
General Interest Seminar

Introduction to GPU programming with OpenMP

Jemmy Hu

SHARCNET HPC Consultant

January 31, 2024



OpenMP overview

OpenMP: A popular, portable and widely supported shared-memory 

parallel programming model in HPC

§ OpenMP API includes a set of compiler directives, library routines, and 

environment variables for parallel application programming

§ Greatly simplifies writing multi-threaded (MT) programs

in Fortran, C and C++

§ Ease of Use: Provide capability to incrementally parallelize a serial 
program, unlike message-passing libraries (MPI) which typically require 
an all or nothing approach 

§ Standardizes established SMP practice + vectorization and

heterogeneous device programming



OpenMP History: The growth of complexity

Tasks added to 

OpenMP ... supports 

irregular parallelism

Supports general multithreading, the 

emphasis was on parallel loops



OpenMP: Fork-Join Model

• OpenMP uses the fork-join model of parallel execution:

FORK: the master thread then creates a team of parallel threads 

The statements in the program that are enclosed by the parallel region construct 

are then executed in parallel among the various team threads 

JOIN: When the team threads complete the statements in the parallel region 

construct, they synchronize and terminate, leaving only the master thread 

When OpenMP was originally launched, the focus was on Symmetric 

Multiprocessing, i.e. lots of threads with “equal access” to memory



Loop Parallelism



DO / for - shares iterations of a 

loop across the team. 

Represents a type of "data 

parallelism". 

SECTIONS - breaks work into 

separate, discrete sections. 

Each section is executed by a 

thread. Can be used to 

implement a type of "functional 

parallelism". 

SINGLE -

serializes a 

section of 

code 

Types of Work-Sharing Constructs (Past): 



Existing Parallel Loop Constructs 
 
 

 

 Existing parallel loop constructs are tightly bound to execution model:
 

#pragma omp for #pragma omp simd #pragma omp taskloop  

for (i=0; i<N;++i) {…} for (i=0; i<N;++i) {…} for (i=0; i<N;++i) {…} 
 
 
 
 
 
 

fork generate tasks 
 



Not all programs have simple loops OpenMP

can parallelize

• Consider a program to traverse a linked list:

p=head;

while (p) {

processwork(p);

p = p->next;

}

• OpenMP can only parallelize loops in the basic standard form 

with loop counts known at runtime



Task constructs in OpenMP 

#pragma omp task 
- Creates a new task, Task added to task queue   

- Available thread picks next task from queue to execute

#pragma omp taskwait 
- Acts like barrier 

- Waits until all child tasks have finished

• The task construct was added to support irregular 

programs:

– While loops or loops whose iteration limits are not 

known at compiler time.

– Recursive algorithms

– divide and conquer problems.

• The task construct has expanded over the years with new 

features to support irregular problems with tasks in each 

new release of OpenMP



Linked lists with tasks

#pragma omp parallel

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p)

processwork(p);

p = p->next;

}

}

}

Creates a task with its

own copy of “p”

initialized to the value

of “p” when the task is

defined



GPUs are made of many cores (compute units)

NVIDIA V100 has 80 Streaming Multiprocessors (SMs); these are the compute units

NVIDIA A100 has 108 compute units

Each NVIDIA compute unit has 64 FP32 processing elements

GPUs from AMD have similar structure of compute units and processing elements

On an A100, that’s 108 x 64 = 6,912 processing elements available to work 

in parallel



OpenMP for Accelerators: host/device Model

 Host-centric: the execution of an OpenMP program starts on the host 

device and it may offload target regions to target devices

In principle, a target region also begins as a single thread of execution: 

when a target construct is encountered, the target region is executed by the 

implicit device thread and the encountering thread/task [on the host] waits at 

the construct until the execution of the region completes

If a target device is not present, or not supported, or not available, the target 

region is executed by the host device

If a construct creates a data environment, the data environment is created at 

the time the construct is encountered





Host (CPU) – Device (GPU)

The target construct offloads to a device with two roles:

- transfer execution to the device

- transfer data to/from the device



 When an OpenMP program begins, each device has an initial device data 

environment

 Directives accepting data-mapping attribute clauses determine how an 

original variable is mapped to a corresponding variable in a device data 

environment

original: the variable on the host

corresponding: the variable on the device

the corresponding variable in the device data environment may share storage 

with the original variable

Data environment



Controlling data with the map clause

Data movement

defined from the

host perspective.

• The various forms of the map clause

– map(to:list): On entering the region, variables in the list are 

initialized on the device using the original values from the host 

(host to device copy).

– map(from:list): At the end of the target region, the values from 

variables in the list are copied into the original variables on the host 

(device to host copy). On entering the region, the initial value of the 

variables on the device is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host 

to device copy at start of region, device to host copy at end).

– map(alloc:list): On entering the region, data is allocated and 

uninitialized on the device.

– map(list): equivalent to map(tofrom:list).





The target construct transfers the control flow to the 

target device

-- Transfer of control is sequential and synchronous

OpenMP separates offload and parallelism

-- Programmers need to explicitly create parallel regions on the 

target device

-- There are a few useful subset of OpenMP features for a target 

device such as a GPU

Parallelism on the device







#include <omp.h>

#include <stdio.h>

static long numsteps = 100000000;

int main() {

double sum = 0.0;

double step = 1.0 / double ) num steps ;

Example, Calculate Pi with target and loop directives 







Multi level parallelism, put it together

• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads (one per team)

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the master thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for simd)

host thread

device thread 
teams

#pragma omp target

#pragma omp teams distribute 

for (i=0;i<N;i++)
#pragma omp parallel for simd

for (j=0;j<M;j++)

…



Example (OpenMP code for CPUs)

#progma omp parallel for reduction(max:error)

for (int j=1; j < n-1; j++) {

for (int i=1; i< m-1; i++) {

newA[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);

error = fmax ( error, fabs (newA[j][i] – A[j][i]));

}

}

OMP parallel 

OMP for 



#progma omp target teams distribute reduction (max:error)

for (int j=1; j < n-1; j++) {

#progma omp parallel for reduction(max:error)

for (int i=1; i< m-1; i++) {

newA[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);

error = fmax ( error, fabs (newA[j][i] – A[j][i]));

}

}

Example (OpenMP code for GPUs)

OMP for 

OMP distribute 

OMP teams 



Processing 

Element

Device

…
…

…

…

……
…

…

…
…

…

…

…
…

…

Host

Compute Unit

target 

construct to 

get onto a 

device

teams construct to create a league 

of teams with one team of threads 

on each compute unit

distribute construct to assign 

blocks of loop iterations to teams

parallel for simd 

to run each block 

of loop iterations 

on the processing 

elements

OpenMP host/device model: Summary



More Directives and Functions for Devices

omp target data: Creates a device data environment and execute the construct on the 

same device. The target construct specifies that the region is executed by a device and the 

encountering task waits for the device to complete the target region

omp target enter data

omp target exit data

omp target update: Makes the corresponding list items in the device data 

environment consistent with their original list items

omp declare target: marks function(s) that can be called on the device

omp get team num()

omp get team size()

omp get num devices()

omp_get_default_device()



#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

Example





Resources

https://www.openmp.org/wp-content/uploads/2021-10-20-Webinar-OpenMP-
Offload-Programming-Introduction.pdf

https://www.youtube.com/watch?v=uVcvecgdW7g

https://www.youtube.com/watch?v=qEp25Kqjm4o

https://www.youtube.com/watch?v=XI1rRMQnC3g

SC23, Programming Your GPU with OpenMP A “Hands-On” Introduction. Tom 
Deakin, Simon McIntosh-Smith, Tim Mattson
Tom Deakin, Simon McIntosh-Smith, Tim Mattson

https://www.youtube.com/watch?v=9w_2tj2uD4M

https://www.openmp.org/wp-content/uploads/2021-10-20-Webinar-OpenMP-Offload-Programming-Introduction.pdf
https://www.youtube.com/watch?v=uVcvecgdW7g
https://www.youtube.com/watch?v=qEp25Kqjm4o
https://www.youtube.com/watch?v=XI1rRMQnC3g
https://www.youtube.com/watch?v=9w_2tj2uD4M

