-lang.org/docs/

