
Parallel and high 
performance processing 
with R
An introduction to the high performance 
computing environment at SHARCNET

Ge Baolai

SHARCNET

Western University

 Running R on SHARCNET
 Running R many simulations at 

once
 Parallel processing with R
 Other aspects of HPC with R

General Interest Seminar Series
Teaching the lab skills for
SCIENTIFIC COMPUTING



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running R on SHARCNET

On clusters Online

http://rstudio.sharcnet.ca/$ module unload intel
$ module load r
$ R



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running many simulations at once 

Example: I am to run 10 simulations, each can go independently. I'd like to 
run them on SHARCNET systems as 10 independent jobs, by typing the 
command time times:

$ sqsub -r 3d -o sim1.log R CMD BATCH –no-save --args param1.csv sim.R

$ sqsub -r 3d -o sim2.log R CMD BATCH –no-save --args param1.csv sim.R

$ sqsub -r 3d -o sim3.log R CMD BATCH –no-save --args param3.csv sim.R

$ sqsub -r 3d -o sim4.log R CMD BATCH –no-save --args param4.csv sim.R

$ sqsub -r 3d -o sim5.log R CMD BATCH –no-save --args param5.csv sim.R

$ sqsub -r 3d -o sim6.log R CMD BATCH –no-save --args param6.csv sim.R

$ sqsub -r 3d -o sim7.log R CMD BATCH –no-save --args param7.csv sim.R

$ sqsub -r 3d -o sim8.log R CMD BATCH –no-save --args param8.csv sim.R

$ sqsub -r 3d -o sim9.log R CMD BATCH –no-save --args param9.csv sim.R

$ sqsub -r 3d -o sim10.log R CMD BATCH –no-save --args param10.csv sim.R

$ sqjobs

Powered by Linux



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running many simulations at once 

But if I need to run 300 simulations, then typing commands 300 times 
becomes impractical. Instead I'd write a BASH script, say, “run_sims.sh” to 
automate that:

Then I run the script

The 300 jobs are now in the queue. The scheduler will find free cores and 
place the jobs on them at a later time. 

#!/bin/bash

num_sims=300

for ((i=1;i<$num_sims;i++)); do

    sqsub -r 3d -o sim$i.log R CMD BATCH –no-save –args param$i.csv sim.R

done

$ ./run_sims

$ sqjobs



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running many simulations at once 

Example (cont'd): Suppose I have 80 simulations, each uses an input file 
with irregular name, e.g. patient name, SmithKW.csv, JohnFK.csv, 
WarrenB.csv, how do I automate the submissions?

#!/bin/bash

for f in *.csv; do

    sqsub -r 3d -o $f.log R CMD BATCH –no-save –args $f sim.R

done



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Running many simulations at once 

Running R on multicores

Running R across nodes (via MPI)

We won't talk much about R+MPI (Rmpi) here. Bottom line: tell the 
scheduler how many MPI process you want to run, and never spawn 
dynamic MPI processes from within your code without telling the scheduler 
at the time of submission.

sqsub -q threaded -n 8 –mpp=4g -o myprog.log R CMD BATCH –no-save myprog.R

sqsub -q mpi -n 32 –mpp=4g -o myprog.log R CMD BATCH –no-save myprog.R



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R

Simulation of diffusion process
 Substance of particles at the centre 

at the beginning. 
 To simulate the distribution of the 

particles over time.

Assumptions:
 Each particle – the walker – walks 

randomly independent of other.
 Each one walks a small distance 

over a small, unit time step.
 At each point, the probability of a 

walker arriving at this location 
depends only on the equal 
probability of it having reached the 
neighboring points.

2D

1D



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R

 On a single core – Use for loop to iterate through walkers.



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R

 On multicores – Use foreach, each core follows a subset of walkers.



Copyright ©  2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Aspects of HPC with R

Parallel packages
There are many parallel packages:-( that enable one to perform parallel 
processing from least to advanced levels, including, e.g.
 multicore – enables the use of all cores on a single computer. It uses fork(), a 

Unix mechanism, to spawn multiple instances, not for Windows.
 snow – Simple Network Of Workstations, can run on a single computer and a 

cluster of computers (nodes), works for both Windows and Linux.
 parallel – built on top of multicore and snow, now part of R base package.
 foreach – a package that enables one to perform parallel for loops.
 Rmpi, Rdsn, pbdR, etc.



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R

Exercise: Simulation of 1D diffusion process
Assumptions:
 All particles start at the origin.
 Each particle – the walker – walks randomly, either leftward or rightward, with 

equal probability, independent of other.
 Each one walks a distance        over a small, unit time step      .
 At each point, the probability of a walker arriving at this location depends only 

on the equal probability of it having reached the neighboring points, that is



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

# Implementation 1 (inefficient, never do this)

num_walkers = 100000

num_paths = 200

x = matrix(0,num_paths,num_walkers)

x2 = rep(0,num_paths)

# Launch random walkers, all starting from x = 0

set.seed(47)

ts <- proc.time()

for (i in 1:num_walkers)

{

    # A walker completes its walk

    for (k in 2:num_paths)

    {

        #x[k,i] = x[k-1,i] + sample(c(-1,1))[1]

        x[k,i] = x[k-1,i] + rnorm(1,0,1)

    }

}

proc.time() - ts

Use two arrays:
 x – paths, in column.
 x2 – variance of displacements.
 Note, R stores arrays column major. 

So data access should be by 
column too.

N walkers

pathx

A path holding M displacements



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

# Implementation 1 (inefficient, never do this)

num_walkers = 100000

num_paths = 200

x = matrix(0,num_paths,num_walkers)

x2 = rep(0,num_paths)

# Launch random walkers, all starting from x = 0

set.seed(47)

ts <- proc.time()

for (i in 1:num_walkers)

{

    # A walker completes its walk

    for (k in 2:num_paths)

    {

        #x[k,i] = x[k-1,i] + sample(c(-1,1))[1]

        x[k,i] = x[k-1,i] + rnorm(1,0,1)

    }

}

proc.time() - ts

# Compute the variance

for (k in 1:num_paths)

{

    x2[k] = sum(x[k,]*x[k,])/num_walkers

}

# Plot a path

plot(x[,1],type='l',xlab='Steps',ylab='Displacement')

# Plot the variance

plot(1:num_paths,x2,xlab='Displacement',ylab='Variance');

# Plot the distribution of displacements at last step

hist(x[num_paths,],freq=TRUE)

save(x,x2,file="vars.RData")



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

# Implementation 2 – using foreach + parallel packages

library(foreach)

library(doParallel) # parallel and iterator loaded implicitly

num_walkers = 100000

num_paths = 200

x2 = rep(0,num_paths)

# Launch random walkers, all starting from x = 0

set.seed(47)

ts <- proc.time()

registerDoParallel(4)

result <- foreach (i=1:num_walkers) %dopar%

{

    for (k in 2:num_paths) # A walker completes its walk

    {

        x2[k] = x2[k-1] + rnorm(1,0,1)

    }

    return(x2)

}

stopImplicitCluster()

proc.time() - ts

# Assemble the result to path matrix

x <- matrix(unlist(result),num_paths,num_walkers)

# Compute the variance

for (k in 1:num_paths)

{

    x2[k] = sum(x[k,]*x[k,])/num_walkers

}

# Plot a path

plot(x[,1],type='l',xlab='Steps',ylab='Displacement')

# Plot the variance

plot(1:num_paths,x2,xlab='Displacement',ylab='Variance');

# Plot the distribution of displacements at last step

hist(x[num_paths,],freq=TRUE)

save(x,x2,file="vars.RData")

See L'Ecuyer generator (1999)



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

# Implementation 3 – no parallelism, just using R functions

num_walkers = 100000

num_paths = 200

x = matrix(0,num_paths,num_walkers)

x2 = rep(0,num_paths)

# Launch random walkers, all starting from x = 0

set.seed(47)

ts <- proc.time()

for (i in 1:num_walkers)

{

    disp = rnorm(num_paths,mean=0,1)

    x[,i] = cumsum(disp)

}

proc.time() - ts

# Compute the variance and generate plots.

Vectorization
Notice for each walker, the 
displacements from the origin are

This cumulative sum can be completed 
efficiently by one shot using R's 
function cumsum(). Compare with 
for (i in 1:num_walkers)

{

    for (k in 2:num_paths)

    {

        x[k,i] = x[k-1,i] + rnorm(1,0,1)

    }

}



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of 1D diffusion

Exercise (cont'd): Performance comparison

num_walkers for loop 
(sec)

foreach 
(sec)

on 4 cores

for loop + 
cumsum() 

(sec)

1,000 2.011 0.630 0.068

10,000 19.327 4.567 0.722

100,000 195.000 50.895 6.740



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R

Using Rmpi – Explicit parallel programming with MPI
 Developed by Prof. Yu Hao from Western University.
 To gain the fine grained control, use direct message passing 

send/receive calls featured by the message passing interface MPI.
 Offers greater flexibility for implementing complex algorithms, than many 

other parallel packages.
 There is a learning curve, if not already knowing MPI.
 Requires system installation of MPI.
 Not so straightforward to setup compared to other packages.



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Parallel programming with R

Using Rmpi on SHARCNET 
 Load gcc and gcc compiled 

OpenMPI module
 Load R module
 Set environment R_LIBS, e.g. to 

$HOME/lib/R
 Install Rmpi from withing R
 Copy R to $HOME/bin/R, add the 

following lines (red) at line 4

Example
module unload intel openmpi

module load r

module load gcc/5.1.0 openmpi/gcc-5.1.0/std/1.8.7

sqsub -q mpi -n 8 -r 10m -o yu.log \

    $HOME/bin/R CMD BATCH –no-save yu.R

#!/bin/sh
# Shell wrapper for R executable.

PATH=$MPI_ROOT/bin:$PATH; export PATH
LD_LIBRARY_PATH=$MPI_ROOT/lib/:$LD_LIBRARY_PATH
export R_PROFILE=$R_LIBS/Rmpi/Rprofile

… ...

library(Rmpi)

#setup parallel random number generator

mpi.setup.rngstream()

#create your own function(s)

myfun=function(n) mean(rnorm(n))

#transfer your function(s) to all slaves

mpi.bcast.Robj2slave(myfun)

#run the parallel job

output <- mpi.parReplicate(1000,myfun(1000000))

output[1:10]#can save output to a file

#must close all slaves

mpi.close.Rslaves()

mpi.quit()



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Vectorization
Using R functions xapply() to performance operations on a list of things at once 
can make computations really fast.
 lapply(x, fun, ...) – apply a function to each element of a list/vector
 sapply(x, fun, ...) – apply a function to each element of a list/vector and simplify 

to return a vector or array.
 vapply(x, fun, fun_value, …) – Tips: same as sapply, but returns a vector of 

type matching fun_value (safe); if the length of fun_value==1, then it returns a 
vector of the same length of x. This will be faster (don't know exactly why).

 tapply – apply a function to a slice of list, vector, easier for data frames.
 mapply – a multivariate version of apply(). 
 apply(x, margin, fun, ...) – apply a function to a row, column or elements of an 

array, with margin==1 being rows and 2 being columns. 



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

lapply/sapply(x, fun, …) – passing one argument

# Pass ONE argument to the function
> n <- c(2,3,5)
> x <- lapply(n,rnorm)
> x
[[1]]
[1]  0.6766938 -1.3893758

[[2]]
[1] -1.7145366 -2.4362372  0.2003453

[[3]]
[1] -1.7807025 -0.1330609 -0.2210980 -0.1071721 -0.2836180

> y <- sapply(x,mean)
> y
[1] -0.3563410 -1.3168095 -0.5051303



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

lapply/sapply(x, fun, …) cont'd – passing multiple arguments

# Pass ONE argument to the function
ns = c(2,3,5)
x = lappy(ns,rnorm)
y = sapply(x, mean)

# Pass TWO or more arguments to the function?

# This doesn't work
path < - function(n, x0=0, dev=1) { ds = rnorm(n,mean=x0,sd=dev); return(cumsum(c(x0,ds[1:n-1])); }
y = sapply(1:5, path(n=5,x0=1,dev=1))

# This works, but not so obvious
path < - function(i,n, x0=0, dev=1) { ds = rnorm(n,mean=x0,sd=dev); return(cumsum(c(x0,ds[1:n-1])); }
y = sapply(1:5, path, n=5,x0=1,dev=1)

# This works too, at least consistent to the function definition
path < - function(n, x0=0, dev=1) { ds = rnorm(n,mean=x0,sd=dev); return(cumsum(c(x0,ds[1:n-1])); }
y = sapply(1:5, function(n,x0,dev) path(n=5,x0=1,dev=1))



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of stock prices

Exercise: Simulating stock prices
 To simulate the closing price at the end of 180 days.
 Assume the stock price follows the normal distribution (??) on a daily basis.
 Assume an average of 0.1% of gain of its opening price (e.g. $25), and a 

volatility of 0.001.
 To generate 100,000 scenarios (paths) of movements and examine the results 

at the end of 180 days.



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Exercise: Simulation of stock prices

# Stock price simulation - serial version

stock_prices <- function(price,ndays,gain=0,sigma=0) 

{

    ds = 1+rnorm(ndays-1,mean=gain,sd=sigma)

    return(cumprod(c(price,ds)))

}

set.seed(47)

system.time(prices <- replicate(100000,

    stock_prices(price=25,

    ndays=180,

    gain=0.001,

    sigma=0.01)))

paths=matrix(unlist(prices),nrow=180,ncol=100000)

ps = sample.int(num_paths,min(num_paths,7))

pmin  =min(paths[,ps])

pmax = max(paths[,ps])

plot(paths[,ps[1]],type='l',col='red',xlab='Day',ylab='Price',ylim
=c(pmin,pmax))

Vectorization
Assume the stock price follows a 
normal distribution (well, not really). 

Let      be the change rate in stock 
price, the new price is given by

We use R function rnorm() to generate 
a vector of change rates and 
cumprod() to generate a vector of 
prices over time in one shot.

Then we use function replicate() to 
repeat the process 100,000 times to 
generate 100,000 paths.

Vectorization is fast! 



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

# Stock price simulation - parallel version

library(parallel)

stock_prices <- function(price,ndays,gain=0,sigma=0) 

{

    s <- .Random.seed

    nextRNGStream(s)

    set.seed(s)

    ds = rnorm(ndays-1,mean=1+gain,sd=sigma)

    return(cumprod(c(price,ds)))

}

RNGkind("L'Ecuyer-CMRG")

set.seed(47)

system.time(prices <- mclapply(1:100000,

    function(price,ndays,gain,sigma)

    stock_prices(price=25,

    ndays=180,

    gain=0.001,

    sigma=0.01),mc.cores=4))

paths=matrix(unlist(prices),nrow=180,ncol=100000)

# Stock price simulation - serial version

stock_prices <- function(price,ndays,gain=0,sigma=0) 

{

    ds = rnorm(ndays-1,mean=1+gain,sd=sigma)

    return(cumprod(c(price,ds)))

}

set.seed(47)

system.time(prices <- replicate(100000,

    stock_prices(price=25,

    ndays=180,

    gain=0.001,

    sigma=0.01)))

paths=matrix(unlist(prices),nrow=180,ncol=100000)

See L'Ecuyer generator (1999)



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Implicit parallelization
Featured by the underlying libraries, no work needed, free.

Set the environment variable OMP_NUM_THREADS to different values and run 
the script, see the execution time difference.

# In “mm.R”
n = 4*1024
n2 = n*n
A = matrix(rnorm(n2),nrow=n,ncol=n)
B = matrix(rnorm(n2),nrow=n,ncol=n)
system.time(C < - A %*% B)

$ export OMP_NUM_THREADS=1
$ R –no-save < mm.R

$ export OMP_NUM_THREADS=2
$ R –no-save < mm.R

$ export OMP_NUM_THREADS=4
$ R –no-save < mm.R Powered by Linux



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

When things can bite...
Unexpected behavior may occur when using parallel packages

This code is correct, but troublesome. It may suffer from that
 The code does not scale at all
 The code hangs

Why?

# Perfectly correct, but troublesome R code!!!
> library(parallel) 
> set.seed(1000) 
> test <- lapply(1:10,function(x) rnorm(100000)) 
> system.time(x <- mclapply(test,function(x) loess.smooth(x,x), mc.cores=1)) 
      user system elapsed 
    2.968 0.026 2.991 
> system.time(x <- mclapply(test,function(x) loess.smooth(x,x), mc.cores=2)) 

?



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Large datasets and linear models
Look for alternatives

# To fit data with linear model y = b0 + b1*x + b2*x^2

n = 5000000

p = 2

x = sort(runif(n,-1,1))

y = sin(x)*exp(x) + rnorm(n,sd=0.25)

# Create a linear model (quadratic polynomial). This may fail!

system.time(m <- lm(y ~ x + I(x^2)))

m

# Try this one if the above fails – equivalent 

t = proc.time()

A = outer(x,0:p,'^')

coef <- qr.solve(A,y)

proc.time() - t

coef

# And even try this one via the solution of normal equations - not recommended

t = proc.time()

B = t(A) %*% A

coef2 <- solve(B, t(A) %*% y)

proc.time() - t

coef2



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Loading large CSV files
I have a large CSV file containing data extracted from a database, 350MB of size, 
1.7 millions of records, 28 columns each. The job data file contains the following 
 Number of cores used
 Arrival, start time and end time, etc.

Using R function read.csv() takes nearly 6 minutes to lead the data on my laptop 
running Windows 7. So, how to improve this?

> system.time(j <- read.csv("jobs_orca.csv",header=T,sep=','))
   user  system elapsed 
318.522   1.778 325.615 

> j[sample.int(120000,6),c("ncpus","t_in","t_start")]
       ncpus                   t_in                t_start
90163     1 2014-12-12 05:25:35-05 2014-12-12 05:27:36-05
94375     1 2014-12-12 12:38:51-05 2014-12-12 17:13:46-05
13681    16 2014-11-20 20:07:26-05 2014-11-20 20:11:28-05
37321     1 2014-11-27 01:02:35-05                       
89417     1 2014-12-12 02:52:07-05 2014-12-12 02:53:58-05
48207     1 2014-11-28 16:27:02-05 2014-11-28 16:27:59-05

>5 min

← Missing data





Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Loading large CSV files (cont'd)
I use package data.table, it loads data much faster!

Next, how should I do to get the following?
 Sorted by number of cores used
 The min, max, mean and median wait time, etc grouped by number of cores.

People used to procedural programming languages may get lost. R is better at 
this sort of things.

> library(data.table)
> system.time(d <- fread("jobs_orca.csv"))
Read 1635034 rows and 28 (of 28) columns from 0.323 GB file in 00:00:22
   user  system elapsed 
  14.24    0.34   21.65



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Using aggregate functions
I use package data.table, it loads data much faster!

Next, how should I do to get the following?
 Sorted by number of cores used
 The min, max, mean and median wait time, etc grouped by number of cores.

People used to procedural programming languages may get lost. R is better at 
this sort of things.

> library(data.table)
> system.time(d <- fread("jobs_orca.csv"))
Read 1635034 rows and 28 (of 28) columns from 0.323 GB file in 00:00:22
   user  system elapsed 
  14.24    0.34   21.65
> names(d)
 [1] "jobid"         "host"          "state"         "job_type"     
 [5] "t_in"          "t_start"       "t_end"         "utime"        
 [9] "stime"         "atime"         "ncpus"         "nnodes"       
[13] "exitstatus"    "memory"        "pfaults"       "flags"        
[17] "nodes"         "institution"   "user"          "est_runtime"  
[21] "pi_user"       "exit_info"     "queue_type_id" "pvmem_req"    
[25] "vmem"          "vmem_req"      "gpus"          "backfilled"   



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Aspects of HPC with R

Using aggregate functions (cont'd)
> library(data.table)

> system.time(d <- fread("jobs_orca.csv"))

Read 1635034 rows and 28 (of 28) columns from 0.323 GB file in 00:00:22

   user  system elapsed 

  14.24    0.34   21.65

> ds <- subset(d,select=c(as.numeric(ncpus),t_in,t_start,t_end))

> d_cpus <- aggregate(ds$ncpus,by=list(ds$ncpus),FUN =length)

> names(d_cpus) < - c(“ncpus”,”jobs”)

> d_cpus[order(as.numeric(d_cpus$ncpus)),]

   ncpus    jobs

1      1 1351160

31     2   45262

55     4   52676

80     8   88775

22    16   41459

39    24    2990

51    32   20180

54    36    1361

63    48    1171

71    64   17101

13   128     603

...

45   256     189



Copyright ©  2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Aspects of HPC with R

Large data and out of core operations
I have a 1.45GB job data (a subset of 5 year's data), 34 million records, that can't 
easily fit in the memory.
> library(data.table)

> > system.time(d <- fread('jobs.csv'))

Read 31629152 rows and 6 (of 6) columns from 1.350 GB file in 00:00:42

   user  system elapsed 

  21.45    2.48   42.07 

> gc()

           used  (Mb) gc trigger  (Mb) max used  (Mb)

Ncells   552184  29.5     940480  50.3   940480  50.3

Vcells 95811153 731.0  115596418 882.0 95815259 731.1

> names(d)

[1] "jobid"   "sysid"   "ncpus"   "t_in"    "t_start" "t_end"  

> system.time(wt <- d$t_start-d$t_in)

   user  system elapsed 

   0.20    0.06    0.28 

> system.time(quantile(wt,probs=0.75))

   user  system elapsed 

   0.56    0.03    0.64 

← After



Copyright ©  2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Aspects of HPC with R

Large data and out of core operations (cont'd)
I have a 1.45GB job data (a subset of 5 year's data), 34 million records, that can't 
easily fit in the memory. I use bigmemory package.
> library(bigmemory)> 

> gc(reset=TRUE)

         used (Mb) gc trigger (Mb) max used (Mb)

Ncells 527579 28.2     940480 50.3   527579 28.2

Vcells 886272  6.8    1650153 12.6   886272  6.8

> 

> system.time(j <- 
read.big.matrix('jobs.csv',header=T,backingfile='jobs.bin',descriptorfile='jobs.desc'))

   user  system elapsed 

 239.68   40.54  291.08  

Warning message:

In read.big.matrix("jobs.csv", header = T, backingfile = "jobs.bin",  :

  Because type was not specified, we chose integer based on the first line of data.

> gc()

         used (Mb) gc trigger (Mb) max used (Mb)

Ncells 534454 28.6     940480 50.3   557062 29.8

Vcells 898302  6.9    1650153 12.6   965413  7.4

← Before

← After



Copyright ©  2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Aspects of HPC with R

Large data and out of core operations (cont'd)
Creating file-backed big matrix off disk is slow, but saves a lot memory. Operations 
on the data are pretty fast.
> library(bigmemory)> 

> system.time(d <- 
read.big.matrix('ts.csv',header=T,backingfile='ts.bin',descriptorfile='ts.desc'))

   user  system elapsed 

 239.68   40.54  291.08 

> dd <- dget('ts.desc')

> d <- attach.big.matrix(dd)

> system.time(wt <- d[,"t_start"] - d[,"t_in"])

   user  system elapsed 

   0.31    0.08    0.39

> system.time(quantile(wt,probs=0.75))

   user  system elapsed 

   0.53    0.04    0.56

> system.time(wt_min <- min(wt))

   user  system elapsed 

   0.06    0.00    0.05  

 



Copyright ©  2001-2016 Western University Parallel and high performance computing with R, SHARCNET, February 17, 2016

Where to find materials

More workshops
 Introduction to Unix shell (software carpentry)
 Revision control with Git (software carpentry)
 Programming with Python (software carpentry)
 Introduction to R (software carpentry)
 Parallel programming with R (software carpentry)
 Introduction of SQL database (software carpentry)
 Introduction to parallel computing with MATLAB
 Introduction to parallel computing with modern Fortran
 Bi-weekly online seminars: https://www.sharcnet.ca/my/news/calendar
 Summer school on high performance and scientific computing



Copyright ©  2015 Western University Parallel computing with R at SHARCNET @Western, London, Ontario, December 1, 2015

Where to find materials

Slides

http://www.sharcnet.ca/~bge/seminars/parallel-R/parallel-hpc-R.pdf

Acknowledgment
Some materials in this talk were taken from the course “Introduction to R” at 2015 
Ontario summer school on HPC at University of Toronto, July 13-17, given by Erik 
Spence of SciNet, University of Toronto.

Find where we are
Western Science Centre, Room 127

Shared Hierarchical Academic Computing Network (SHARCNET)

Western University

Web: http://www.sharcnet.ca/

E-mail: help@sharcnet.ca


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

