
What’s new and exciting about
Graham’s GPUs

Sergey Mashchenko
SHARCNET

From Fermi to Pascal

● The Monk GPUs are very dated - they are of Fermi generation,
and since then NVIDIA introduced Kepler, Maxwell, and Pascal
GPU architectures.

– Fermi: 2010

– Kepler: 2012

– [Maxwell: 2014]

– Pascal: 2016

(Maxwell didn't have any HPC GPUs.)

● The new cluster Graham has 320 of HPC Pascal GPUs, P100.
(Cedar at Simon Fraser has 584 P100's.)

Evolutionary changes

Specification Monk Graham

CUDA cores 448 3584

SP flops 1.03 TFlops 9.3 TFlops

Device memory 5.2 GB 12 GB

Memory bandwidth 148 GB/s 549 GB/s

Revolutionary changes

● CUDA Dynamic Parallelism (CDP): new hard/software
feature allowing for dynamic workload generation on GPU
(kernels launched from kernels). Makes GPU much more
general purpose computing device. First appeared in
Kepler GPUs.

● Hyper-Q: in previous generations, multiple CPU threads
could only access the GPU sequentially (one queue);
Kepler / Pascal expand that to 32 parallel queues. This
should significantly accelerate mixed MPI/CUDA and
OpenMP/CUDA codes, without any code modifications.
Also great for GPU farming.

Dynamic Parallelism

● Dynamic parallelism (DP) is available in CUDA 5.0 and later on devices of
Compute Capability 3.5 or higher (sm_35 for Kepler; sm_60 for Pascal).

● Under DP, an application can launch a coarse-grained kernel which in turn
launches finer-grained kernels to do work where needed.

Dynamic Parallelism

● DP is perfect for adaptive grid codes and codes with
recursion.

DP: simple example

// On device:
// Second level kernels (multi-threaded):
__global__ void kernel1 (){}
__global__ void kernel2 (){}

// Top level kernel (single-threaded):
__global__ void main_kernel (){
 if (threadIdx.x == 0) {
// These second level kernels will run sequentially (would need streams for concurrency)
 kernel1<<<Nblocks, Nthreads>>>();
 kernel2<<<Nblocks, Nthreads>>>();
 ...
 }}
// On host:
int main() {
 main_kernel<<<1,1>>>();}

● DP allows one to move almost everything to GPU.

Amdahl's Law
• Amdahl's Law states that potential

program speedup is defined by the
fraction of code (P) that can be
parallelized:

 1
 speedup = ———————

 1 - P

• If none of the code can be parallelized, P = 0 and the speedup
= 1 (no speedup). If all of the code is parallelized, P = 1 and
the speedup is infinite (in theory).

• If 50% of the code can be parallelized, maximum speedup = 2,
meaning the code will run twice as fast.

Amdahl's Law (2)
• Introducing the number of processors performing the parallel

fraction of work, the relationship can be modeled by:

 1
speedup = —————————

 P
 ——— + S
 N

where P = parallel fraction, N = number of processors and S =
serial fraction.

Amdahl's Law (3)
• It soon becomes obvious that there are

limits to the scalability of parallelism. For
example, at P = .50, .90 and .99 (50%,
90% and 99% of the code is
parallelizable):

 speedup
 ——————————————————
 N P = .50 P = .90 P = .99
 ———— ————— ———— —————
 10 1.82 5.26 9.17
 100 1.98 9.17 50.25
 1000 1.99 9.91 90.99
 10000 1.99 9.91 99.02

Hyper-Q: why is it important?

● GPUs work well when you saturate them with data-parallel
threads.

● Graham GPU has 8 times more cores (so need 8x more
threads to get saturated) than the Monk GPU.

● From the Amdahl's law, a code which runs well on Monk
will likely perform poorly* on Graham.

● Hyper-Q helps to mitigate this, by allowing to share one
GPU between different CPU threads.

Live demo of Hyper-Q

● A simple code, primes_HQ, only runs one block of threads
per kernel.

● This mimics a realistic code which doesn't have enough of
parallelism to saturate a modern GPU.

● Important: Hyper-Q is usually not enabled by default.

Job script for GPU farming

#!/bin/bash
#SBATCH --gres=gpu:1
#SBATCH -t 0-00:30
#SBATCH --mem=4G
#SBATCH -c 16

export CUDA_MPS_LOG_DIRECTORY=$HOME/tmp
nvidia-cuda-mps-control -d

for ((i=0; i<16; i++))
 do
 ./code &>out &
 done
wait

Other new features

● Atomic operations improvements:
● atomicAdd now supports FP64 (integer and float)
● atomicMin and atomicMax now support INT64

● Half precision (FP16) at twice speed of FP32
● HBM2 memory: much higher bandwidth, hardware ECC

(no memory or efficiency wasted for ECC).
● Quantitative improvements:

● Grid length (1D): 65,535 -> 2e9
● 32-bit registers per thread: 63 -> 255
● Concurrent kernels per device: 16 -> 128

Binary reduction

Kernel for binary summation

__shared__ double sum[BLOCK_SIZE];
...
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim.x; // Total number of active threads;
// only the first half of the threads will be active.

while(nTotalThreads > 1)
{
 int halfPoint = nTotalThreads / 2; // Number of active threads

 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint; // the second element index
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two}

Binary at the lower level, atomic at the higher level

__shared__ float sum[BLOCK_SIZE];
// Initialize sum[] array here
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim.x; // Total number of active threads;
// only the first half of the threads will be active.

while(nTotalThreads > 1){
 int halfPoint = nTotalThreads / 2; // Number of active threads

 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint; // the second element index
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}
if (threadIdx.x == 0)

atomicAdd (&xsum, sum[0]); // Atomic reduction

FP64 reduction on monk

● Two-level binary reduction:

// Host code
#define BSIZE 1024 // Always use a power of two; can be 32...1024
// Total number of elements to process: 1024 < Ntotal < 1024^2

int Nblocks = (Ntotal+BSIZE-1) / BSIZE;

// Low level (the results should be stored in global device memory):
x_prereduce <<<Nblocks, BSIZE >>> ();

// High level (will read the input from global device memory):
x_reduce <<<1, Nblocks >>> ();

Online quiz

Link: http://www.socrative.com

Room: CUDADAY2

http://www.socrative.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

