
Debugging your code with
DDT

Sergey Mashchenko
(SHARCNET / Compute Ontario / Alliance)

February 28, 2024

Outline

● Overview of DDT
● Using DDT on national systems
● Debugging with DDT

– Basic DDT features
– Serial codes (C/C++, Fortran, Python)
– OpenMP (multithreaded) codes
– MPI codes
– GPU codes (CUDA, ROCm/HIP)
– Advanced features

● Questions?

Overview of DDT

● DDT (former Allinea; former ARM; now Linaro) is a powerful
commercial debugger specifically designed for HPC.

● It can debug serial, multi-threaded, MPI, GPU (CUDA, ROCm) codes,
and any combinations of the above.

● Originally it only worked with compiled languages
(C/C++/Fortran), but Python is now also supported*.

● It has all the features a debugger needs, including
– Play / pause / step through commands
– Breakpoints / watchpoints / tracepoints
– Display / edit values of variables
– Memory debugging

● A lot of the DDT's functionality is for dealing with parallel codes,
e.g.
– Easy access to any MPI process or thread (on CPU or GPU)
– Control the execution of processes or threads either in groups or

individually
– Visualization of ongoing MPI communications
– Displaying the values of a variable across MPI ranks or threads

● For more information, check the DDT wiki page on Alliance web
portal,
https://docs.alliancecan.ca/wiki/ARM_software

and the DDT User guide,
https://www.linaroforge.com/documentation

Using DDT on national systems

DDT availability

● DDT is a commercial software currently installed on two
national systems: Graham and Niagara.

● Graham modules:
– ddt-cpu/23.1.1: the current version, CPU codes only, 64 cpu

cores limit across all users, available only under new StdEnv/2023
environment.

– ddt-cpu/22.0.1: the previous version, CPU codes only, 512 cpu
cores limit across all users, available under both StdEnv/2020 and
StdEnv/2023 environments.

DDT availability (cont).

● Graham modules (cont.):
– ddt-gpu/23.1.1: the current version, GPU and codes, 8 GPUs

limit across all users, available only under new StdEnv/2023
environment.

● Niagara modules:
– ddt-cpu/23.1.1: the current version, CPU-only codes, 64 cpu

cores limit, under CCEnv + StdEnv/2023 environments.

X11 forwarding

● DDT is a GUI application, so one has to ensure that X11
forwarding is enabled (ssh -Y), and that an X Window server is
running on your terminal.
– On Windows, use a free application MobaXterm (ssh client and X

Window server)
– On Mac, use XQuartz app for the X Window server functionality

● Graham doesn't have dedicated development nodes, so one
has to reserve node(s) using salloc or sbatch commands.

Basic usage

$ ssh -Y user@graham.alliancecan.ca

● Serial / MPI:
$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G --ntasks=4 -A def-user
$ mpicc -g -O0 code.c -o code
$ module load ddt-cpu
$ ddt ./code

● OpenMP:
$ salloc --x11 --time=0-3:00 --mem=16G --cpus-per-task=4 -A def-user
$ icc -g -O0 -qopenmp code.c -o code
$ module load ddt-cpu
$ ddt ./code

Basic usage (cont.)
● CUDA:

$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G –ntasks=1 --gres=gpu:p100:1 \
 -A def-user
$ module load cuda ddt-gpu
$ nvcc -G -g -O0 -arch=sm_60 code.cu -o code
$ ddt ./code

● Python (serial):
$ salloc --x11 --time=0-3:00 --mem=4G --ntasks=1 -A def-user
$ module load python ddt-cpu
$ ddt python3 %allinea_python_debug% my-script.py

● Python (MPI):
$ salloc --x11 --time=0-3:00 --mem-per-cpu=4G –ntasks=4 -A def-user
$ module load python mpi4py ddt-cpu
$ ddt mpirun -np 4 python3 %allinea_python_debug% my-mpi-script.py

VNC connection

● If the previous method (X11 forwarding) is too slow for you, you should
use VNC connection instead.

● First, install TigerVNC (client only) on your computer (available for
Windows, Mac and Linux).

● Open a text terminal (MobaXterm etc), login to a cluster, then execute
salloc command (do not use
-x11 switch!).

● Once inside a compute node, run the following command on the cluster,
and follow its instructions:

$ ~syam/bin/VNC

● One can also use Jupyterhub on the cluster (The Desktop option) as an
alternative way to run VNC on compute nodes.

Debugging with DDT

Basic features (live demo)

Advanced features

Watchpoints

● Unlike breakpoints (which are associated with a specific line in
code, with an optional condition), watchpoints are used to
pause at any line where the watched variable (or expression)
changes its value.

● Changing the default “write” mode to “read” mode will force
DDT to pause the next time the variable is accessed in the
code.

Tracepoints

● Tracepoints allow you to print certain variables values at certain
lines of the code without pausing the code.

● Can be set from the source code window (right-click), or by
right-clicking in the Tracepoints view and selecting Add
Tracepoint.

● This option is particularly useful in the offline (non-interactive)
mode of using DDT (we'll talk about it later), where it is set via
DDT command line option “--trace-at=...”.

Large/long jobs

● salloc has a limited runtime. Also, the wait time can become
very long if asking for more than one node.

● If a bug is encountered at a predictable point, one can write a
checkpointing file right before it happens, and do interactive
debugging from that point on.

● How to debug codes which are large or where a bug is
encountered at a random point, likely beyond the runtime limit
of salloc?

Attaching to a running job
● One possibility is to use the DDT's advanced feature “Attach to

an already running program”.
– Submit your job via sbatch
– Use squeue command to find out which node(s) are used by the job
– Launch ddt without arguments from a login node

– Choose the “Attach to an already running program” option.
– Click on Choose Hosts button, and add the job node(s) there.
– In most cases DDT will automatically detect all the processes from

your code.

Core files analysis

● If your code's bug results in a crash producing core* files, one
can use another advanced DDT functionality, Open Core, to
gain insight on the reasons for crashing.

● Compile your code with “-g”, submit it via sbatch. Make sure
you run it from Project or Scratch file system (on Home file
system no core files are created.)

● After the code crashes, launch ddt without arguments, and
choose the Open Core option. Add your core files and the path
to your code there.

● You can now see the state of the code at the time of crashing.

Offline debugging

● Finally, one could also try the Offline debugging option.
● Submit “ddt --offline/code” to the scheduler via sbatch command.
● There are many ddt switches which can be used in the offline mode.

E.g. the following command will do an offline debugging of a 4-ranks
MPI job which will save snapshots of the stack/variables every 10
minutes to a log file:

$ ddt --offline -n 4 --snapshot-interval=10 ./code

● There is a limited support for breakpoints and
tracepoints.

Questions?

● You can contact me directly
(syam@sharcnet.ca) or send an email to

 help@sharcnet.ca or support@alliancecan.ca .

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

