
General Interest Seminar Series, 2018

Fundamentals of 
working at the 
command line at 
Graham
Isaac Ye, High Performance Technical Consultant
SHARCNET, York University
isaac@sharcnet.ca

�1

mailto:ppomorsk@sharcnet.ca


Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

JOB, SCHEDULER, RESOURCE

Login 
node

Computing 
node

Client 
PC SLURMSSH

Submitting a job

/scratch

Computing 
node

Computing 
node

Graham.computecanada.ca

- Module load 
- Compilation 
- Checking 

jobs 
- Job 

submission

- SSH Client  
(Putty, 
MobaXterm)

- Run-time 
- # of 

cores 
- Memory 
- Writing 

files

�2



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

�3

Outlines
• Basic LINUX concepts 
• BASH command line essentials 

• Command pipes/redirection 
• SHELL variables/scripts 

• Filesystems and permissions 
• Managing files 

• Working environment 
• Modules (if time permitted)



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Behind the command line: UNIX & SHELL

�4

• Unix is an operating system, Graham 
runs CentOS Linux, a distributions of 
Linux operating systems


• Most Unix-based systems have a GUI 
interface, but the Command Line (CL) 
offers more complex and abstract 
interactions with far less effort


• At login the system starts a SHELL 
process for you that acts as your CL 
interpreter to interface with the 
operation system


• Borne Again SHELL (BASH) is the 
default shell at SHRCNET



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

What is Shell?
• Shell is the interface between end user and the 

system

�5



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

The shell of Linux
• Linux has a variety of different shells:


– Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh), 
Bourne Again shell (bash).


• Certainly the most popular shell is “bash”. Bash is an sh-
compatible shell that incorporates useful features from 
the Korn shell (ksh) and C shell (csh). 


• It is intended to conform to the IEEE POSIX P1003.2/ISO 
9945.2 Shell and Tools standard. 


• It offers functional improvements over sh for both 
programming and interactive use.

�6

[isaac@saw377 ~]$ echo $SHELL 
/bin/bash 



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Basic Unix Concepts
• File


– Data stored in a standard format that behaves in a certain way depending on 
it’s function in the system; everything is a file in UNIX


• Program

– A file that can be executed (run)


• Process

– A program that is being executed (e.g. your computing job is made of one or 

more processes)

• Ownership


– Files/programs/processes are owned by a user and group

• Hierarchical Directory Structure


– Files are organized in directories (folders) that can have a parent (e.g. /home/
isaac/simulation)


• The base of the hierarchy is ‘root’, i.e: “/” (forward-slash)

• Managing your files and processes is crucial to effectively using the systems!

�7



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Logging in and getting started (some tips!)
• ssh to the system you’d like to use

– you see the message of the day and are left at a command prompt
• each time you type in a command you are executing one or more processes
• you can see commands you ran in the past with history
• you can scroll through previous commands with the ↑ and ↓ arrow keys
• you can complete commands / arguments with the Tab ↹ key !!!
• depending on your terminal (the software you are connecting with) you should 

be able to go to the start of a line with Ctrl-a or the end with Ctrl-e, and cut to 
the end with Ctrl-k 

• to exit, run the exit command
– if your terminal is not responding you may be able to disconnect your ssh 

session gracefully by entering ~. (sometimes repeatedly, while mashing 
the Enter↵ key in between…)

�8



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

The Command Prompt
• Commands are the way to “do things” in UNIX
• A command consists of a command name and options 

called “flags”
• Commands are typed at the command prompt
• In Unix, everything (including commands) is case-sensitive

�9

[prompt]$ <command> <flags> <args>

[isaac@saw377 ~]$   ls –l  –a  my_project

Command Prompt
Command

(Optional) flags

(Optional) arguments

Note: In UNIX, you’re expected to know what you’re doing.  Many 
          commands will print a message only if something went wrong.



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Executing commands

�10

• To run a command you simply type its name in and hit Enter↵
• The command must be in your $PATH and be executable (we’ll get to that 

later…)

[isaac@gra-login4 ~]$ echo $PATH 
/opt/software/slurm/current/bin:/cvmfs/soft.computecanada.ca/easybuild/software/
2017/avx2/Compiler/intel2016.4/openmpi/2.1.1/bin:/cvmfs/soft.computecanada.ca/
easybuild/software/2017/Core/imkl/11.3.4.258/mkl/bin:/cvmfs/
soft.computecanada.ca/easybuild/software/2017/Core/imkl/11.3.4.258/bin:/cvmfs/
soft.computecanada.ca/easybuild/software/2017/Core/ifort/2016.4.258/
compilers_and_libraries_2016.4.258/linux/bin/intel64:/cvmfs/
soft.computecanada.ca/nix/var/nix/profiles/gcc-5.4.0/bin:/cvmfs/
soft.computecanada.ca/easybuild/software/2017/Core/icc/2016.4.258/
compilers_and_libraries_2016.4.258/linux/bin/intel64:/cvmfs/
soft.computecanada.ca/easybuild/bin:/cvmfs/soft.computecanada.ca/nix/var/nix/
profiles/16.09/bin:/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09/
sbin:/cvmfs/soft.computecanada.ca/custom/bin:/opt/software/bin:/opt/software/
slurm/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/isaac/.local/
bin:/home/isaac/bin



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Basic commands
• Getting help with commands (the most important command!):

– man
• Figuring out who we are and where we are:

– whoami, hostname, date
• Navigating directories:

– cd, pwd
• Manipulating files and directories:

– cp, mv, rm, rmdir, mkdir
• Listing files and their properties:

– ls, file
• Displaying the contents of files:

– cat, tail, head, more, wc
• Investigating running programs:

– ps, top

�11



Intro. to LINUX/SHELL in SHARCNET Isaac Ye

General Interest Seminar

Linux File System Basics
• Linux files are stored in 

a single rooted, 
hierarchical file system


• Data files are stored in 
directories (folders)


• Directories may be 
nested as deep as 
needed

�12

/

etc homeusr

passwd inittab

isaac alex dave

a b

Directories

User home 
directories

Data files

root

work scratch



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

File system structure and shortcuts

�13

• The root of the file system hierarchy is /
•  it contains subdirectories which may contain further subdirectories

• File systems are mounted within the hierarchy,
• e.g.: one starts off in their SHARCNET /home directory after logging in: /

home/$USER
• Can also refer to this by a shortcut “~/”
• Can always get to this directory by running cd without any arguments

• One can refer to file / directory locations by their absolute or relative path
• The absolute path starts with the root and ends with the file or directory in 

question, e.g. /home/$USER/simulation1/output.txt
• The relative path depends on which directory you are presently in within the 

filesystem
• Run the pwd command to see which directory you are in
• e.g. if we are in /home/$USER the relative path to the above file is 

simulation1/output.txt
• Shortcut for current directory is “.”; for parent directory it is “..”,

• e.g. one can go up a directory with cd .. , run a file in a subdirectory by ./
simulation1/program.x



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Some Special File Names
• Some file names are special:


– /    The root directory (not to be confused with the root user) 
– .    The current directory 
– .. The parent (previous) directory 
– ~    My home directory 

• Examples:

– ./a        same as a 

– ../isaac/x   go up one level then look in directory isaac for x

�14



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Structures of files
• names can be up to 255 characters, use non-standard characters and file
• name extensions do not matter to most command line programs
• files starting with a “.” are hidden, one can see them by specifying: ls -a
• files have a set of attributes associated with them, you can see a long 

listing
• that includes some of the more pertinent values by running: ls -l

– For each file / directory it will return a record like

drwxr-xr-x  1  beaker  honeydew  4096  Oct 29 2015  test_dir

�15



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

File Permissions
• The long version of a file listing (ls -l) will 

display the file permissions:

16

-rwxrwxr-x   1 rvdheij  rvdheij      5224 Dec 30 03:22 hello 
-rw-rw-r--   1 rvdheij  rvdheij       221 Dec 30 03:59 hello.c 
-rw-rw-r--   1 rvdheij  rvdheij      1514 Dec 30 03:59 hello.s 
drwxrwxr-x   7 rvdheij  rvdheij      1024 Dec 31 14:52 posixuft 

Permissions

Owner

Group



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Interpreting File Permissions

�17

-rwxrwxrwx
Other permissions 

Group permissions 

Owner permissions 

Directory flag (- = file;d=directory; l=link)



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

File Permissions
• Linux provides three kinds of permissions:


– Read (r, 4) - users with read permission may read 
the file or list the directory


– Write (w, 2) - users with write permission may 
write to the file or new files to the directory


– Execute (x, 1) - users with execute permission 
may execute the file or lookup a specific file 
within a directory

�18



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Meaning of output: ls -l for a simple directory
drwxr-xr-x  1  beaker  honeydew  4096  Oct 29 2015  test_dir

             1                2       3            4              5             6                7
1. file type and permissions

a. File types: - (regular), d (directory), c (character), b (block) , l (link), s 
(socket), p (pipe)
b. Permissions: r (read), w (write), x (execute), s (setgid, setuid) and t 
(sticky bit)

2. hard link count
a. Indicates the number of copies of the particular file
3. user owner or UID of the file
4. group owner or GID of the file
5. size of the file in bytes
6. date and time that the file was last modified (versus access / creation)
7. name of the file

�19



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Users and Groups
• Each user on the system is identified by a unique username ( stored as an
• environment variable: $USER ) and associated with a numeric UID

– This is your SHARCNET username @ SHARCNET
• Each user belongs to one or more groups. Each group has a unique group
• name and numeric GID associated with it

– At SHARCNET each sponsor has their own group for them and their 
group members

– Other groups exist (eg. to get access to commercial software, institutional 
groups, etc.)

• These are the ownership associated with the file permissions settings
• A file owner can possibly** change the group ownership of a file ( chgrp ) but 

only the superuser (root user) can change ownership ( chown )
• One can change specific file permissions (read, write, execute permissions) 

with the chmod command

�20



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

File Permissions: umask and chmod
• Default file permissions are applied to a file based on a mask value: 

umask
• One can set this value so that when new directories / files are created 

they are created with different permissions
• Permissions are either represented as octal values or symbolic:

rwx---r-x = 0705 or u+rwx,o+rx
rwxr-xr-- = 0754 or u+rwx,g+rx,o+r

• To change a file or directory’s permissions use chmod:
[merz@fenrir ~]$ ls -l t1
-rw-rw-r--. 1 merz merz 0 Oct 28 09:28 t1
[merz@fenrir ~]$ chmod u+x,g+x,o+wx t1
[merz@fenrir ~]$ ls -l t1
-rwxrwxrwx. 1 merz merz 0 Oct 28 09:28 t1

�21



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Access Control Lists: the smart way to share

• Access Control Lists are implemented by the file system to support finer-
grained permission than are available via regular file permission

– Can share files or directories with independent permissions for 
multiple users and groups

• One can see the ACL for a particular file/directory with the getfacl 
command

�22

[isaac@gra-login4 ~]$ getfacl testing1 
# file: testing1 
# owner: isaac 
# group: isaac 
user::rw- 
group::r-- 
other::---



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Modifying the access control list
One uses the setfacl command to modify the ACL for a file/directory. To add 
read
and execute permissions for /work/beaker for user bunsen, eg.

�23

[isaac@gra-login4 ~]$ setfacl -m u:feimao:rx testing1 
[isaac@gra-login4 ~]$ getfacl testing1 
# file: testing1 
# owner: isaac 
# group: isaac 
user::rw- 
user:feimao:r-x 
group::r-- 
mask::r-x 
other::---



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Managing files: tar
• The tar command is used to archive files

– allows one to pack multiple files into a single file
– allows one to mathematically compress the files into a smaller amount of 

data
– very useful for cleaning up, saving data for long term, etc.

• To create an archive with bzip2 compression, with verbose output: 
– tar -cvjf tar_file_output.tar.bz2 <files_or_dirs_to_pack>

• To unpack an archive with bzip2 compression, with verbose output:
– tar -xvjf tar_file_output.tar.bz2

• There are many switches available to control the behavior of tar, eg. -z allows 
one to use the more common gzip compression algorithm

�24



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Editing Text
• Which text editor is “the best” is a holy war.  Pick one 

and get comfortable with it.

• Three text editors you should be aware of:


– nano – An improved ‘pico’ editor 
• To quit:  Ctrl-x


– emacs/xemacs – A heavily-featured editor commonly used 
in programming 
• To quit: Ctrl-x Ctrl-c


– vim/vi – Another editor, also used in programming 
• To quit: <Esc> : q <Enter>  (or QQ -- capitals matter)

�25



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

‘nano’ text editor in command line 

�26



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Command Pipe and Redirection
• Pipes ( | ) offer a way to chain together commands (sending output from 

one to the input for another)

– Redirection ( > , >> ) lets one store the output of a command in a file
– > will overwrite the output file, >> will append to it instead

• For example, if we want to count all the files in a directory and store that 
value in a file we can do it in one command:

 ls -1 * | wc -l > number_files_in_directory
• By chaining together simple commands with pipes one can evaluate 

sophisticated expressions with little effort

�27



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Command aliases
• The alias command allows you to build new commands
• For example, one can set up an alias to run a command with particular, 

common switches:
alias lsfull=’ls -larth’

• Now when one runs lsfull it will automatically expand to execute ls with 
the -larth switches / options

• One can also use environment variables and pipes, etc.:
alias wh='echo "["$USER"] ["$HOSTNAME"] ["$PWD"] ["`date`"] 
[“`uptime`"]"'
alias psme='ps aux | grep $USER | grep -v grep'

• Run alias without any arguments to see which are presently set

�28



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

SHELL initialization: /home/$USER/.bashrc
• When you first login or start a 

new bash process, it’s 
environment and

• configuration is set based on 
a configuration file: /home/
$USER/.bashrc

• Useful for setting up 
modules, environment 
variables or command 
aliases to persist between 
sessions

�29

[isaac@gra-login4 ~]$ cat .bashrc 
# .bashrc 

# Source global definitions 
if [ -f /etc/bashrc ]; then 
 test -n "$__ETC_PROFILE_SOURCED" || . /etc/bashrc 
fi 

# Uncomment the following line if you don't like 
# export SYSTEMD_PAGER= 

# User specific aliases and functions 

export HISTSIZE= 
export HISTFILESIZE= 

export SLURM_ACCOUNT=def-isaac 
export SBATCH_ACCOUNT=$SLURM_ACCOUNT 
export SALLOC_ACCOUNT=$SLURM_ACCOUNT 

export NIXPKGS_ALLOW_UNFREE=1 
export SKIP_CC_CVMFS=1 

alias ml='module list' 
alias psme='ps aux | grep $USER | grep -v grep' 



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Environment Variables
• Environment variables are global settings that 

control the function of the shell and other Linux 
programs. They are sometimes referred to global 
shell variables.


• Check your environment 

�30

[isaac@saw377 ~]$ env 
MKLROOT=/opt/sharcnet/intel/11.0.083/ifc/mkl 
MODULE_VERSION_STACK=3.2.6 
MANPATH=/opt/sharcnet/octave/current/share/man:/opt/sharcnet/netcdf/current/man: 
FOAM_SOLVERS=/work/isaac/OpenFOAM/OpenFOAM-1.6/applications/solvers 
FOAM_APPBIN=/work/isaac/OpenFOAM/OpenFOAM-1.6/applications/bin/linux64GccDPOpt 
FOAM_TUTORIALS=/work/isaac/OpenFOAM/OpenFOAM-1.6/tutorials 
FOAM_JOB_DIR=/work/isaac/OpenFOAM/jobControl 
HOSTNAME=saw377 
snrestart=--nosrun /opt/sharcnet/blcr/current/bin/sn_restart.sh 
IPPROOT=/opt/sharcnet/intel/11.0.083/icc/ipp/em64t 
INTEL_LICENSE_FILE=/opt/sharcnet/intel/11.0.083/ifc/licensesADFBIN=/opt/sharcnet/adf/current/bin 



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Some Important Environment Variables
• HOME


– Your home directory (often be abbreviated as “~”)

• TERM


– The type of terminal you are running (for example 
vt100, xterm, and ansi)


• PWD

– Current working directory


• PATH

– List of directories to search for commands

�31



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

PATH Environment Variable
• Controls where commands are found


– PATH is a list of directory pathnames separated 
by colons. For example:

�PATH=/bin:/usr/bin:/usr/X11R6/bin:/
usr/local/bin:/home/alex/bin 

– If  a command does not contain a slash, the shell 
tries finding the command in each directory in 
PATH. The first match is the command that will 
run


– Set in /etc/profile, ~/.profile, 
~/.bashrc

�32



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Managing files: basic command
• to list files in a directory: ls

– one can use a shell metacharacter, * , to match files with particular 
names, e.g. ls *.txt

– a useful set of options is ls -larth ; display all files, with long information, 
sorted from oldest to

• newest, with sizes in human readable format
• to see how much space is being used on different file systems: df -h
• to see how much space is being used in a folder: du -h
• to see your disk usage quota status at SHARCNET: quota
• a useful utility is dos2unix . Text files created in Windows typically do not 

work on Unix-based systems. You need to run them through this command 
first,

e.g. dos2unix -n windows_file.txt linux_file.txt
• another useful utility is the find command. It can search within file trees for 

files of a particular type, with particular names, dates, contents, etc.

�33



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Find syntax
• find <path to start searching from> <expression>

• Where <expression> can be one or more of the following (plus others, see -exec !):

• -name <filename pattern>
• -type <file type: block (b), char (c), regular (f)>
• -user <owner of the file (uid)>
• -group <group owner of the file (gid)>
• -mtime <files modified within x days>

• +x : older than, -x : newer than, x : equal to
• -ls

• display file attributes
• -print

• print the names of the files returned, without –print 
results are suppressed

• Example:
• find /work/beaker -type f –uid 1008 –exec mv { } /tmp \;

• “find all files in /work/beaker owned by UID 1008, and move them to /tmp”

�34



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Module 
• LMOD tool developed at TACC replaces ‘Environment modules’(flat 

structure) in most legacy servers 
• Lmod is a Lua based module system that easily handles the 

MODULEPATH Hierarchical problem 
• Similar to the module in legacy system 
• Supports flat layout of modules and software hierarchy 
• A "modulefile" contains the information needed to make an 

application or library available in the user's login session. 
Typically a module file contains instructions that modify or 
initialize environment variables such as PATH and 
LD_LIBRARY_PATH in order to use different installed programs.

�35



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Module search
• Search for modules is 

with the “module 
spider” command. 
This command 
searches the entire 
list of possible 
modules. The 
difference between 
“module avail” and 
“module spider” is 
explained in the 
“Module Hierarchy” 
and “Searching for 
Modules” section.

�36

[isaac@gra-login4 ~]$ module spider openmpi/2.1.1 

-------------------------------------------------------- 
  openmpi: openmpi/2.1.1 
-------------------------------------------------------- 
    Description: 
      The Open MPI Project is an open source MPI-2  
    Properties: 
      MPI implementations / Implémentations MPI 

    You will need to load all module(s) on any one of  
      nixpkgs/16.09  gcc/4.8.5 
      nixpkgs/16.09  gcc/5.4.0 
      nixpkgs/16.09  gcc/5.4.0  cuda/8.0.44 
      nixpkgs/16.09  gcc/5.4.0  cuda/9.0.176 
      nixpkgs/16.09  gcc/6.4.0 
      nixpkgs/16.09  gcc/6.4.0  cuda/9.0.176 
      nixpkgs/16.09  gcc/7.3.0 
      nixpkgs/16.09  intel/2014.6 
      nixpkgs/16.09  intel/2016.4 
      nixpkgs/16.09  intel/2016.4  cuda/8.0.44 
      nixpkgs/16.09  intel/2016.4  cuda/9.0.176 
      nixpkgs/16.09  intel/2017.1 
… 



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Module collections
• Lmod allows you to create a collection of modules. To do so, 

first load the desired modules. For example: 

• The my_modules argument is a name you give the collection. 
• Then in a later session or in a job you can restore the 

collection with the command 

• a user can print the contents of a collection with:

�37

module load gcc/4.8 openmpi/1.8 mkl
module save my_modules

module restore my_modules

module describe my_modules



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Module collections
• To see a list of your saved modules (stored @ ~/.lmod.d) 

• The my_modules argument is a name you give the collection. 
• Then in a later session or in a job you can restore the 

collection with the command 

• a user can print the contents of a collection with:

�38

module savelist

module restore my_modules

module describe my_modules



Fundamentals of working at the command line at Graham

General Interest Seminar Series, 2018

Module features
• Only one version loaded at a time 

• Lmod will refuse to load two versions of the same module at the 
same time. For example, you cannot have versions 4.8 and 5.4 of 
the GCC compilers loaded at once. 

• Only one module in the same family loaded at a time 
• It is possible for administrators to specify that two modules with 

different names are of the same family. Lmod will refuse to load 
two modules of the same family. Typical examples are compiler 
modules (gcc, intel), MPI modules (openmpi, mvapich2), or BLAS 
library modules (mkl, openblas). 

• Automatic replacement of modules 
• When Lmod detects two modules of the same family, or two 

version of the same module, the command module load will 
automatically replace the original module with the one to be 
loaded. In the cases where the replaced module is a node in 
the module hierarchy, dependent modules will be reloaded if 

�39



General Interest Seminar Series, 2018

THANK YOU!

�40


