Creating and Distributing Python

Packages
Starting at 12:05pm

Tyler Collins
@andesha

SHARCNET
Brock University

Wed, September 21st | 12pm EST

https://github.com/Andesha

Today's Structure

e Slides will be available online after the session
o No need to take strict notes on commands used

e Recording will also be posted on the SHARCNET YouTube account
o You can pause and follow along later if you'd like

e Open questions will be allowed at the end of the session
o Chat questions will be monitored during

Don’t memorize every little command given - follow the principle of what’s happening instead!

https://www.youtube.com/channel/UCCRmb5_GMWT2hSlALHlwIMg

Today's Outline

W ONOL A WNPE

Terminology

Reminder of how to install a Python package
What do Python packages look like?

What makes a good package?

Intro to Cookiecutter and usage
Interactions with GitHub

Releases and building wheels

Deploying

Takeaways and questions

Terminology

So everyone can get on the same page:

Package: Some directory (folder) of grouped code

Distribution Package: Sharable form of a regular package, typically a wheel
Wheel: Precompiled and ready-to-use distribution package

Pip: Command line tool for installing python packages

Virtual Environment: Isolated installation of packages and Python version
PyPI: Python Package Index, typically where “pip” reads from by default

https://pythonwheels.com/
https://pip.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
https://pypi.org/

How do we install packages in Python?

Installing “pandas” in a fresh virtual environment:

:$ python3.10 -m venv new-env
:-$ source new-env/bin/activate

(new-env) :-$ pip install pandas

Easy for us now, but how did it get to that point?

How do we install packages in Python?

And what’s all of this anyway?

:$ python3.10 -m venv new-env
:-$ source new-env/bin/activate

(new-env) :$ pip install pandas
Collecting pandas

Downloading pandas-1.5.0-cp310-cp310-manylinux 2 17 x86 64.manylinux2014 x86 6
4.whl (12.1 MB)

eta

Collecting numpy>=1.21.0

Downloading numpy-1.23.3-cp310-cp310-manylinux 2 17 x86 64.manylinux2014 x86 6
4.whl (17.1 MB)

eta

Collecting pytz>=2020.1

Using cached pytz-2022.2.1-py2.py3-none-any.whl (500 kB)
Collecting python-dateutil>=2.8.1

Using cached python dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
Collecting six>=1.5

Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
Installing collected packages: pytz, six, numpy, python-dateutil, pandas
Successfully installed numpy-1.23.3 pandas-1.5.0 python-dateutil-2.8.2 pytz-2022
.2.1 six-1.16.0

What do modern packages look like?

pandas: powerful Python data analysis toolkit

pypi v1.5.0 | Anaconda.org 1.4.4 | DOl 10.5281/zenodo.3509134 || status 'stable | license "BSD-3-Cléuse‘ codecov [919%
openssf scorecard J65 PyP| downloads per month SGSMA gitter Hoinchat i powered by NumFOCUS | code style black

What is it?

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working
with "relational” or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most
powerful and flexible open source data analysis / manipulation tool available in any language. It is already
well on its way towards this goal.

About

Flexible and powerful data analysis /
manipulation library for Python, providing
labeled data structures similar to R
data.frame objects, statistical functions,
and much more

& pandas.pydata.org

python data-science flexible pandas

alignment data-analysis

Readme
BSD-3-Clause license

Code of conduct

Cite this repository
35.3k stars

1.1k watching

15k forks

< 0 % QI8 & B

Releases sg

© Pandas 1.5.0 (Latest)

yesterday

releases

What makes a good package then?

Wants versus needs is dependent on use case, however for today:

e Needs:
o Version control and hosting
o Documentation
o Shareability and releases
o Contributing/licensing
e Wants (not strictly covered today):
o Testing
o CI/CD
o Issue management, etc

/r/DIWHY

We're in Python, we should always avoid reinventing the wheel
Does something exist that can manage this for us? Of course!

Today’s talk focuses on Cookiecutter and its interactions with GitHub

" COOKIECUTTER GitHub

Cookiecutter

pypi v2.1.1 [python 3.713.813.9 | 3.10 |[SISWHNENSNN codecov |100% || @ Discord cookiecutter
code quality 1921

A command-line utility that creates projects from cookiecutters (project templates), e.g. creating a Python package
project from a Python package project template.

« Documentation: https://cookiecutter.readthedocs.io
o GitHub: https://github.com/cookiecutter/cookiecutter
« PyPI: https://pypi.org/project/cookiecutter/

« Free and open source software: BSD license

€ COOKIECUTTER

Features

Cross-platform: Windows, Mac, and Linux are officially supported.

You don't have to know/write Python code to use Cookiecutter.

Works with Python 3.7, 3.8, 3.9., 3.10

Project templates can be in any programming language or markup format: Python, JavaScript, Ruby,
CoffeeScript, RST, Markdown, CSS, HTML, you name it. You can use multiple languages in the same project
template.

10

Interacting with Cookiecutter

1. Install Cookiecutter via pip in a global or local environment

a. “pipinstall cookiecutter”
2. Point Cookiecutter at a reference template

a. ‘“cookiecutter https://github.com/andesha/cookiecutter-pypackage”
3. Answer the prompts as it relates to your project

a. Pointing it at your own fork lets you change the defaults!

11

Interacting with Cookiecutter

(new-env) : $ cookiecutter https://github.com/andesha/cookiecutter-pypackage

full name [Tyler Collins]:

emall |[TKllpr@snarcnet.caj:

aithub username [Andeshal:

project name [Python Boilerplate]: Teaching Example

project_suwug |Leacning exdampie].

project short description [Python Boilerplate contains all the boilerplate you need to create a Python package.]: Making a cookiecutter example for teaching.

pypi username [Andesha]:
version [0.1.0]:
use pytest [n]:
use black [n]:
use pypi deployment with travis [y]: n
add pyup badge [n]: n
Select command line interface:
1 - Click
2 - Argparse
3 - No command-line interface
Choose from 1, 2, 3 [1]: 3
create_author file [y]: y
Select open source license:
1 - MIT license
BSD license
ISC license
Apache Software License 2.0
GNU General Public License v3
Not open source
Choose from 1, 2, 3, 4, 5, 6 [1]:
(new-env) =y |

(new-env) :-$ cd teaching example/

(new-env)

AUTHORS. rst
CONTRIBUTING.rst

authors.rst

What do we get from Cookiecutter? =T -

history.rst

index.rst
installation.rst
e Docsfolders for uploading to services make . bat
e History, license, README, authorship, and contributing ’:Z‘a‘g;gfst
references usage. rst
e Requirements fileis typically for what developers need to HISTORY.rst
work with your package hgﬁg'ﬁfe
e Manifest is for shipping things with your package that are not MANIFEST.in
code README. rst
e Tests and tox are for things like CI/CD g:gz;f‘z’pgnts—de"‘t"t
e ‘“teaching_example” is the code folder setup.py
What’s most important is the “setup.py” file |: __init_ .py

teaching example.py

I: __init .py
test teaching example.py
tox.ini

3 directories, 25 files

$ tree

setup(
author="Tyler Collins",
author_email="'tklibr@sharcnet.ca',
python_requires='>=3.6",
classifiers=[
. . 'Development Status :: 2 - Pre-Alpha’,
Whats In a setup.py? 'Intended Audience :: Developers’,
'License :: OSI Approved :: MIT License’,
'Natural Language :: English',
'Programming Language :: Python :: 3',
The image on the right is a code snippet ‘Proprmeng Languaga: o Pyt o 9.87
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',

Specifies how to build your package and various

1

metadata properties about it description="Making a cookiecutter example for teaching.",
install_requires=requirements,

Also allows you to specify dependencies Liconse “HEk Heanae',

long_description=readme + '\n\n' + history,

include_package_data=True,

keywords="teaching_example',

name="teaching_example',
packages=Tind_packages(include=["'teaching_example', 'teaching_example.*']),
test_suite="tests',

tests_require=test_requirements,
url="https://github.com/Andesha/teaching_example',

version='0.1.0",

zip_safe=False,

How do we link this up to GitHub?

First, let’s make the new project structure a Git repository:

1.
2.

3.
4.

Enter the directory with “cd teaching_example”
Run “git init”

a. You may be given a prompt about choosing your main branch name. | suggest using “main”.
Add all files via “git add -A”
Complete the first commit as you like, or with “git commit -m ‘initial commit™

Now onto the GitHub side!

(new-env) - $ git status
On branch main

nothing to commit, worklng tree clean
(new-env) : $ [

15

Linking up with GitHub

1. Fillinthe repository name with what you
used during the Cookiecutter prompts

Do the same for the description

Leave the rest alone - Cookiecutter did it for
you!

4. Createtherepository

W N

Owner * Repository name *
.t, Andesha~ [teaching_example v

Great repository names are short and memorable. Need inspiration? How about supreme-octo-palm-tree?

Description (optional)

[Making a cookiecutter example for teaching

® Q Public

Anyone on the internet can see this repository. You choose who can commit.

0 E] Private

You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

] Add a README file

This is where you can write a long description for your project. Learn more.

Add .gitignore

Choose which files not to track from a list of templates. Learn more.

.gitignore template: None v

Choose a license

A license tells others what they can and can't do with your code. Learn more.

License: None v

@ You are creating a public repository in your personal account.

Create repository

16

Last step with GitHub...

Follow the second prompt adding a new remote, and pushing to it:

$ git remote add origin git@github.com:Andesha/teaching example.git
$ git push -u origin main

(new-env)

(new-env) :
Enumerating objects: 35, done.
Counting objects: 100% (35/35), done.
Delta compression using up to 8 threads
Compressing objects: 100% (28/28), done.
Writing objects: 100% (35/35), 11.43 KiB | 5.71 MiB/s, done.
Total 35 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:Andesha/teaching example.git

* [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from 'origin'.

(new-env) $[]

How does it look?

Check for yourself at my own
profile, here later

¥ main ~ ¥ 1branch © 0tags Go to file Add file ~
t Andesha initial commit aabasci 9 minutes ago ¥ 1 commit
B github initial commit 9 minutes ago
B docs initial commit 9 minutes ago
I8 teaching_example initial commit 9 minutes ago
i tests initial commit 9 minutes ago
[.editorconfig initial commit 9 minutes ago
O .gitignore initial commit 9 minutes ago
O .tavisyml initial commit 9 minutes ago
[@ AUTHORS.rst initial commit 9 minutes ago
[@ CONTRIBUTING.rst initial commit 9 minutes ago
[@ HISTORY.rst initial commit 9 minutes ago
[LICENSE initial commit 9 minutes ago
[@ MANIFESTin initial commit 9 minutes ago
[Makefile initial commit 9 minutes ago
[README.rst initial commit 9 minutes ago
[requirements_dev.txt initial commit 9 minutes ago
[setup.cfg initial commit 9 minutes ago
O setup.py initial commit 9 minutes ago
O toxini initial commit 9 minutes ago

About

Making a cookiecutter example for

teaching.

00 Readme

MIT license

1 watching

il
¥ Ostars
®
% 0forks

Releases

No releases published
Create a new release

Packages

No packages published

Publish your first package

Languages

® Makefile 54.8%

® Python 45.2%

18

https://github.com/Andesha/teaching_example

Status Check-in

What do we have:

e GitHub integration and source hosting
° Licensing, READMEs, etc

) Modern project layout automation
o Docs will be automatically generated with some settings

What do we have left:

e Releases and sharing
° PyPl and installation via pip

What's left is easy, | promise!

19

Releases

There are tools that can automate this procedure, but doing it manually is more fun for me:

1. Complete changes to your package such that it’s in some new versioned “state”
2. Update both the HISTORY.rst and “version” variable inside of the “__init__.py”

a. These must match for automation to play nice!

3. Runthe following git commands to signal to GitHub that this is a stable version or release:

a. ‘“gittag0.2.0” or whatever version you are moving to
b. “git push origin --tags”
c. GitHub will now see this is a tagged state on your repository for potential release

Onto the final step, distribution!

20

Building Wheels

First we need to actually make the distribution packages that will be shared

1. Ensure wheelis installed via “pip install wheel”
2. Runthe following:

a. “/setup.py sdist”
b. “/setup.py bdist_wheel”

3. Done and done!
a. You could share these to a friend and have them install the wheel via pip if you wanted

Remember - “setup.py” is our makefile and lets us define numerous things outlined here

21

https://docs.python.org/3/distutils/setupscript.html

Deploying to PyPI

Time to share to the world

1. Make an account on PyPI
2. Setuplocal authentication through their prompts

a. |llike touse the settings that outline creating a “.pypirc” file

3. Ensure “twine” is installed via “pip install twine” and run the following:
a. “twineupload dist/*"
b. You may need to empty your old dist folder before a successful upload

(new-env) $ twine upload dist/*

o | Uploading dlstrlbutlons to https://upload.pypi.org/legacy/
Done for real this time! Uploading teaching example-0.1.0-py2.py3-none-any.whl

Uploading teaching example-0.1.0.tar.gz

https://pypi. org/prOJect/teachlng example/0.1.0/
(new-env) $

22

Deploying to PyPIl: checking if it worked!

(test-env) :$ pip install teaching-example

Collecting teaching-example
Downloading teaching example-0.1.0-py2.py3-none-any.whl (3.3 kB)

Installing collected packages: teaching-example
Successfully installed teaching-example-0.1.0

(test-env) :$ python

Python 3.10.4 (main, Jun 29 2022, 12:14:53) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> import teaching example
>>> teaching example. author
'Tyler Collins'
>>> |:|
23

How do | develop on this structure locally?

Choosing to work within this structure does not mean you can no longer develop locally
Pip conveniently includes a mechanism for this via the “-e” flag when installing

For example, enter the “teaching_examples” directory followed by “pip install -e ” to locally install the
package

Edits to the package are then made available to the installed environment

-e, --editable <path/url>

Install a project in editable mode (i.e. setuptools “develop mode”) from a local project path or a VCS
url.

24

Takeaways

Don’t reinvent the wheel when sharing code

Use Cookiecutter to automate project boilerplate construction
Change the defaults - it will make your life easier!

Further reading for Travis testing and Read the Docs will be helpful

Thanks for your attention!
Questions?

Tyler Collins

tk1lbr@sharcnet.ca
@andesha

25

https://github.com/cookiecutter/cookiecutter
https://www.travis-ci.com/
https://readthedocs.org/
mailto:tk11br@sharcnet.ca
https://github.com/Andesha

