
Nix on SHARCNET

Tyson Whitehead

May 14, 2015

Nix Overview

An enterprise approach to package management

I a package is a specific piece of code compiled in a specific way
I each package is entirely self contained and does not change
I each users select what packages they want and gets a custom

enviornment

https://nixos.org/nix

Ships with several thousand packages already created

https://nixos.org/nixos/packages.html

https://nixos.org/nix
https://nixos.org/nixos/packages.html

SHARCNET

What this adds to SHARCNET

I each user can have their own custom environments
I environments should work everywhere (closed with no external

dependencies)
I several thousand new and newer packages

Current issues (first is permanent, second will likely be resolved)

I newer glibc requires kernel 2.6.32 so no requin
I package can be used but not installed/removed on viz/vdi

https:
//sourceware.org/ml/libc-alpha/2014-01/msg00511.html

https://sourceware.org/ml/libc-alpha/2014-01/msg00511.html
https://sourceware.org/ml/libc-alpha/2014-01/msg00511.html

Enabling Nix

Nix is installed under /home/nixbld on SHARCNET. Enable for a
single sessiong by running

source /home/nixbld/profile.d/nix-profile.sh

To always enable add this to the end of ~/.bash_profile

echo source /home/nixbld/profile.d/nix-profile.sh \
>> ~/.bash_profile

Reseting Nix

A basic reset is done by removing all .nix* files from your home
directory

rm -fr ~/.nix*

A complete reset done by remove your Nix per-user directories

rm -fr /home/nixbld/var/nix/profile/per-user/$USER
rm -fr /home/nixbld/var/nix/gcroots/per-user/$USER

The nix-profile.sh script will re-create these with the defaults next
time it runs.

Environment

The nix-env commands maintains your environments

I query packages (available and installed)
I create a new environment from current one by adding packages
I create a new environment from current one by removing

packages
I switching between existing environments
I delete unused environements

Querying Packages

The nix-env {--query | -q} ... command queries package.
Flags include

{--available | -a} query available (instead of installed)
{--attr-path | -P} display attribute path (unambiguous

identifier)
--description display description

Querying available packages is very slow. Store output in a file for
reference

nix-env -qaP --description > ~/nix-packages.txt

Adding Packages

The nix-env {--install | -i} ... creates a new environment
from the current one by adding additional packages. Flags include

{--attr | -A} install by attribute path instead of name
{--remove-all | -r} create new environment from empty one

instead of current one

Adding packages by name (i.e., without -A) does an implicit query
of available packages (very slow) to match the name. Use attribute
paths instead

nix-env -iA nixpkgs.emacs nixpkgs.vim
nix-env -q

Removing Packages

The nix-env {--uninstall | -e} ... command creates a new
environment from the current one by removing packages.

This must be done by name (for technical reasons), but it is not
slow as the implicit query to match the name is on installed
packages and not available packages.

nix-env -e vim
nix-env -q

Switching Environments
All the above commands create a new environment and then switch
to it. They do not modify the current one. All previous (generations)
of the environment remain and can be re-enabled at any time.

nix-env --list-generations list all environments
nix-env {--switch-generation | -G} ... switch to specified

environment
nix-env {--roll-back} switch to previous environment
nix-env {--delete-generations} ... delete specified

environment

nix-env --list-generations
nix-env --roll-back
nix-env -q
nix-env -G 2
nix-env --delete-generations 1

Packages and Environments

Packages are stored under /home/nixbld/store. Individual
package directory name includes a hash of all dependencies
(including entire build instructions) to keep everything separate

I /home/nixbld/store/${HASH}-${NAME}

An environment is a package containing bin, sbin, lib, etc.
directories filled with symlinks to the components of the packages
installed in that environment.

User Environments

Each user has a list of environments

I /home/nixbld/var/nix/profiles/per-user/$USER/\
profile-$GENERATION

I links to associated environment package

Active environment is by special profile link

I /home/nixbld/var/nix/profiles/per-user/$USER/\
profile-$GENERATION

I links to active environment

SHARCNET

System environment is augmented by by adding Nix environments
first to system search paths like $PATH and $MANPATH
(nix-profile.sh)

I includes directories under ~/.nix-profile
I links to /home/nixbld/var/nix/profiles/per-user/\

$USER/profile

Includes a default SHARCNET environment too (just the nix
commands so far) in system search paths

I includes directories under
/home/nixbld/var/nix/profiles/default

I link to first generation default-1

Configuration (1/2)

Packages correspond to Nix expressions which tell the Nix builder
how to compile the package. These expressions are quite readable
and reveal many options

https://nixos.org/nixos/packages.html

The collection of packages available on SHARCNET are a newer
snapshot than those referenced in the above link. The definitive
reference is

~/.nix-defexpr/nixpkgs/pkgs/top-level/all-packages.nix

https://nixos.org/nixos/packages.html

Configuration (2/2)

Use a search/grep to locate last bit of attribute path (nix-env
-qaP) to find the associated file. For example, attribute path for
emacs was nixpkgs.emacs, searching for emacs reveals

I emacs = emacs24
I emacs24 = callPackage

../applications/editors/emacs-24 ...

so the associated Nix expression is in

~/.nix-defexpr/nixpkgs/pkgs/applications/editors/emacs-
24/default.nix

Nix Expression
Say we want to disable X11 support in emacs. The Nix expression is

{ stdenv, fetchurl, ncurses, x11, libXaw, libXpm, Xaw3d
, pkgconfig, gtk, libXft, dbus, libpng, libjpeg, libungif
, libtiff, librsvg, texinfo, gconf, libxml2, imagemagick, gnutls
, alsaLib, cairo
, withX ? !stdenv.isDarwin
, withGTK3 ? false, gtk3 ? null
, withGTK2 ? true, gtk2
}:

assert (libXft != null) -> libpng != null; # probably a bug
assert stdenv.isDarwin -> libXaw != null; # fails to link otherwise
assert withGTK2 -> withX || stdenv.isDarwin;
assert withGTK3 -> withX || stdenv.isDarwin;
assert withGTK2 -> !withGTK3 && gtk2 != null;
assert withGTK3 -> !withGTK2 && gtk3 != null;

...

We want withX = false, which also requires withGTK2 = false
and withGTK3 = false.

Override
Packages are overriden in ~/.nixpkgs/config.nix. From the Nix
expression we can guess we want

I withX = false
I withGTK2 = false
I withGTK3 = false

This is easily done

{
packageOverrides = pkgs: {

emacs = pkgs.emacs.override {
withX = false; withGTK2 = false; withGTK3 = false;

};
};

}

