Parallel and high
performance processing
with R

An introduction to the high performance
computing environment at SHARCNET

Ge Baolai
SHARCNET
Western University

Running R on SHARCNET
Running R many simulations at
once

Parallel processing with R
Other aspects of HPC with R

THE

ART OF R
PROGRAMMING

A TOUR OF STATISTICAL SOFTWARE DESIGN

NORMAN MATLOFF

George Casella

UseR!
! Yy
Christian P. Robert #70a

Running R on SHARCNET A e Western g

On clusters Online

$ module unload intel http://rstudio.sharcnet.ca/
$ module load r
$ R Y © Rstudio

XX W

<« C' & & https://rstudio.sharcnet.ca PO =
O File Edit Code View Plots Session Build Debug Tools Help bge | Sign Out
Q| =~ E| Project: (None) -
| : Console Environment = History
. #* [| [Import Dataset- | 3 List=
R version 3.1.1 (2814-87-18) -- "Sock it to Me” ——
Copyright (C) 2014 The R Foundation for Statistical Computing o Emronmenty)
Platform: x86_64-redhat-linux-gnu (64-bit) Values
cols chr [1:2] "red” "green"

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions. labels chr [1:2] "Used" "Free"
Type "license(}" or 'licence()}"' for distribution details. slices num [1:2] &.5 188
tagpos num [1:2] 1 1
R is a collaborative project with many contributors. tags chr [1:2] "Used: ©.5 GB(8%)" "Unus..

Type ‘contributors()' for more information and

‘citation()’ on how to cite R or R packages in publications. ¥ R L

Type "demo()’ for some demos, “help()’ for on-line help, or ple i ot Packanes- (R ET EIEnCE

"help.start()" for an HTML browser interface to help. nstall | (@ Update

Type "q(}" to quit R. Name Description Versi...
[Workspace loaded from ~/.RData] User Library
e Interactive Plots for R5tudio 0.93.10

> library("ggplot2”, 1lib.loc="/usr/1ib64/R/library") it el e i
» detach("package:ggplot2”, unload=TRUE) rstudio Tools and Utilities for RStudio 0.98.10
> library(“ggmap”, 1ib.loc="/usr/lib64/R/library™) :
Loading required package: ggplot2 System Library
> pi boot unctions (Originally by 1.3-17
[1] 3.141593 1ty for S)
> log{exp(l),base=2) class
[1] 1.442695 E SR e —
> install.packages("Rmpi™) cluster Hinding:Lroups:n L ster 2.0.3
Installing package into “/home/bge/R/x86_64-redhat-linux-gnu-1i nalysis Extended Rou et
brary/3.1’
(as lib’ is unspecified) codetools
trying URL 'http://cran.rstudio.com/src/contrib/Rmpi_8.6-5._tar. colorspace
Content type 'application/x-gzip' length 182182 bytes (99 Kb) compiler The R Compiler Pac
openad URL # datasets The R Datasets Package
:;,;i;:;:?;?;E================================== dichromat Color Schemes for Dichromats

a5 digest Create crvotoaraphic hash digests 0.6.4

Western University

Running many simulations at once A e Western g

Example: | am to run 10 simulations, each can go independently. I'd like to
run them on SHARCNET systems as 10 independent jobs, by typing the
command time times:

$ sqsub -r 3d -0 sim1.log R CMD BATCH -no-save --args param1.csv sim.R
$ sqsub -r 3d -0 sim2.log R CMD BATCH -no-save --args param1.csv sim.R
$ sqsub -r 3d -0 sim3.log R CMD BATCH -no-save --args param3.csv sim.R
$ sqsub -r 3d -0 sim4.log R CMD BATCH -no-save --args param4.csv sim.R
$ sqsub -r 3d -0 sim5.log R CMD BATCH -no-save --args param5.csv sim.R
$ sqsub -r 3d -0 sim6.log R CMD BATCH -no-save --args param6.csv sim.R
$ sqsub -r 3d -0 sim7.log R CMD BATCH -no-save --args param7.csv sim.R
$ sqsub -r 3d -0 sim8.log R CMD BATCH -no-save --args param8.csv sim.R
$ sqsub -r 3d -0 sim9.log R CMD BATCH -no-save --args param9.csv sim.R
$ sqsub -r 3d -0 sim10.log R CMD BATCH -no-save --args param10.csv sim.R
$ sqgjobs

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running many simulations at once A e Western g

But if | need to run 300 simulations, then typing commands 300 times
becomes impractical. Instead I'd write a BASH script, say, “run_sims.sh” to
automate that:

#!/bin/bash
num_sims=300
for ((i=1;i<$num_sims;i++)); do
sqsub -r 3d -o sim$i.log R CMD BATCH —no-save —args param$i.csv sim.R

done

Then | run the script

$./run_sims

$ sqgjobs

The 300 jobs are now in the queue. The scheduler will find free cores and
place the jobs on them at a later time.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running many simulations at once A e Western g

Example (cont'd): Suppose | have 80 simulations, each uses an input file
with irregular name, e.g. patient name, SmithKW.csv, JohnFK.csy,

WarrenB.csv, how do | automate the submissions?

#!/bin/bash

for fin *.csv; do
sqsub -r 3d -0 $f.log R CMD BATCH —no-save —args $f sim.R

done

Parallel and high performance computing with R, SHARCNET, February 17, 2016

Copyright © 2001-2016 Western University

Running many simulations at once A e Western g

Running R on multicores

sqsub -q threaded -n 8 -0 myprog.log R CMD BATCH -no-save myprog.R

Running R across nodes (via MPI)

sqsub -q mpi -n 32 -0 myprog.log R CMD BATCH —no-save myprog.R

We won't talk much about R+MPI (Rmpi) here. Bottom line: tell the
scheduler how many MPI process you want to run, and never spawn
dynamic MPI processes from within your code without telling the scheduler
at the time of submission.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R Py ver Western g

Simulation of diffusion process 2D

= Substance of particles at the centre
at the beginning.

= To simulate the distribution of the T
particles over time. AN v

Assumptions: 5&:
= Each particle — the walker — walks ¥ A

randomly independent of other. /

= Each one walks a small distance
over a small, unit time step.

= At each point, the probability of a
. . . 1D
walker arriving at this location
depends only on the equal <« >
probability of it having reached the ®
neighboring points.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R il ver Western g

= On a single core — Use for loop to iterate through walkers.

oeve .
[]
(Y
23 A
[] []

’o

S

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R A ver Western g

= On multicores — Use foreach, each core follows a subset of walkers.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R Sitware carpentry 4 — |

Parallel packages

There are many parallel packages:-(that enable one to perform parallel
processing from least to advanced levels, including, e.g.

= multicore — enables the use of all cores on a single computer. It uses fork(), a
Unix mechanism, to spawn multiple instances, not for Windows.

snow — Simple Network Of Workstations, can run on a single computer and a
cluster of computers (nodes), works for both Windows and Linux.

parallel — built on top of multicore and snow, now part of R base package.
foreach — a package that enables one to perform parallel for loops.
Rmpi, Rdsn, pbdR, etc.

Copyright © 2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Parallel programming with R A ve - Western @

Exercise: Simulation of 1D diffusion process

Assumptions:
= All particles start at the origin.

= Each particle — the walker — walks randomly, either leftward or rightward, with
equal probability, independent of other.

= Each one walks a distance Ax over a small, unit time step At.

= At each point, the probability of a walker arriving at this location depends only
on the equal probability of it having reached the neighboring points, that is

1 1
plx,t+ At) = §p(ac — Az, t) + §p(:v + Az, t).

cC— > 0 « 9
r—ANxr = x4+ Ax

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

Implementation 1 (inefficient, never do this)
num_walkers = 100000
num_paths = 200

X = matrix(0,num_paths,num_walkers)
x2 = rep(0,num_paths)

Launch random walkers, all starting from x =0

set.seed(47)

ts <- proc.time()

for (i in 1:num_walkers)

{
A walker completes its walk
for (k in 2:num_paths)

{

X[k,i] = x[k-1,i] + rnorm(1,0,1)
}
}

proc.time() - ts

A v e Western (g
Use two arrays:
= X — paths, in column.
= x2 — variance of displacements.

* Note, R stores arrays column major.
So data access should be by
column too.

N walkers

>

yied

~— A path holding M displacements

Copyright © 2001-2016 Western University

Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

A e Western

Implementation 1 (inefficient, never do this)
num_walkers = 100000
num_paths = 200

X = matrix(0,num_paths,num_walkers)
x2 = rep(0,num_paths)

Launch random walkers, all starting from x =0
set.seed(47)

for (i in 1:num_walkers)

{

A walker completes its walk
for (k in 2:num_paths)

{

X[k,i] = x[k-1,i] + rnorm(1,0,1)

Compute the variance
for (k in 1:num_paths)

{

x2[K] = sum(x[k,]*x[k,])/num_walkers

Plot a path

plot(x[,1],type="l' xlab="Steps',ylab="Displacement')

Plot the variance
plot(1:num_paths,x2,xlab='Displacement',ylab="Variance');

Plot the distribution of displacements at last step
hist(x[num_paths,],freq=TRUE)

save(x,x2,file="vars.RData")

Copyright © 2001-2016 Western University

Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

A ver Western

Implementation 2 — using foreach + parallel packages
library(foreach)
library(doParallel) # parallel and iterator loaded implicitly

num_walkers = 100000
num_paths = 200
x2 = rep(0,num_paths)

7If.fafuﬂcfhwrandom walkers, all starting from x = 0
| setseedd7) > See L'Ecuyer generator (1999)

registerDoParallel(4)
result <- foreach (i=1:num_walkers) %dopar%

{

for (k in 2:num_paths) # A walker completes its walk

{
x2[K] = x2[k-1] + rnorm(1,0,1)

}

return(x2)

}
stoplmplicitCluster()

Assemble the result to path matrix
X <- matrix(unlist(result),num_paths,num_walkers)

Compute the variance
for (k in 1:num_paths)

{

x2[K] = sum(x[k,]*x[k,])/num_walkers

Plot a path

plot(x[,1],type="l' xlab="Steps',ylab="Displacement')

Plot the variance
plot(1:num_paths,x2,xlab='Displacement',ylab="Variance');

Plot the distribution of displacements at last step
hist(x[num_paths,],freq=TRUE)

save(x,x2,file="vars.RData")

Copyright © 2001-2016 Western University

Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion A e Western g

Implementation 3 — no parallelism, just using R functions Vectorization

Notice for each walker, the
displacements from the origin are

Tit1 = T; + Ax;.

This cumulative sum can be completed
efficiently by one shot using R's
function cumsum(). Compare with

for (i in 1:num_walkers) for (iin T:num_walkers)

{ {
disp = rnorm(num_paths,mean=0,1) for (k in 2:num_paths)
X[,i] = cumsum(disp) {

X[k,i] = x[k-1,i] + rnorm(1,0,1)

}

}
)

Compute the variance and generate plots.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

A e Western g
Exercise (cont'd): Performance comparison
num_walkers for loop foreach for loop +
(sec) (sec) cumsum()
on 4 cores (sec)
1,000 2.011 0.630 0.068
10,000 19.327 4.567 0.722
100,000 195.000 50.895 6.740

Copyright © 2001-2016 Western University

Parallel and high performance computing with R, SHARCNET, February 17, 2016

A ve - Western @
Using Rmpi — Explicit parallel programming with MPI
= Developed by Prof. Yu Hao from Western University.

= To gain the fine grained control, use direct message passing
send/receive calls featured by the message passing interface MPI.

= Offers greater flexibility for implementing complex algorithms, than many
other parallel packages.

= There is a learning curve, if not already knowing MPI.
= Requires system installation of MPI.
= Not so straightforward to setup compared to other packages.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R A et Western g

Using Rmpi on SHARCNET Example
- LOad gCC and gCC compiled module unload intel openmpi
module load r

OpenMPI mOdU|e module load gcc/5.1.0 openmpi/gee-5.1.0/std/1.8.7
m Load R mOdU|e sqsub -q mpi-n 8 -r 10m -0 yu.log \

Set . {R LIBS t $HOME/bin/R CMD BATCH -no-save yu.R
= oetenvironment n_ , €.0.10

$HOME/lib/R brary(Rmp)
» |nstall Rmpl from Wlthlng R #setup parallel random number generator

= Copy R to SHOME/bin/R, add the [Pmseem

#create your own function(s)

following lines (red) at line 4 myfun=function(n) mean(morm(r)

#transfer your function(s) to all slaves

#!/bin/sh

l.bcast.Robj2sl f
Shell wrapper for R executable. mpi.bcast.Robj2slave(myfun)

#run the parallel job

PATH=8MPI_ROOT/bin:$PATH; export PATH output <- mpi.parReplicate(1000,myfun(1000000))
LD_LIBRARY_PATH=$MPI_ROOT/lib/:$LD_LIBRARY_PATH

export R_PROFILE=$R_LIBS/RmpilRprofile output{1:10f#can save output fo a file

#must close all slaves
------ mpi.close.Rslaves()

mpi.quit()

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A NE T Western

Vectorization

Using R functions xapply() to performance operations on a list of things at once
can make computations really fast.

lapply(x, fun, ...) — apply a function to each element of a list/vector

sapply(x, fun, ...) — apply a function to each element of a list/vector and simplify
to return a vector or array.

vapply(x, fun, fun_value, ...) — Tips: same as sapply, but returns a vector of
type matching fun_value (safe); if the length of fun_value==1, then it returns a
vector of the same length of x. This will be faster (don't know exactly why).

tapply — apply a function to a slice of list, vector, easier for data frames.
mapply — a multivariate version of apply().

apply(x, margin, fun, ...) — apply a function to a row, column or elements of an
array, with margin==1 being rows and 2 being columns.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A w e+ Western g
lapply/sapply(x, fun, ...) — passing one argument

Pass ONE argument to the function
>n<-¢(2,3,5)

> X <- lapply(n,rnorm)

> X

(1]
[1] 0.6766938 -1.3893758

[12]]
[1]-1.7145366 -2.4362372 0.2003453

[131]
[1]-1.7807025 -0.1330609 -0.2210980 -0.1071721 -0.2836180

>y <- sapply(x,mean)
>y
[1]-0.3563410 -1.3168095 -0.5051303

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A w e+ Western g
lapply/sapply(x, fun, ...) cont'd — passing multiple arguments

Pass ONE argument to the function
ns = ¢(2,3,9)

X = lappy(ns,rnorm)

y = sapply(x, mean)

Pass TWO or more arguments to the function?

This doesn't work
path < - function(n, x0=0, dev=1) { ds = rnorm(n,mean=x0,sd=dev); return(cumsum(c(x0,ds[1:n-1])); }
y = sapply(1:5, path(n=5,x0=1,dev=1))

This works, but not so obvious
path < - function(i,n, x0=0, dev=1) { ds = morm(n,mean=x0,sd=dev); return(cumsum(c(x0,ds[1:n-1])); }
y = sapply(1:5, path, n=5,x0=1,dev=1)

This works too, at least consistent to the function definition
path < - function(n, x0=0, dev=1) { ds = rnorm(n,mean=x0,sd=dev); return(cumsum(c(x0,ds[1:n-1])); }
y = sapply(1:5, function(n,x0,dev) path(n=5,x0=1,dev=1))

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A NE T Western

Exercise: Simulating stock prices
= To simulate the closing price at the end of 180 days.
= Assume the stock price follows the normal distribution (??) on a daily basis.

= Assume an average of 0.1% of gain of its opening price (e.g. $25), and a
volatility of 0.001.

= To generate 100,000 scenarios (paths) of movements and examine the results

at the end of 180 days.
o
a | ,"l-.’
[" N II' |
WA oy
= ‘ /
.§ A J Ll ¥ ﬁ_,rr
a b Uk
o et Y 7 A .'. /
P I;II"PJ ARV Al ,-‘“"ﬂlf N i i A f ll
LW\J | /v ¥g SRS Eiman
5 ..IPNIIH;\Il_\J 1% .
I I I I
0 30 100 150
Day

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A NE T Western

Stock price simulation - serial version Ve ctori Zati on
stock_prices <- function(price,ndays,gain=0,sigma=0) .
{ Assume the stock price follows a
ds = 1+rnorm(ndays-1,mean=gain,sd=sigma) normal distribution (well, not really).
} retum{cumprod{c(priceds) Let ¢, be the change rate in stock
price, the new price is given by
set.seed(47)

St_|_1:tht, tzl,,N

system.time(prices <- replicate(100000,
stock_prices(price=25,

ndays=180, We use R function rnorm() to generate
gain=0.001, a vector of change rates and
sigma=0.01)) cumprod() to generate a vector of

prices over time in one shot.

paths=matrix(unlist(prices),nrow=180,ncol=100000)

ps = sample.int(num_paths,min(num_paths,7)) Then we use function replica.te() to
omin =min{paths]ps] repeat the process 100,000 times to
pmax = max(paths[,ps]) generate 100,000 paths.
plot(paths[,ps[1]],type="',col="red',xlab="Day',ylab="Price',ylim . . :

= c{pmin,pmax) Vectorization is fast!

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A NE T Western

Stock price simulation - parallel version
library(parallel)
stock_prices <- function(price,ndays,gain=0,sigma=0)

{

ds = rnorm(ndays-1,mean=1+gain,sd=sigma)
return(cumprod(c(price,ds)))

}

(7 See L'Ecuyer generator (1999)
RNGkind("L'Ecuyer-CMRG")
set.seed(47)

system.time(prices <- mclapply(1:100000,
function(price,ndays,gain,sigma)
stock_prices(price=25,
ndays=180,
gain=0.001,
sigma=0.01),mc.cores=4))

paths=matrix(unlist(prices),nrow=180,ncol=100000)

Stock price simulation - serial version

stock_prices <- function(price,ndays,gain=0,sigma=0)

{
ds = rnorm(ndays-1,mean=1+gain,sd=sigma)
return(cumprod(c(price,ds)))

set.seed(47)
system.time(prices <- replicate(100000,
stock_prices(price=25,
ndays=180,
gain=0.001,
sigma=0.01)))

paths=matrix(unlist(prices),nrow=180,ncol=100000)

Copyright © 2001-2016 Western University

Parallel and high performance computing with R, SHARCNET, February 17, 2016

A w e+ Western g
Implicit parallelization
Featured by the underlying libraries, no work needed, free.

#1In “mm.R”
n =4*1024
n2=n*n

A = matrix(rnorm(n2),nrow=n,ncol=n)
B = matrix(rnorm(n2),nrow=n,ncol=n)
system.time(C < - A %*% B)

Set the environment variable OMP_NUM_THREADS to different values and run
the script, see the execution time difference.

$ export OMP_NUM_THREADS=1
$ R —no-save < mm.R

$ export OMP_NUM_THREADS=2
$ R —no-save < mm.R

$ export OMP_NUM_THREADS=4
$ R —no-save < mm.R

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A et Western g
When things can bite...
Unexpected behavior may occur when using parallel packages

Perfectly correct, but troublesome R code!!!
> library(parallel)
> set.seed(1000)
> test <- lapply(1:10,function(x) rnorm(100000))
> system.time(x <- mclapply(test,function(x) loess.smooth(x,x), mc.cores=1))
user system elapsed

2.968 0.026 2.991 B

> system.time(x <- mclapply(test,function(x) loess.smooth(x,x), mc.cores=2))

This code is correct, but troublesome. It may suffer from that
= The code does not scale at all

= The code hangs

Why?

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A e Western g
Large datasets and linear models
Look for alternatives

To fit data with linear model y = b0 + b1*x + b2*x"2

n = 5000000 o
p=2

x = sort(runif(n,-1,1))

y = sin(x)*exp(x) + rnorm(n,sd=0.25) S

Create a linear model (quadratic polynomial). This may fail! o |

system.time(m <- Im(y ~ x + 1(x2))) - 2
Try this one if the above fails — equivalent -

t = proc.time() o |

A = outer(x,0:p,"™) °

coef <- gr.solve(A,y)

proc.time() - t 3

coef

And even try this one via the solution of normal equations - not recommended
t = proc.time()
B =1(A) %*% A
coef2 <- solve(B, t(A) %*% y) \ | ‘ ! ;
proc.time() - t -1.0 -0.5 0.0 0.5 1.0
coef2

-1.0

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A w e+ Western g
Loading large CSV files

| have a large CSV file containing data extracted from a database, 350MB of size,
1.7 millions of records, 28 columns each. The job data file contains the following

= Number of cores used
= Arrival, start time and end time, etc.

> system.time(j <- read.csv("jobs orca.csv",header=T,sep=","))
user system elapsed
318.522 1.778 325.615

> jlsample.int (120000,6),c("ncpus","t in","t start")]

ncpus t in t start
90163 1 2014-12-12 05:25:35-05 2014-12-12 05:27:36-05
94375 1 2014-12-12 12:38:51-05 2014-12-12 17:13:46-05
13681 16 2014-11-20 20:07:26-05 2014-11-20 20:11:28-05
37321 1 2014-11-27 01:02:35-05
89417 1 2014-12-12 02:52:07-05 2014-12-12 02:53:58-05
48207 1 2014-11-28 16:27:02-05 2014-11-28 16:27:59-05

Using R function read.csv() takes nearly 6 minutes to lead the data on my laptop
running Windows 7. So, how to improve this?

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

BN

WELCOME!

W Follow @rbloggers (BRI

Here you will find daily
news and tutorials about
R, contributed by over 573
bloggers.

There are many ways to
follow us -

By e-mail:

Your e- mall here

Subsc ribe

|215?1 readers
Ev FEEDEURHMER

On Facebook:

I_.? R blogg...

2Bk likss

Kl Like Page

Bz the first of your friends
to like this

N

If you are an R blogger
vourself vou are invited to
add your own R content
feed to this site (Non-
English E bloggers should
add themselves- here)

EJ JOBS FOR R-1TSERS

SHRM Temporary —
Certification @

Efficiency of Importing
Large CSV Files in R

0. 2014
February 10, 201

By statcompute

EmED in sha

(Thiz arhicle was first pubhshed on Yet Another Blog in Statistical Computing » 5+/R., and
kmdly contributed to R-bloggers)

size of csv file: B6B9.4AMB (7,809,728 rows * 29 o

system.time(read.csv('../data/2088.csv', header = T)
user system elapsed
88.301 2.416 90.716

library(data.table)

system.time(fread(’../data/2008.csv’, header = T, sg

user system elapsed

4.748 8.2438 4.785

librar; (bigmemury}

sy :.tﬂm time(read.big.matrix("../data/2088.csv’, head
user system elapsed

50.544 @.764 60.308

library(ff)

system.time(read.csv.ffdf(file = '../data/2@@88.csv",

user system elapsed
60.828 1.288 61.335
library(sqldf)

system.time(read.csv.sql("’
user system elapsed
87.461 3.888 091.447

../data/28e8.csv"))

Add & Comment

63 ke | snare R in_share B

TOP 3 POSTS FROM THE PAST 2 DAYS

Cleaning and visualizing genomic data: a case study
in fidy analysis

Installing B packages

In-depth introduction to machine leaming in 15
hours of expert videos

E-Search & Hit Enter

TOP g ARTICLES OF THE WEEK

Installing R packages

James Bond movies

In-depth introduction to machine learning in
15 hours of expert videos

Analyzing 1.1 Billion NYC Taxi and Uber
Trips. with a Vengeance

Using apply. sapply, lapply in R
Correlation and Linear Regression

Online R courses at Udemy - for (only) $11
Deep Learning with NXNetR

How to Make a Histogram with Basic R

s

o

D60~ Oy

SPONSORS

e ran
MANGOSOLUTIONS ™

R Consulting, Training, Support and
Application Development

A NE T Western

Loading large CSV files (cont'd)
| use package data.table, it loads data much faster!

> library(data.table)

> system.time (d <- fread("jobs orca.csv"))

Read 1635034 rows and 28 (of 28) columns from 0.323 GB file in 00:00:22
user system elapsed
14.24 0.34 21.65

Next, how should | do to get the following?
= Sorted by number of cores used
= The min, max, mean and median wait time, etc grouped by number of cores.

People used to procedural programming languages may get lost. R is better at
this sort of things.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A NE T Western

Using aggregate functions
| use package data.table, it loads data much faster!

> library(data.table)
> system.time (d <- fread("jobs orca.csv"))
Read 1635034 rows and 28 (of 28) columns from 0.323 GB file in 00:00:22
user system elapsed
14.24 0.34 21.65
> names (d)
[1] "jobid" "host" "state" "job type"
[5] "t_in" "t _start" "t _end" "utime"
[9] "stime" "atime" "ncpus" "nnodes"
[13] "exitstatus" "memory" "pfaults" "flags"
[17] "nodes" "institution" "user" "est runtime"
[21] "pi user" "exit info" "queue type id" "pvmem reqg"
[25] "vmem" "vmem req" "gpus" "backfilled"

Next, how should | do to get the following?
= Sorted by number of cores used
= The min, max, mean and median wait time, etc grouped by number of cores.

People used to procedural programming languages may get lost. R is better at
this sort of things.

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

A w e+ Western g
Using aggregate functions (cont'd)

> library(data.table)

> system.time (d <- fread("jobs orca.csv"))

Read 1635034 rows and 28 (of 28) columns from 0.323 GB file in 00:00:22
user system elapsed
14.24 0.34 21.65

> ds <- subset (d,select=c(as.numeric(ncpus),t in,t start,t end))
> d cpus <- aggregate (dsSncpus,by=list (dsSncpus), FUN =length)
> names (d_cpus) < - c(“ncpus”,”jobs”)
> d cpus[order (as.numeric (d cpus$ncpus)),]
ncpus jobs
1 1 1351160
31 2 45262
55 4 52676
80 8 88775
22 16 41459
39 24 2990
51 32 20180
54 36 1361
63 48 1171
71 64 17101
13 128 603
45 256 189

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

i lii!
software carpentry A NET wﬁs!-n

Large data and out of core operations

| have a 1.45GB job data (a subset of 5 year's data), 34 million records, that can't
easily fit in the memory.

> library(data.table)
> > system.time (d <- fread('jobs.csv'))
Read 31629152 rows and 6 (of 6) columns from 1.350 GB file in 00:00:42
user system elapsed
21.45 2.48 42 .07
> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 552184 29.5 940480 50.3 940480 50.3
Vcells 95811153 731.0 115596418 882.0 95815259 731.1
> names (d)
[1] "jobid" "sysid" "ncpus" "t in" "t start" "t end"
> system.time (wt <- d$t start-dSt in)

user system elapsed

0.20 0.06 0.28
> system.time (quantile (wt, probs=0.75))

user system elapsed

0.56 0.03 0.64

Copyright © 2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

’ lii!
software carpentry A NET wfs!-n

Large data and out of core operations (cont'd)

| have a 1.45GB job data (a subset of 5 year's data), 34 million records, that can't
easily fit in the memory. | use bigmemory package.

> library (bigmemory)
> gc (reset=TRUE)
used (Mb) gc trigger (Mb) max used (Mb)

Ncells 527579 28.2 940480 50.3 527579 28.2
Vcells 886272 6.8 1650153 12.6 886272 6.8
>

> system.time (j <-
read.big.matrix ('jobs.csv',header=T,backingfile="jobs.bin',descriptorfile="jobs.desc'))
user system elapsed
239.68 40.54 291.08
Warning message:
In read.big.matrix("jobs.csv", header = T, backingfile = "jobs.bin",

Because type was not specified, we chose integer based on the first line of data.

> gc ()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 534454 28.6 940480 50.3 557062 29.8
Vcells 898302 6.9 1650153 12.6 965413 7.4

Copyright © 2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

’ lii!
software carpentry A NET wfs!-n

Large data and out of core operations (cont'd)

Creating file-backed big matrix off disk is slow, but saves a lot memory. Operations
on the data are pretty fast.

> library (bigmemory)

> system.time (d <-
read.big.matrix('ts.csv',header=T,backingfile='ts.bin',descriptorfile="'ts.desc'))

user system elapsed
239.68 40.54 291.08
> dd <- dget('ts.desc')
> d <- attach.big.matrix (dd)
> system.time (wt <- d[,"t start"] - d[,"t in"])
user system elapsed
0.31 0.08 0.39
> system.time (quantile (wt,probs=0.75))
user system elapsed
0.53 0.04 0.56
> system.time (wt min <- min(wt))
user system elapsed
0.06 0.00 0.05

Copyright © 2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Where to find materials A ve - Western

More workshops

= |ntroduction to Unix shell (software carpentry)

= Revision control with Git (software carpentry)

= Programming with Python (software carpentry)

= |ntroduction to R

= Parallel programming with R

= |ntroduction of SQL database

= |ntroduction to parallel computing with MATLAB

= |ntroduction to parallel computing with modern Fortran

= Bi-weekly online seminars: https://www.sharcnet.ca/my/news/calendar
= Summer school on high performance and scientific computing

Copyright © 2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Where to find materials sbtoware carpentry 8 W
Slides

http://www.sharcnet.ca/~bge/seminars/parallel-R/parallel-hpc-R.pdf

Acknowledgment

Some materials in this talk were taken from the course “Introduction to R” at 2015
Ontario summer school on HPC at University of Toronto, July 13-17, given by Erik
Spence of SciNet, University of Toronto.

Find where we are

Western Science Centre, Room 127

Shared Hierarchical Academic Computing Network (SHARCNET)
Western University

Web: http://www.sharcnet.ca/

E-mail: help@sharcnet.ca

Copyright © 2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

