
Debugging your code with
DDT

Sergey Mashchenko, SHARCNET
syam@sharcnet.ca

Demo code: https://git.sharcnet.ca/syam/Debugging_exercises

mailto:syam@sharcnet.ca

Outline

● Overview
● DDT on Graham
● If you need help with DDT
● Setup
● Code examples
● Live demo

Overview

● ARM (originally Allinea) product DDT is a powerful serial / parallel / hybrid
code debugger, with a graphical interface.

● Parallelism supported:
○ Serial codes
○ MPI codes
○ Multi-threaded (OpenMP etc) codes
○ GPU codes
○ Hybrid codes (any combinations of the above)

● Programming languages supported:
○ C, C++, Fortran
○ Limited support for Python (CPython 2.7)
○ Parallel languages/models including MPI, UPC, and Fortran 2008 Co-arrays
○ GPU languages such as HMPP, OpenMP Accelerators, CUDA and CUDA Fortran

DDT on Graham

● DDT is installed on our cluster Graham
○ We have a large - 512 cpu-cores - CPU license, and a smaller - 8 GPUs - GPU license.
○ The CPU license can be used for any codes (serial, parallel, hybrid) which do not use GPUs.

To use it, simply run the following command on graham:

$ module load ddt-cpu

○ The GPU license (can be used for any debugging involving a GPU) is availed by executing the
following command:

$ module load ddt-gpu

○ Make sure you are using the new (StdEnv/2020) environment module.
○ Niagara cluster has a smaller (CPU only) license for ddt. Their instructions may differ.

If you need help with DDT

● Detailed DDT user guide
○ https://developer.arm.com/documentation/101136/latest/ (google for “DDT ARM guide”)
○ On Graham, the PDF user guide can be found inside $EBROOTALLINEA/doc directory (after

loading the DDT module).
● Documentation on our Docs wiki:

○ https://docs.computecanada.ca/wiki/ARM_software
○ https://docs.computecanada.ca/wiki/Parallel_Debugging_with_DDT

● We have a few DDT webinars on our youtube channel:
http://youtube.sharcnet.ca

● Send an email to support@computecanada.ca (mention my name)

https://developer.arm.com/documentation/101136/latest/
https://docs.computecanada.ca/wiki/ARM_software
https://docs.computecanada.ca/wiki/Parallel_Debugging_with_DDT
http://youtube.sharcnet.ca
mailto:support@computecanada.ca

Setup

● What makes using DDT slightly more difficult than most of other Compute
Canada packages is that

○ It is interactive, and
○ It uses GUI (Graphical User Interface).

● I will describe a few setups for using DDT on Graham.

X11 forwarding (1)

● X11 forwarding is the easiest way to run DDT, so if it works for you, just use it
● Instructions depend on your device

○ For Windows, the easiest approach is to install the free app MobaXterm.
■ You get SSH terminal, SCP secure file copying, and X11 forwarding - enabled by default

○ For Mac, you need to install the free app XQuartz which enables the X11 forwarding
functionality.

○ For Linux, everything you need is already included.
● Once you installed the required soft, connect to Graham using this command:

$ ssh -Y user_name@graham.computecanada.ca

● Test your X11 setup by executing the xterm command - it should open in a
separate window.

mailto:user_name@graham.computecanada.ca

X11 forwarding (2)

● For a quick test (say, a few minutes; CPU codes only), you can now load the
ddt-cpu module, and run the ddt command (more about that later), right on
the login node.

● For more serious debugging work, first allocate interactive compute node(s)
using the salloc command, e.g.

$ salloc --x11 -t 0-01:00 -N 1 -c 4 --mem=32G -A def-user

○ Once inside a compute node, test your X11 connection by executing xterm command.
○ If it fails (“X11 connection rejected because of wrong authentication”), one likely reason is that

your home directory has too lax permissions. Fix them with

$ chmod og-rwX /home/$USER

VNC approach

● If you find the X11 approach results in a too laggy experience, the better (but
also more involved) approach is to use a VNC connection.

● The first step is to install TigerVNC Viewer (not Server!) on your device.
○ Windows, Mac, and Linux binaries available.

● Next, launch the app, and enter the following remote server address:
gra-vdi.computecanada.ca

● Once connected, you will get a Linux desktop window.
○ Enter you Compute Canada credentials there.
○ Open a text terminal, and load our standard environment via module load CcEnv StdEnv

command.
○ Now you can load the ddt-cpu module, and run the ddt command
○ You can only debug CPU codes on gra-vdi. The node is shared, so can be rather slow.
○ It is also possible to use VNC to connect to a compute node; check these instructions:

https://docs.computecanada.ca/wiki/VNC

https://docs.computecanada.ca/wiki/VNC

Preparing code for debugging

● Any CPU-based code: add “-g -Ox” during compiling and linking.
○ Use the appropriate “x” - normally it should be 0 (zero), but if the bug is optimization level

specific, replace “x” with the appropriate optimization level.

● CUDA code, or a hybrid code with CUDA: add both “-g -Ox” (for the CPU part)
and “-G” (for the GPU part) during compiling and linking.

● To use ddt with your code, load the appropriate module (ddt-cpu or ddt-gpu),
and then execute (same for serial, MPI, OpenMP, CUDA):

$ ddt /path/to/your/code [optional code arguments]

Code examples

● I have some simple debugging code examples on Graham, inside
/home/syam/Debugging_exercises folder

○ It will not be accessible during the webinar, as I have to restrict my home permissions, to make
X11 forwarding work.

○ You can also get it from our Gitlab:
https://git.sharcnet.ca/syam/Debugging_exercises

● The following code categories are present:
○ Serial
○ OpenMP
○ MPI
○ CUDA

■ Also has one hybrid (CUDA + MPI) example

https://git.sharcnet.ca/syam/Debugging_exercises.git

Live demo

Questions?

Email to syam@sharcnet.ca

