Debugging your code with
DDT

Sergey Mashchenko, SHARCNET
syam@sharcnet.ca

Demo code: https://git.sharcnet.ca/syam/Debugging_exercises

mailto:syam@sharcnet.ca

Outline

Overview

DDT on Graham

If you need help with DDT
Setup

Code examples

Live demo

Overview

e ARM (originally Allinea) product DDT is a powerful serial / parallel / hybrid
code debugger, with a graphical interface.

e Parallelism supported:
o Serial codes

o MPI codes
o Multi-threaded (OpenMP etc) codes
o GPU codes

o Hybrid codes (any combinations of the above)

e Programming languages supported:
o C, C++, Fortran
o Limited support for Python (CPython 2.7)
o Parallel languages/models including MPI, UPC, and Fortran 2008 Co-arrays
o GPU languages such as HMPP, OpenMP Accelerators, CUDA and CUDA Fortran

DDT on Graham

e DDT isinstalled on our cluster Graham

o We have a large - 512 cpu-cores - CPU license, and a smaller - 8 GPUs - GPU license.
o The CPU license can be used for any codes (serial, parallel, hybrid) which do not use GPUs.
To use it, simply run the following command on graham:

S module load ddt-cpu

o The GPU license (can be used for any debugging involving a GPU) is availed by executing the
following command:

S module load ddt-gpu

Make sure you are using the new (StdEnv/2020) environment module.
Niagara cluster has a smaller (CPU only) license for ddt. Their instructions may differ.

If you need help with DDT

e Detailed DDT user guide

o https://developer.arm.com/documentation/101136/latest/ (google for “DDT ARM guide”)
o On Graham, the PDF user guide can be found inside SEBROOTALLINEA/doc directory (after
loading the DDT module).

e Documentation on our Docs wiki:

o https://docs.computecanada.ca/wiki/ARM software
o hitps://docs.computecanada.ca/wiki/Parallel_Debugging_with_DDT

e We have a few DDT webinars on our youtube channel:
http://youtube.sharcnet.ca
e Send an email to support@computecanada.ca (mention my name)

https://developer.arm.com/documentation/101136/latest/
https://docs.computecanada.ca/wiki/ARM_software
https://docs.computecanada.ca/wiki/Parallel_Debugging_with_DDT
http://youtube.sharcnet.ca
mailto:support@computecanada.ca

Setup

e \What makes using DDT slightly more difficult than most of other Compute

Canada packages is that
o ltis interactive, and
o Ituses GUI (Graphical User Interface).

e | will describe a few setups for using DDT on Graham.

X11 forwarding (1)

e X11 forwarding is the easiest way to run DDT, so if it works for you, just use it

e Instructions depend on your device
o For Windows, the easiest approach is to install the free app MobaXterm.
m You get SSH terminal, SCP secure file copying, and X11 forwarding - enabled by default
o For Mac, you need to install the free app XQuartz which enables the X11 forwarding
functionality.
o For Linux, everything you need is already included.

e Once you installed the required soft, connect to Graham using this command:

Sssh -Y user nhame@graham.computecanada.ca

e Test your X11 setup by executing the xterm command - it should open in a
separate window.

mailto:user_name@graham.computecanada.ca

X11 forwarding (2)

For a quick test (say, a few minutes; CPU codes only), you can now load the
ddt-cpu module, and run the ddt command (more about that later), right on
the login node.

For more serious debugging work, first allocate interactive compute node(s)
using the salloc command, e.g.

Ssalloc --x11 -t 0-01:00 -N1 -c4 --mem=32G -A def-user

Once inside a compute node, test your X11 connection by executing xterm command.
If it fails (“X11 connection rejected because of wrong authentication”), one likely reason is that
your home directory has too lax permissions. Fix them with

$ chmod og-rwX /home/SUSER

VNC approach

e If you find the X11 approach results in a too laggy experience, the better (but
also more involved) approach is to use a VNC connection.

e The first step is to install TigerVNC Viewer (not Server!) on your device.
o Windows, Mac, and Linux binaries available.

e Next, launch the app, and enter the following remote server address:

gra-vdi.computecanada.ca

e Once connected, you will get a Linux desktop window.

o Enter you Compute Canada credentials there.

o Open a text terminal, and load our standard environment via module load CcEnv StdEnv
command.
Now you can load the ddt-cpu module, and run the ddt command
You can only debug CPU codes on gra-vdi. The node is shared, so can be rather slow.

o ltis also possible to use VNC to connect to a compute node; check these instructions:
https://docs.computecanada.ca/wiki/VNC

https://docs.computecanada.ca/wiki/VNC

Preparing code for debugging

e Any CPU-based code: add “-g-Ox" during compiling and linking.
o Use the appropriate “x” - normally it should be 0 (zero), but if the bug is optimization level
specific, replace “x” with the appropriate optimization level.

e CUDA code, or a hybrid code with CUDA: add both “-g-Ox” (for the CPU part)
and “-G” (for the GPU part) during compiling and linking.

e To use ddt with your code, load the appropriate module (ddt-cpu or ddt-gpu),
and then execute (same for serial, MPI, OpenMP, CUDA):

S ddt /path/to/your/code [optional code arguments]

Code examples

e | have some simple debugging code examples on Graham, inside

/home/syam/Debugging_exercises folder
o It will not be accessible during the webinar, as | have to restrict my home permissions, to make

X11 forwarding work.
o You can also get it from our Gitlab:
https://git.sharcnet.ca/syam/Debugging exercises

e The following code categories are present:

o Serial

o OpenMP
o MPI

o CUDA

m Also has one hybrid (CUDA + MPI) example

https://git.sharcnet.ca/syam/Debugging_exercises.git

Live demo

Questions?

Email to syam@sharcnet.ca

