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Outline
 Highlights of some Fortran 2008 

enhancement
 Array assignment and concurrency of do 

loops
 Parallel computing with coarrays



Fortran 2008 Features
● M. Metcalf, J. Reid, M. Cohen, 

“Modern Fortran Explained”, Oxford, 
2011.

● Fortran 2008 standards draft (latest). 
You may get it from:
http://www.j3-fortran.org/doc/year/10/10-007.pdf

● J. Reid, “The New Features of Fortran 
2008”: 
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf

http://www.j3-fortran.org/doc/year/10/10-007.pdf
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Some Fortran 2008 Enhancement

character, parameter:: vowles(*) = [‘a’,’e’,’i’,’o’,’u’] ! Named constant array, size omitted.

real:: a(6), b(100), c(2,3)

a = [1,2,3,4,5,6] ! Array assignment, similar to MATLAB.

b(1:6) = a ! This implies vectorized operations.

c = reshape(a,[2,3])

a(::2) ! Get elements with even indices.

a(5:1:-1) ! Traverse elements in reverse order.

a=1; b=2; c=3; d=5 ! Use of semicolon to separate statements.

do concurrent(i=1:n, j=1:n, i/=j) ! Do concurrent construct, with condition mask i/=j.

   ... ...

enddo
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Some Fortran 2008 Enhancement

! New interfaces to trig functions and new hyperbolic functions.

acos(x), asin(x), atan(x), cosh(x), sinh(x), tan(x), tanh(x) 

acosh(x), asinh(x), atanh(x)

! New special mathematical functions.

bessel_j0(x), bessel_j1(x), bessel_jn(x) 

bessel_y0(x), bessel_y1(x), bessel_yn(x)

erf(x), erfc(x)

gamma(x), log_gamma(x)

! Euclidean norms.

hypot(x,y)                                                            .

norm2(x[,dim])                                          . Using LAPACK routine norm(x,norm_type)

 is perhaps still the best for performance.
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Some Fortran 2008 Enhancement

! A handy routine to execute an external command

call execute_command_line( command[, wait, exitstat, cmdstat, cmdmsg] )

where

command The command to be executed.

The following arguments are optional:

wait Logical, if FALSE, then the command is executed asynchronously (non 
blocking).

exitstat If executed synchronously, set to a processor-dependent exit status.

cmdstat The status of the execution of the command.

cmdmsg Contains the message from the command.
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Some Fortran 2008 Enhancement

! Array and single value variable

real:: x(10000)

real:: a(1000,1000)

real:: b(1000,1000)

integer:: m, n

real:: u, v, w

complex, allocatable:: z(:)
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Some Fortran 2008 Enhancement

! Coarrays – globally accessible objects on shared and distributed memory systems.

real:: x(10000)[16] ! x accessible on an array of 16 processors.

real:: a(1000,1000)[*] ! a accessible on an array of processors.

real:: b(1000,1000)[16,16] ! b accessible on a 16x16 processor grid

integer:: m[*], n[*] ! Or written as: integer, codimension[*]:: m, n

real:: u[*], v[*], w[*] ! Or written as: real, codimension[*]:: u, v, w

complex, allocatable, codimension[*] :: z(:)

! Typical SIMD programming model

if (this_image() == 1) then

   input data

   do image = 1, num_images()

      u[image] = u ! Send the value of local u to remote u’s on all images

   enddo

endif



Vectorization & Concurrency
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DO loops

! Array assignment

a = (/(i,i=0,n)/)

! Array elemental assignment

do i = 0, n

   a(i) = i

enddo

 The first assignment has a 
simple syntax, similar to 
MATLAB. But can be slower for 
large n.

 The loop is traditional, can be 
vectorized by the compiler.
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! Do concurrent with mask

do concurrent(i = 1:n, a(i) > b(i))

   a(i) = a(i) - b(i)*d(i)

   c(i) = c(i) + a(i)

enddo 

! Equivalent form

do concurrent(i = 1:n)

   if (a(i) > b(i)) then

      a(i) = a(i) - b(i)*d(i)

      c(i) = c(i) + a(i)

   endif

enddo

 Simple, clean, tells compiler 
explicitly no dependencies 
between iterations.

 The traditional form, with if 
branch embedded inside the 
loop.
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Array Assignment

real(8):: a(1000000), b(1000000)

! Loop expression

do i = 1,n

   b(i) = a(i)

enddo

! Or in short hand

b(1:n) = a(1:n)

! Or simply

b = a

 The compiler can optimize the 
code in both cases without loops at 
all.
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Advantages 
& 
Disadvantages

Array Assignment: Strength and Weakness

! Array assignment by copy

a(1:n) = a(1+m:n+m)

! Loop expression

do i = 1,n

   a(i) = a(i+m)

enddo

 The array assignment is vectorized 
and always gives the correct 
answer.

 The array assignment might be at 
a cost of overhead – use of a 
temporary store on the RHS.

 The loop, however, is error prone. 
Each iteration has a backward 
dependency when m=-1, resulting 
in wrong answer.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

m>0 m<0

0 0 0 0 0 0 0 0result result1 2 3 4 5 6 7 8



General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright ©  2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
DO loops

We use gfortran compile, with option -O3 and -fopt-info-optimized

gfortran array_assignment.f90 -O3 -fopt-info-optimized=array_assignment.optrpt

A vectorization report is written to the file array_assignment.optrpt:

array_assignment.f90:17:0: note: Loop 3 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:30:0: note: Loop 5 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:36:0: note: Loop 6 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:44:0: note: Loop 7 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:44:0: note: Loop 8 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:51:0: note: Loop 9 distributed: split to 0 loops and 1 library calls.

array_assignment.f90:53:0: note: loop vectorized

array_assignment.f90:53:0: note: loop versioned for vectorization because of possible aliasing

array_assignment.f90:53:0: note: loop peeled for vectorization to enhance alignment

array_assignment.f90:17:0: note: loop vectorized

array_assignment.f90:17:0: note: loop peeled for vectorization to enhance alignment

array_assignment.f90:53:0: note: loop turned into non-loop; it never loops.

array_assignment.f90:53:0: note: loop with 3 iterations completely unrolled

array_assignment.f90:1:0: note: loop turned into non-loop; it never loops.

array_assignment.f90:1:0: note: loop with 3 iterations completely unrolled

array_assignment.f90:17:0: note: loop turned into non-loop; it never loops

array_assignment.f90:1:0: note: loop turned into non-loop; it never loops.

array_assignment.f90:1:0: note: loop with 10 iterations completely unrolled
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call system_clock(count_rate=crate)

call system_clock(count=c1)

do concurrent (i = 1:m)

   c(i) = sqrt(a(i) + b(i))

enddo

call system_clock(count=c2)

dt = 1.0*(c2 - c1)/crate

call system_clock(count=c1)

c = sqrt(a + b)

call system_clock(count=c2)

dt = 1.0*(c2 - c1)/crate

 Using loop

 The equivalent (slightly faster)
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DO loops

! Using loop

do concurrent(i = 1:n, a(i) > b(i))

   a(i) = a(i) - b(i)*d(i)

   c(i) = c(i) + a(i)

enddo 

! Using logical mask and merge()

logical:: mask(n)

... ...

mask = a > b

a = a - merge(b*d,0.,mask)

c = c + merge(a,0.,mask)

 Using loop

 The equivalent
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Concurrency, OOP, Some Timings...

do concurrent(i = 1:n, a(i) > b(i))

   a(i) = a(i) - b(i)*d(i)

   c(i) = c(i) + a(i)

end do 

logical:: mask(n)

mask = a > b

a = a - merge(b*d,0.,mask)

c = c + merge(a,0.,mask)

where (a > b)

   a = a - b*d

   c = c + a

end where

 ~0.58s

 ~1.53s

 ~3.3s

n=100,000,000



Parallel Computing with Coarrays



General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright ©  2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Coarray

The idea…
 I do not have the portion of A that k has
 I want to copy it from k

A(is:ie,js:je)1 ← A(is:ie,js:je)k

1

k
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Coarray

Use message passing, we would write
 On rank 1, to receive data from rank k

MPI_Recv(A(is:ie,js:je),n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Or, more generic
MPI_Recv(buffer,n,MPI_REAL,k,tag,MPI_COMM_WORLD,status)

Put buffered data into A

 On rank k, to send data to rank 1
MPI_Send(A(is:ie,js:je),n,MPI_REAL,1,tag,MPI_COMM_WORLD)

Or
Copy data from local A to the buffer

MPI_Send(buffer,n,MPI_REAL,1,tag,MPI_COMM_WORLD)

 One must ensure the assembly is correct!

1

k
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Coarray

But what we really want is essentially as simple as this…

A(is:ie,js:je) ← A(is:ie,js:je)k
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Coarray

So here come this notion

A(is:ie,js:je) = A(is:ie,js:je)[k]
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Coarray

program main

   real :: x(10000), u(10000)

   real :: A(1000,1000)[*]

   complex :: y(10000)

   … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]
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Coarray

program main

   real :: x(10000), u(10000)

   real :: A(1000,1000)[*]

   complex :: y(10000)

   … ...

end program main

A(i1:i2,j1:j2)[k] = A(i3:i4,j3:j4)
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Coarray

program main

   real :: x(10000), u(10000)

   real :: A(1000,1000)[*]

   complex :: y(10000)

   … ...

end program main

A(i1:i2,j1:j2) = A(i3:i4,j3:j4)[k]
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Shared Memory

Single Processes
 One process does not see the content of others

1 2
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Shared Memory

Multithreaded Processes
 Threads within a process see all data within the process
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MPI

Distributed/Shared Memory - MPI
 One process does not see the content of others
 A process generally can't access the content of another directly
 Access data held by others is via message passing (e.g. MPI)

1 2 p
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Coarray

Distributed Shared Memory
 Every process – image – holds the same size object A
 A is local to the image; A[k] references to the A on image k.
 Access to A[k] invokes underlying data communications, e.g.

1 2 3 4

A(1:4,3:4) = A(1:4,3:4)[2]



History
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History and Current Development

 Introduced by R. W. Numrich and J. Reid in 1998.
 Many years of experience, as an extension to Fortran, mainly on Cray 

hardware.
 Adopted as a language feature as part of the ISO standard (2008).
 Additional features expected to be published in due course.
 Compilers are catching up, e.g. popular ones

– Intel
– GCC
– G95 project

 Support libraries
– Opencoarrays project
– Rice University
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History: Trend

Models and tools for the next generation of HPC architectures?
 Coarray 
 Unified Parallel C (UPC)
 Global arrays, SHMEM
 OpenAcc, OpenMP

Partitioned Global Address Spaces (PGAS)



How Does It Work?
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Coarray: Parallel Programming without MPI!

Coarray Syntax
 Globally addressible arrays amongst 

processes – images.
 Each image holds the same size 

copies of data objects – coarrays.
 Data objects with subscripts in square 

brackets indicates coarray, in any of 
the following forms
– X[*] ! Upper bound not set
– X[16] ! Max images 16
– X[p,q] ! p-by-q images
– X[p,*] ! Last bound not set
– X[8,0:7,1:*] ! Three codimensions

 [identifier] defines the number of 
images (and topology)

 Upper bound usually not defined.

Example

! Array coarrays

real :: a(1000,1000)[*]

real :: b(1000,1000)[16,16], x(10000)[16]

complex, allocatable, codimension[*] :: z(:)

! Scalar coarrays

integer :: m[*], n[*]

if (this_image() == 1) then

   input data

   do image = 1, num_images()

      u[image] = u ! Send u to all images

   enddo

endif
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Coarray: Parallel Programming without MPI!

Coarray Syntax (cont'd)
 Objects of derived types

type(type1) :: p[*]

type(type2), allocatable :: u[:]

Example

! Derived data types

type particle

   real :: m

   real :: x, y, z

   real :: u, v, w

end type particle

! Static storage

type(particle):: p(1000000)[*]

! Dynamic storage

type(particle), allocatable:: p(:)[:]

u = p(k)[16]%u

v = p(k)[16]%v
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Coarray: Parallel Programming without MPI!

Concept Example

program try_coarray

   real :: a[*] ! Declare a as coarray obj

   real, codimension[*] :: b ! Or this way

   ! a and b below are local to the iamge

   a = this_image()

   b = this_image()*2

   ! Access a and b on other images

   if (this_image() == 1) then

      do image = 1, num_images()

         print *, 'Image', this_image(), a[i], b[i]

      enddo

   endif

end program try_coarray

a=1, b=2

a=2, b=4

a=3, b=6

a=16, b=32

do i = 1, num_images()
   print *, a[i], b[i]
enddo

.

.

.

Images Execution of code
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Coarray: Accessing Coarrays

 Access coarray objects by referencing to the object with an image index in square [ ], 
e.g.

x[i] = y ! Push local value y to x on image i

a(:,:)[i] = b ! Whole array assignment not used in coarrays

z = z[i] ! Fetch value of z on image i and assign it to local z

 Note the following is executed by every image (due to SPMD model)

x[16] = 1

 For selective execution

if (this_image() == 16) then

  x = 1

endif
 Note Fortran arrays use ( ) for array elements, not [ ], so there is no confusion!
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Example: Broadcast

program ex1

   implicit none

   real :: z[*]

   integer :: i

 

   print '("Image",i4,": before: z=",f10.5)', this_image(), z

   sync all

   if (this_image() == 1) then

      read *, z

      do i = 2, num_images()

         z[i] = z

      enddo

   endif

   sync all

   print '("Image",i4,": after: z=",f10.5)', this_image(), z

end program ex1
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Example: Harvest

program ex2

   character(80) :: host[*] ! Note: host – local; host[i] – on image i

   integer :: i

   call get_environment_variable("HOSTNAME”,value=host)

   if (this_image() == 1) then

      do i = 1, num_images()

         print *, 'Hello from image', i, 'on host ', trim(host[i])

      enddo

   endif

end program ex2
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Reflection: Broadcast/Reduction

 Any comments on the broadcast operation?

      do i = 2, num_images()
         z[i] = z
      enddo
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Broadcast: Complexity

Linear

t0

t1

t2

t3

t4

t5

t6

t7
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Broadcast: Complexity

Improved

t0

t1

t2

t3

t0

t1

t2

t3
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How: Summary of SPMD

 The SPMD model is assumed, i.e. every image executes the same program.

 The SPMD model assumes coarrays on every image, e.g.

real :: a(10000,10000)[*]

integer :: ma[*], na[*]

 The SPMD model requires self identification (“this image”) and others, via
– this_image()
– num_images()

 The control of work flow is done by the selection logics, e.g.

if (1 == this_image()) then

   call manager()

else

   call worker()

endif

 Memory coherence is not assured until you want to (e.g. via remote copies)

 Synchronizations



Compiling Coarray Fortran
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Free Fortran Compilers

GNU gfortran Compiler
 Requirements

– Version 5.1 and newer
– An MPI library compiled with GCC 5.1
– A recent CAF (Coarray Fortran) MPI library libcaf_mpi, provided by the 

Opencoarrays project (http://www.opencoarrays.org/)

 To compile
mpifort -std=f2008 -fcoarray=lib mycode.f90 -o mycode \

    -L${LIBCAF_MPI_PATH} -lcaf_mpi

 To run
mpirun -n num_procs ./mycode

http://www.opencoarrays.org/
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Free Fortran Compilers

Intel Compiler
 Requirements

– Intel compiler 14 and newer
– Intel MPI runtime suite
– Intel Cluster Toolkit (for distributed memory coarray, licenced)

 To compile
ifort -coarray=shared [ -coarray-num-images=8 ] mycode.f90 -o mycode

ifort -coarray=distributed mycode.f90 -o mycode

 To run
export FOR_COARRAY_NUM_IMAGES=8

./mycode

mpirun -n num_procs ./mycode



Synchronizations
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Coarray: Synchronization

sync images (image-set)
 Sync with one image

sync images (16)
 Sync with a set of images

sync images ([1,3,5,7])
 Sync with every other

sync images (*)

 Sync all

sync all

if (this_image() == 1) then

   do image = 1, num_images()

      u[image] = u

   enddo

endif

sync all

sync all and sync images(*)

 sync images (*) and sync all (see right) 
are not equivalent:

if (this_image() == 1) then

   Set data needed by all others

   sync images (*)

else

   sync image (1)

   Get data set by image 1

endif
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Coarray: Locking and Critical Region

Locking
 Although frequent lock unlock are not expected in numerical computations, they are 

useful in some operations, such as push and pop operations of a queue and stack, 
etc.

 Use of ISO Fortran intrinsic modules are recommended, e.g.
subroutine job_manager(...)

  use, intrinsic :: iso_fortran_env, only: lock_type

  type(lock_type) :: stack_lock[*]

  … ...

  lock (stack_lock)

  if (stack_size > 0) then

     job = pop(stack)

  endif

  unlock (stack_lock) 

  … ...

end subroutine job_manager
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Coarray: Locking and Critical Region

Critical Section

 Multiple images try to update the object, but only one at a time

critical

   p[6] = p[6] + 1

   … …

end critical



General interest seminar series: Morder Fortran: Concurrency and parallelism, April 19, 2017Copyright ©  2001-2017 Western University

GENERAL INTEREST SEMINARS 2017
Problem 1: Assembling Lenna

The problem
 Each process (image) posses a 

small (square) portion of Lenna.
 To have the main process 

collect portions of Lenna and 
assemble them into the whole 
image.

The implementation
 Use pic(:,:) for the whole and 

pic_p(:,:)[ ] for local portion.
 The main process loops over 

processes, collects the portion 
from each process and 
assembles it in the whole array.

if (this_image() == 1) then
   do i = 1, num_images()
      ... ...
      pic(i1:i2,j1:j2) = pic_p[i] ! Fetch the portion from image i
   enddo
endif
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Problem 1: Assembling Lenna

if (this_image() == 1) then
   do i = 1, num_images()
      ... ...
      pic(i1:i2,j1:j2) = pic_p[i] ! Fetch the portion from image i
   enddo
endif

i1

i2

j1 j2

! Import the portion, e.g.
allocate(pic_p(nx_p,ny_p)[*])
do i = 1, ny_p
   read(10,*) pic_p(i,:)
enddo

! Perform some tasks
... ...



Summary
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Summary – Choosing A Language

 Ubiquitous
– Multicores, even on your laptop
– Clusters in your department, institution
– Supercomputers

 Expressive
 Productive

– Easy, takes less time to write
– Easy to read and maintain
– Reusable

 Efficient
 Having a promise future of availability and longevity
 Supported by tools
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