
Squeeze more juice out of a single GPU 
in deep learning

Weiguang Guan, guanw@sharcnet.ca
SHARCNet/Digital Research Alliance of Canada

mailto:guanw@sharcnet.ca


FAQ

● Is a single GPU sufficient for my training task?

● Do I need to use multiple GPUs

● Is it true that the more GPUs you use, the better?

In most cases, single GPU is more than enough!



Choice of using multiple GPUs or a single GPU

Depending on workload

● Size of neural network

● Size of training data

● Capability of GPU



How could I know …

● Comparative method
○ How many GPUs and what GPUs are used in training similar NNs

● Timing tests using 
○ Single GPU (T4, V100, V100, A100, …)

○ Multiple GPUs

Tip: Use watch -n1 nvidia-smi to monitor GPU usage



Reference GPU units

https://docs.alliancecan.ca/wiki/Allocations_and_compute_scheduling

FP32 score FP16 score Memory score Weighted Score

Weight: 1.6 1.6 0.8 (RGU)

Model

P100-12gb 0.48 0.00 0.3 1.0

P100-16gb 0.48 0.00 0.4 1.1

T4-16gb 0.42 0.21 0.4 1.3

V100-16gb 0.81 0.40 0.4 2.2

V100-32gb 0.81 0.40 0.8 2.6

A100-40gb 1.00 1.00 1.0 4.0

A100-80gb* 1.00 1.00 2.0 4.8

https://docs.alliancecan.ca/wiki/Allocations_and_compute_scheduling


What can we do if we find a single GPU is under-utilized

Simultaneously run multiple training processes on a single GPU.

NOTE: Usually one needs to run NN training multiple times in order to find 

optimal hyper-parameters (learning rate, batch size, … ).

GPU

Workloads



Two methods to simultaneously run multiple trainings

● Simply run multiple training processes on a single GPU

● Split a GPU into multiple logical ones and run a training process on each 

logical GPU.



Physical/logical GPUs

Tensorflow deals with logical GPUs rather physical ones. For example,

with tf.device(logical_gpu) :

● By default, a physical GPU corresponds to a logical GPU

● A single GPU can be split to multiple logical GPUs



Some useful TF functions

● tf.config.list_physical_devices('GPU'), which returns a list of physical GPUs

● tf.config.list_logical_devices('GPU'), which returns a list of logical GPUs

● tf.config.set_logical_device_configuration(device, configs_of_logical_devices), 
which splits device into multiple logical ones based on 

configs_of_logical_devices.



An example to show the whole process

Two NNs: 

● A small NN for recognizing handwritten digits
● A medium sized NN: Resnet-50 

Experiments:

● Run a regular NN on a single GPU as baseline
○ Check the GPU utilization

● Run N training processes in parallel on a single GPU, where N=3, 5, 8, 13, 
21, 34, … with/without splitting it into multiple logical GPUs



Let’s take a look at the code!

baseline.py nosplitGPU.py splitGPU.py

tf_mnist_convnet_keras.py tf_mnist_convnet_keras.py



Let’s take a look at the results!









Can Mirrored strategy help?

data ...

...

...



Mirrored strategy test

Batch size = 256
Iterations = 20000

# of 
GPUs

Time (sec)

p100 v100

1 135 128

2 161 164

4 190

6 196

8 229



Conclusion

● GPU is under-utilized when used to train small NN. One can find the 

utilization by command nvidia-smi or by testing 

● We can get better throughput by simultaneously running multiple 

training processes on a single GPU

● One needs to find the optimal split of a single GPU to reach maximal 

throughput by experiment.


