
SUMMERSCHOOL 2007GENERAL INTEREST SEMINARS 2017Morden Fortran:
Concurrency and
parallelism
April 19, 2017

Ge Baolai
SHARCNET
Western University

Outline
 Highlights of some Fortran 2008

enhancement
 Array assignment and concurrency of do

loops
 Parallel computing with coarrays

Fortran 2008 Features
● M. Metcalf, J. Reid, M. Cohen,

“Modern Fortran Explained”, Oxford,
2011.

● Fortran 2008 standards draft (latest).
You may get it from:
http://www.j3-fortran.org/doc/year/10/10-007.pdf

● J. Reid, “The New Features of Fortran
2008”:
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf

http://www.j3-fortran.org/doc/year/10/10-007.pdf

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Some Fortran 2008 Enhancement

character, parameter:: vowles(*) = [‘a’,’e’,’i’,’o’,’u’] ! Named constant array, size omitted.

real:: a(6), b(100), c(2,3)

a = [1,2,3,4,5,6] ! Array assignment, similar to MATLAB.

b(1:6) = a ! This implies vectorized operations.

c = reshape(a,[2,3])

a(::2) ! Get elements with even indices.

a(5:1:-1) ! Traverse elements in reverse order.

a=1; b=2; c=3; d=5 ! Use of semicolon to separate statements.

do concurrent(i=1:n, j=1:n, i/=j) ! Do concurrent construct, with condition mask i/=j.

enddo

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Some Fortran 2008 Enhancement

! New interfaces to trig functions and new hyperbolic functions.

acos(x), asin(x), atan(x), cosh(x), sinh(x), tan(x), tanh(x)

acosh(x), asinh(x), atanh(x)

! New special mathematical functions.

bessel_j0(x), bessel_j1(x), bessel_jn(x)

bessel_y0(x), bessel_y1(x), bessel_yn(x)

erf(x), erfc(x)

gamma(x), log_gamma(x)

! Euclidean norms.

hypot(x,y) .

norm2(x[,dim]) . Using LAPACK routine norm(x,norm_type)

 is perhaps still the best for performance.

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Some Fortran 2008 Enhancement

! A handy routine to execute an external command

call execute_command_line(command[, wait, exitstat, cmdstat, cmdmsg])

where

command The command to be executed.

The following arguments are optional:

wait Logical, if FALSE, then the command is executed asynchronously (non
blocking).

exitstat If executed synchronously, set to a processor-dependent exit status.

cmdstat The status of the execution of the command.

cmdmsg Contains the message from the command.

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Some Fortran 2008 Enhancement

! Array and single value variable

real:: x(10000)

real:: a(1000,1000)

real:: b(1000,1000)

integer:: m, n

real:: u, v, w

complex, allocatable:: z(:)

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Some Fortran 2008 Enhancement

! Coarrays – globally accessible objects on shared and distributed memory systems.

real:: x(10000)[16] ! x accessible on an array of 16 processors.

real:: a(1000,1000)[*] ! a accessible on an array of processors.

real:: b(1000,1000)[16,16] ! b accessible on a 16x16 processor grid

integer:: m[*], n[*] ! Or written as: integer, codimension[*]:: m, n

real:: u[*], v[*], w[*] ! Or written as: real, codimension[*]:: u, v, w

complex, allocatable, codimension[*] :: z(:)

! Typical SIMD programming model

if (this_image() == 1) then

 input data

 do image = 1, num_images()

 u[image] = u ! Send the value of local u to remote u’s on all images

 enddo

endif

Vectorization & Concurrency

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
DO loops

! Array assignment

a = (/(i,i=0,n)/)

! Array elemental assignment

do i = 0, n

 a(i) = i

enddo

 The first assignment has a
simple syntax, similar to
MATLAB. But can be slower for
large n.

 The loop is traditional, can be
vectorized by the compiler.

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
DO loops

! Do concurrent with mask

do concurrent(i = 1:n, a(i) > b(i))

 a(i) = a(i) - b(i)*d(i)

 c(i) = c(i) + a(i)

enddo

! Equivalent form

do concurrent(i = 1:n)

 if (a(i) > b(i)) then

 a(i) = a(i) - b(i)*d(i)

 c(i) = c(i) + a(i)

 endif

enddo

 Simple, clean, tells compiler
explicitly no dependencies
between iterations.

 The traditional form, with if
branch embedded inside the
loop.

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Array Assignment

real(8):: a(1000000), b(1000000)

! Loop expression

do i = 1,n

 b(i) = a(i)

enddo

! Or in short hand

b(1:n) = a(1:n)

! Or simply

b = a

 The compiler can optimize the
code in both cases without loops at
all.

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017

Advantages
&
Disadvantages

Array Assignment: Strength and Weakness

! Array assignment by copy

a(1:n) = a(1+m:n+m)

! Loop expression

do i = 1,n

 a(i) = a(i+m)

enddo

 The array assignment is vectorized
and always gives the correct
answer.

 The array assignment might be at
a cost of overhead – use of a
temporary store on the RHS.

 The loop, however, is error prone.
Each iteration has a backward
dependency when m=-1, resulting
in wrong answer.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

m>0 m<0

0 0 0 0 0 0 0 0result result1 2 3 4 5 6 7 8

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
DO loops

We use gfortran compile, with option -O3 and -fopt-info-optimized

gfortran array_assignment.f90 -O3 -fopt-info-optimized=array_assignment.optrpt

A vectorization report is written to the file array_assignment.optrpt:

array_assignment.f90:17:0: note: Loop 3 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:30:0: note: Loop 5 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:36:0: note: Loop 6 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:44:0: note: Loop 7 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:44:0: note: Loop 8 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:51:0: note: Loop 9 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:53:0: note: loop vectorized

array_assignment.f90:53:0: note: loop versioned for vectorization because of possible aliasing

array_assignment.f90:53:0: note: loop peeled for vectorization to enhance alignment

array_assignment.f90:17:0: note: loop vectorized

array_assignment.f90:17:0: note: loop peeled for vectorization to enhance alignment

array_assignment.f90:53:0: note: loop turned into non-loop; it never loops.

array_assignment.f90:53:0: note: loop with 3 iterations completely unrolled

array_assignment.f90:1:0: note: loop turned into non-loop; it never loops.

array_assignment.f90:1:0: note: loop with 3 iterations completely unrolled

array_assignment.f90:17:0: note: loop turned into non-loop; it never loops

array_assignment.f90:1:0: note: loop turned into non-loop; it never loops.

array_assignment.f90:1:0: note: loop with 10 iterations completely unrolled

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
DO loops

call system_clock(count_rate=crate)

call system_clock(count=c1)

do concurrent (i = 1:m)

 c(i) = sqrt(a(i) + b(i))

enddo

call system_clock(count=c2)

dt = 1.0*(c2 - c1)/crate

call system_clock(count=c1)

c = sqrt(a + b)

call system_clock(count=c2)

dt = 1.0*(c2 - c1)/crate

 Using loop

 The equivalent (slightly faster)

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
DO loops

! Using loop

do concurrent(i = 1:n, a(i) > b(i))

 a(i) = a(i) - b(i)*d(i)

 c(i) = c(i) + a(i)

enddo

! Using logical mask and merge()

logical:: mask(n)

... ...

mask = a > b

a = a - merge(b*d,0.,mask)

c = c + merge(a,0.,mask)

 Using loop

 The equivalent

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Concurrency, OOP, Some Timings...

do concurrent(i = 1:n, a(i) > b(i))

 a(i) = a(i) - b(i)*d(i)

 c(i) = c(i) + a(i)

end do

logical:: mask(n)

mask = a > b

a = a - merge(b*d,0.,mask)

c = c + merge(a,0.,mask)

where (a > b)

 a = a - b*d

 c = c + a

end where

 ~0.58s

 ~1.53s

 ~3.3s

n=100,000,000

Parallel Computing with Coarrays

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

The idea…
 I do not have the portion of A that k has
 I want to copy it from k

A(is:ie,js:je)1 ← A(is:ie,js:je)k

1

k

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

Use message passing, we would write
 On rank 1, to receive data from rank k

MPI_Recv(A(is:ie,js:je),n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Or, more generic
MPI_Recv(buffer,n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Put buffered data into A

 On rank k, to send data to rank 1
MPI_Send(A(is:ie,js:je),n,MPI_REAL,1,tag,MPI_COMM_WORLD)

Or
Copy data from local A to the buffer

MPI_Send(buffer,n,MPI_REAL,1,tag,MPI_COMM_WORLD)

 One must ensure the assembly is correct!

1

k

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

But what we really want is essentially as simple as this…

A(is:ie,js:je) ← A(is:ie,js:je)k

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

So here come this notion

A(is:ie,js:je) = A(is:ie,js:je)[k]

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

program main

 real :: x(10000), u(10000)

 real :: A(1000,1000)[*]

 complex :: y(10000)

 … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

program main

 real :: x(10000), u(10000)

 real :: A(1000,1000)[*]

 complex :: y(10000)

 … ...

end program main

A(i1:i2,j1:j2)[k] = A(i3:i4,j3:j4)

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

program main

 real :: x(10000), u(10000)

 real :: A(1000,1000)[*]

 complex :: y(10000)

 … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Shared Memory

Single Processes
 One process does not see the content of others

1 2

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Shared Memory

Multithreaded Processes
 Threads within a process see all data within the process

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
MPI

Distributed/Shared Memory - MPI
 One process does not see the content of others
 A process generally can't access the content of another directly
 Access data held by others is via message passing (e.g. MPI)

1 2 p

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

Distributed Shared Memory
 Every process – image – holds the same size object A
 A is local to the image; A[k] references to the A on image k.
 Access to A[k] invokes underlying data communications, e.g.

1 2 3 4

A(1:4,3:4) = A(1:4,3:4)[2]

History

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
History and Current Development

 Introduced by R. W. Numrich and J. Reid in 1998.
 Many years of experience, as an extension to Fortran, mainly on Cray

hardware.
 Adopted as a language feature as part of the ISO standard (2008).
 Additional features expected to be published in due course.
 Compilers are catching up, e.g. popular ones

– Intel
– GCC
– G95 project

 Support libraries
– Opencoarrays project
– Rice University

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
History: Trend

Models and tools for the next generation of HPC architectures?
 Coarray
 Unified Parallel C (UPC)
 Global arrays, SHMEM
 OpenAcc, OpenMP

Partitioned Global Address Spaces (PGAS)

How Does It Work?

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Parallel Programming without MPI!

Coarray Syntax
 Globally addressible arrays amongst

processes – images.
 Each image holds the same size

copies of data objects – coarrays.
 Data objects with subscripts in square

brackets indicates coarray, in any of
the following forms
– X[*] ! Upper bound not set
– X[16] ! Max images 16
– X[p,q] ! p-by-q images
– X[p,*] ! Last bound not set
– X[8,0:7,1:*] ! Three codimensions

 [identifier] defines the number of
images (and topology)

 Upper bound usually not defined.

Example

! Array coarrays

real :: a(1000,1000)[*]

real :: b(1000,1000)[16,16], x(10000)[16]

complex, allocatable, codimension[*] :: z(:)

! Scalar coarrays

integer :: m[*], n[*]

if (this_image() == 1) then

 input data

 do image = 1, num_images()

 u[image] = u ! Send u to all images

 enddo

endif

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Parallel Programming without MPI!

Coarray Syntax (cont'd)
 Objects of derived types

type(type1) :: p[*]

type(type2), allocatable :: u[:]

Example

! Derived data types

type particle

 real :: m

 real :: x, y, z

 real :: u, v, w

end type particle

! Static storage

type(particle):: p(1000000)[*]

! Dynamic storage

type(particle), allocatable:: p(:)[:]

u = p(k)[16]%u

v = p(k)[16]%v

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Parallel Programming without MPI!

Concept Example

program try_coarray

 real :: a[*] ! Declare a as coarray obj

 real, codimension[*] :: b ! Or this way

 ! a and b below are local to the iamge

 a = this_image()

 b = this_image()*2

 ! Access a and b on other images

 if (this_image() == 1) then

 do image = 1, num_images()

 print *, 'Image', this_image(), a[i], b[i]

 enddo

 endif

end program try_coarray

a=1, b=2

a=2, b=4

a=3, b=6

a=16, b=32

do i = 1, num_images()
 print *, a[i], b[i]
enddo

.

.

.

Images Execution of code

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Accessing Coarrays

 Access coarray objects by referencing to the object with an image index in square [],
e.g.

x[i] = y ! Push local value y to x on image i

a(:,:)[i] = b ! Whole array assignment not used in coarrays

z = z[i] ! Fetch value of z on image i and assign it to local z

 Note the following is executed by every image (due to SPMD model)

x[16] = 1

 For selective execution

if (this_image() == 16) then

 x = 1

endif
 Note Fortran arrays use () for array elements, not [], so there is no confusion!

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Example: Broadcast

program ex1

 implicit none

 real :: z[*]

 integer :: i

 print '("Image",i4,": before: z=",f10.5)', this_image(), z

 sync all

 if (this_image() == 1) then

 read *, z

 do i = 2, num_images()

 z[i] = z

 enddo

 endif

 sync all

 print '("Image",i4,": after: z=",f10.5)', this_image(), z

end program ex1

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Example: Harvest

program ex2

 character(80) :: host[*] ! Note: host – local; host[i] – on image i

 integer :: i

 call get_environment_variable("HOSTNAME”,value=host)

 if (this_image() == 1) then

 do i = 1, num_images()

 print *, 'Hello from image', i, 'on host ', trim(host[i])

 enddo

 endif

end program ex2

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Reflection: Broadcast/Reduction

 Any comments on the broadcast operation?

 do i = 2, num_images()
 z[i] = z
 enddo

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Broadcast: Complexity

Linear

t0

t1

t2

t3

t4

t5

t6

t7

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Broadcast: Complexity

Improved

t0

t1

t2

t3

t0

t1

t2

t3

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
How: Summary of SPMD

 The SPMD model is assumed, i.e. every image executes the same program.

 The SPMD model assumes coarrays on every image, e.g.

real :: a(10000,10000)[*]

integer :: ma[*], na[*]

 The SPMD model requires self identification (“this image”) and others, via
– this_image()
– num_images()

 The control of work flow is done by the selection logics, e.g.

if (1 == this_image()) then

 call manager()

else

 call worker()

endif

 Memory coherence is not assured until you want to (e.g. via remote copies)

 Synchronizations

Compiling Coarray Fortran

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Free Fortran Compilers

GNU gfortran Compiler
 Requirements

– Version 5.1 and newer
– An MPI library compiled with GCC 5.1
– A recent CAF (Coarray Fortran) MPI library libcaf_mpi, provided by the

Opencoarrays project (http://www.opencoarrays.org/)

 To compile
mpifort -std=f2008 -fcoarray=lib mycode.f90 -o mycode \

 -L${LIBCAF_MPI_PATH} -lcaf_mpi

 To run
mpirun -n num_procs ./mycode

http://www.opencoarrays.org/

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Free Fortran Compilers

Intel Compiler
 Requirements

– Intel compiler 14 and newer
– Intel MPI runtime suite
– Intel Cluster Toolkit (for distributed memory coarray, licenced)

 To compile
ifort -coarray=shared [-coarray-num-images=8] mycode.f90 -o mycode

ifort -coarray=distributed mycode.f90 -o mycode

 To run
export FOR_COARRAY_NUM_IMAGES=8

./mycode

mpirun -n num_procs ./mycode

Synchronizations

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Synchronization

sync images (image-set)
 Sync with one image

sync images (16)
 Sync with a set of images

sync images ([1,3,5,7])
 Sync with every other

sync images (*)

 Sync all

sync all

if (this_image() == 1) then

 do image = 1, num_images()

 u[image] = u

 enddo

endif

sync all

sync all and sync images(*)

 sync images (*) and sync all (see right)
are not equivalent:

if (this_image() == 1) then

 Set data needed by all others

 sync images (*)

else

 sync image (1)

 Get data set by image 1

endif

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Locking and Critical Region

Locking
 Although frequent lock unlock are not expected in numerical computations, they are

useful in some operations, such as push and pop operations of a queue and stack,
etc.

 Use of ISO Fortran intrinsic modules are recommended, e.g.
subroutine job_manager(...)

 use, intrinsic :: iso_fortran_env, only: lock_type

 type(lock_type) :: stack_lock[*]

 … ...

 lock (stack_lock)

 if (stack_size > 0) then

 job = pop(stack)

 endif

 unlock (stack_lock)

 … ...

end subroutine job_manager

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray: Locking and Critical Region

Critical Section

 Multiple images try to update the object, but only one at a time

critical

 p[6] = p[6] + 1

 … …

end critical

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Problem 1: Assembling Lenna

The problem
 Each process (image) posses a

small (square) portion of Lenna.
 To have the main process

collect portions of Lenna and
assemble them into the whole
image.

The implementation
 Use pic(:,:) for the whole and

pic_p(:,:)[] for local portion.
 The main process loops over

processes, collects the portion
from each process and
assembles it in the whole array.

if (this_image() == 1) then
 do i = 1, num_images()

 pic(i1:i2,j1:j2) = pic_p[i] ! Fetch the portion from image i
 enddo
endif

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Problem 1: Assembling Lenna

if (this_image() == 1) then
 do i = 1, num_images()

 pic(i1:i2,j1:j2) = pic_p[i] ! Fetch the portion from image i
 enddo
endif

i1

i2

j1 j2

! Import the portion, e.g.
allocate(pic_p(nx_p,ny_p)[*])
do i = 1, ny_p
 read(10,*) pic_p(i,:)
enddo

! Perform some tasks
... ...

Summary

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Summary – Choosing A Language

 Ubiquitous
– Multicores, even on your laptop
– Clusters in your department, institution
– Supercomputers

 Expressive
 Productive

– Easy, takes less time to write
– Easy to read and maintain
– Reusable

 Efficient
 Having a promise future of availability and longevity
 Supported by tools

General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright © 2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
References

[1] Michael Metcalf, John Reid and Malcolm Cohen, “Modern Fortran
Explained”, Oxford University Press, New York, 2011.

[2] R. W. Numrich, J. Reid, “Co-array Fortran for parallel programming”,
ACM SIGPLAN Fortran Forum, Vol.17, Iss. 2, 1998, pp. 1-31.

[3] JTC1/SC22 – The international standardization subcommittee for
programming languages (http://www.open-std.org/jtc1/sc22/).

[4] The Fortran standards committee (http://www.nag.co.uk/sc22wg5/).

[5] Jonathan Dursi, “HPC is dying, and MPI is killing it”, his blog,
http://www.dursi.ca/.

http://www.nag.co.uk/sc22wg5/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Basics: Free Fortran Compilers
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	References

