

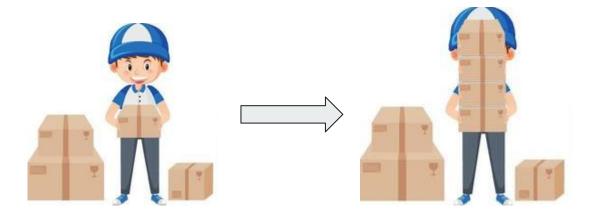
Squeeze more juice out of a single GPU in deep learning

Weiguang Guan, <u>guanw@sharcnet.ca</u> SHARCNet/Digital Research Alliance of Canada

FAQ

- Is a single GPU sufficient for my training task?
- Do I need to use multiple GPUs
- Is it true that the more GPUs you use, the better?

In most cases, single GPU is more than enough!



a Alliance de recherche numérique du Canada

Choice of using multiple GPUs or a single GPU

Depending on workload

- Size of neural network
- Size of training data
- Capability of GPU

How could I know ...

- Comparative method
 - How many GPUs and what GPUs are used in training similar NNs
- Timing tests using
 - Single GPU (T4, V100, V100, A100, ...)
 - Multiple GPUs

Tip: Use *watch -n1 nvidia-smi* to monitor GPU usage

Reference GPU units

https://docs.alliancecan.ca/wiki/Allocations and compute scheduling

FP32 score	FP16 score	Memory score	Weighted Score	
Weight:	1.6	1.6	0.8	(RGU)
Model			·	
P100-12gb	0.48	0.00	0.3	1.0
P100-16gb	0.48	0.00	0.4	1.1
T4-16gb	0.42	0.21	0.4	1.3
V100-16gb	0.81	0.40	0.4	2.2
V100-32gb	0.81	0.40	0.8	2.6
A100-40gb	1.00	1.00	1.0	4.0
A100-80gb*	1.00	1.00	2.0	4.8

What can we do if we find a single GPU is under-utilized

Simultaneously run multiple training processes on a single GPU.

NOTE: Usually one needs to run NN training multiple times in order to find optimal hyper-parameters (learning rate, batch size, ...).

Two methods to simultaneously run multiple trainings

- Simply run multiple training processes on a single GPU
- Split a GPU into multiple logical ones and run a training process on each logical GPU.

Physical/logical GPUs

Tensorflow deals with logical GPUs rather physical ones. For example, with tf.device(logical_gpu):

- By default, a physical GPU corresponds to a logical GPU
- A single GPU can be split to multiple logical GPUs

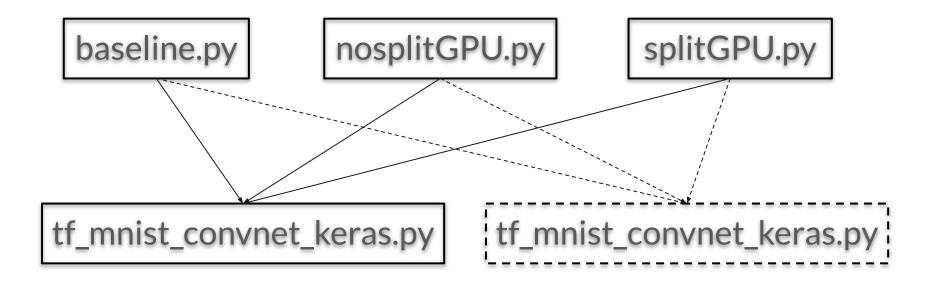
Some useful TF functions

- tf.config.list_physical_devices('GPU'), which returns a list of physical GPUs
- tf.config.list_logical_devices('GPU'), which returns a list of logical GPUs
- tf.config.set_logical_device_configuration(device, configs_of_logical_devices), which splits device into multiple logical ones based on configs_of_logical_devices.

An example to show the whole process

Two NNs:

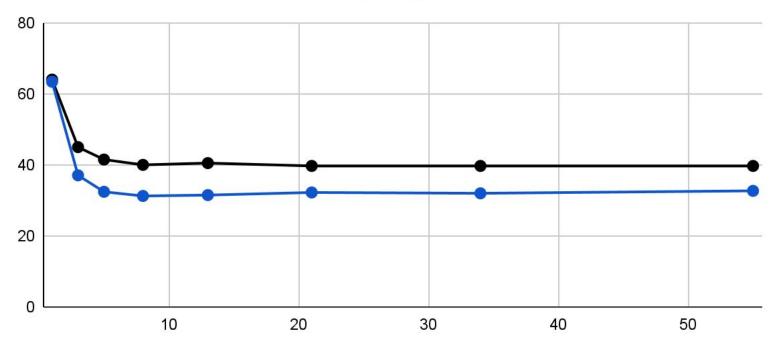
- A small NN for recognizing handwritten digits
- A medium sized NN: Resnet-50


Experiments:

- Run a regular NN on a single GPU as baseline
 - \circ Check the GPU utilization
- Run N training processes in parallel on a single GPU, where N=3, 5, 8, 13, 21, 34, ... with/without splitting it into multiple logical GPUs

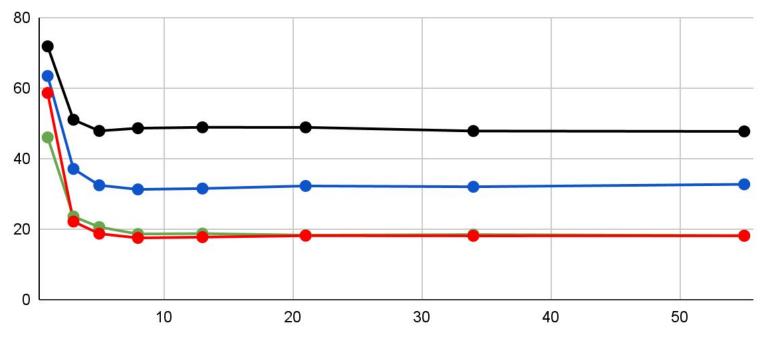
Let's take a look at the code!

Alliance de recherche numérique du Canada


Let's take a look at the results!

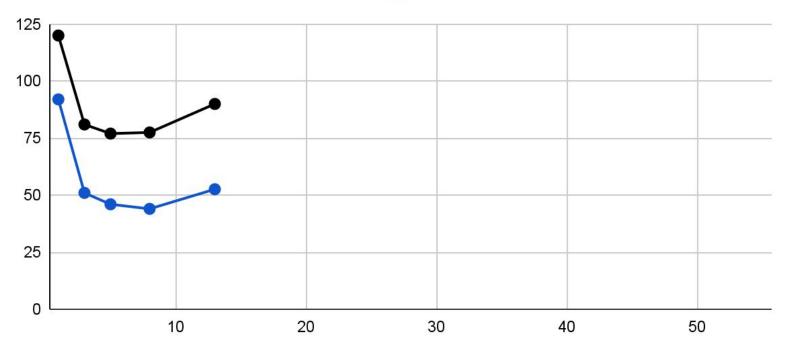
Time per training (MNIST) on P100

🕨 no split 🛛 🔵 Split


Number of training processes

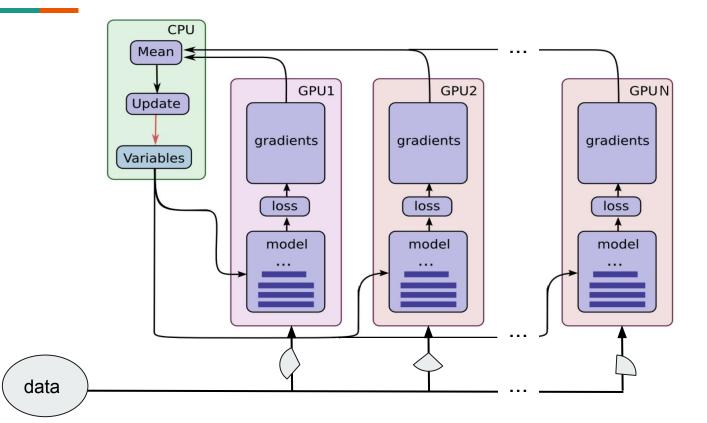
Time per training (MNIST)

🔵 T4 🔵 P100 🌑 V100-16G 🛛 🛑 V100-32G


Number of logical GPUs

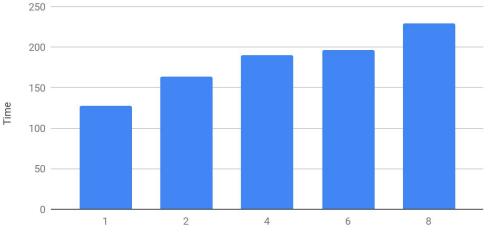
Time per training (CIFAR10)

🗩 P100 🛛 🔵 V100-16G



Number of logical GPUs

Can Mirrored strategy help?



Mirrored strategy test

Batch size = 256 Iterations = 20000				
# of	Time (sec)			
GPUs	p100	v100		
1	135	128		
2	161	164		
4		190		
6		196		
8		229		

nVidia v100 GPU

#GPUs

Conclusion

- GPU is under-utilized when used to train small NN. One can find the utilization by command *nvidia-smi* or by testing
- We can get better throughput by simultaneously running multiple training processes on a single GPU
- One needs to find the optimal split of a single GPU to reach maximal throughput by experiment.