
Creating and Distributing Python 
Packages
Starting at 12:05pm

Tyler Collins
@andesha

SHARCNET
Brock University

Wed, September 21st | 12pm EST

https://github.com/Andesha


Today’s Structure

● Slides will be available online after the session
○ No need to take strict notes on commands used

● Recording will also be posted on the SHARCNET YouTube account
○ You can pause and follow along later if you’d like

● Open questions will be allowed at the end of the session
○ Chat questions will be monitored during

Don’t memorize every little command given - follow the principle of what’s happening instead!

2

https://www.youtube.com/channel/UCCRmb5_GMWT2hSlALHlwIMg


Today’s Outline

1. Terminology

2. Reminder of how to install a Python package

3. What do Python packages look like?

4. What makes a good package?

5. Intro to Cookiecutter and usage

6. Interactions with GitHub

7. Releases and building wheels

8. Deploying

9. Takeaways and questions

3



Terminology

So everyone can get on the same page:

● Package: Some directory (folder) of grouped code
● Distribution Package: Sharable form of a regular package, typically a wheel
● Wheel: Precompiled and ready-to-use distribution package
● Pip: Command line tool for installing python packages
● Virtual Environment: Isolated installation of packages and Python version
● PyPI: Python Package Index, typically where “pip” reads from by default

4

https://pythonwheels.com/
https://pip.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
https://pypi.org/


How do we install packages in Python?

Installing “pandas” in a fresh virtual environment:

Easy for us now, but how did it get to that point?

5



How do we install packages in Python?

And what’s all of this anyway?

6



What do modern packages look like?

7



What makes a good package then?

Wants versus needs is dependent on use case, however for today:

● Needs:
○ Version control  and hosting
○ Documentation
○ Shareability and releases
○ Contributing/licensing

● Wants (not strictly covered today):
○ Testing
○ CI/CD
○ Issue management, etc

8



/r/DiWHY

We’re in Python, we should always avoid reinventing the wheel

Does something exist that can manage this for us? Of course!

Today’s talk focuses on Cookiecutter and its interactions with GitHub

9



10



Interacting with Cookiecutter

1. Install Cookiecutter via pip in a global or local environment
a. “pip install cookiecutter”

2. Point Cookiecutter at a reference template
a. “cookiecutter https://github.com/andesha/cookiecutter-pypackage”

3. Answer the prompts as it relates to your project
a. Pointing it at your own fork lets you change the defaults!

11



Interacting with Cookiecutter

12



What do we get from Cookiecutter?

● Docs folders for uploading to services
● History, license, README, authorship, and contributing 

references
● Requirements file is typically for what developers need to 

work with your package
● Manifest is for shipping things with your package that are not 

code
● Tests and tox are for things like CI/CD
● “teaching_example” is the code folder

What’s most important is the “setup.py” file

13



What’s in a setup.py?

The image on the right is a code snippet

Specifies how to build your package and various 

metadata properties about it

Also allows you to specify dependencies

14



How do we link this up to GitHub?

First, let’s make the new project structure a Git repository:

1. Enter the directory with “cd teaching_example”

2. Run “git init”
a. You may be given a prompt about choosing your main branch name. I suggest using “main”.

3. Add all files via “git add -A”

4. Complete the first commit as you like, or with “git commit -m ‘initial commit’”

Now onto the GitHub side!

15



Linking up with GitHub

1. Fill in the repository name with what you 
used during the Cookiecutter prompts

2. Do the same for the description
3. Leave the rest alone - Cookiecutter did it for 

you!
4. Create the repository

16



Last step with GitHub…

Follow the second prompt adding a new remote, and pushing to it:

17



How does it look?

Check for yourself at my own 

profile, here later

18

https://github.com/Andesha/teaching_example


Status Check-in

What do we have:

● GitHub integration and source hosting
● Licensing, READMEs, etc
● Modern project layout automation

○ Docs will be automatically generated with some settings

What do we have left:

● Releases and sharing
● PyPI and installation via pip

What’s left is easy, I promise!

19



Releases

There are tools that can automate this procedure, but doing it manually is more fun for me:

1. Complete changes to your package such that it’s in some new versioned “state”
2. Update both the HISTORY.rst and “version” variable inside of the “__init__.py”

a. These must match for automation to play nice!

3. Run the following git commands to signal to GitHub that this is a stable version or release:
a. “git tag 0.2.0” or whatever version you are moving to
b. “git push origin --tags”
c. GitHub will now see this is a tagged state on your repository for potential release

Onto the final step, distribution!

20



Building Wheels

First we need to actually make the distribution packages that will be shared

1. Ensure wheel is installed via “pip install wheel”
2. Run the following:

a. “./setup.py sdist”
b. “./setup.py bdist_wheel”

3. Done and done!
a. You could share these to a friend and have them install the wheel via pip if you wanted

Remember - “setup.py” is our makefile and lets us define numerous things outlined here

21

https://docs.python.org/3/distutils/setupscript.html


Deploying to PyPI

Time to share to the world

1. Make an account on PyPI

2. Set up local authentication through their prompts
a. I like to use the settings that outline creating a “.pypirc” file

3. Ensure “twine” is installed via “pip install twine” and run the following:
a. “twine upload dist/*”

b. You may need to empty your old dist folder before a successful upload

Done for real this time!

22



Deploying to PyPI: checking if it worked!

23



How do I develop on this structure locally?

Choosing to work within this structure does not mean you can no longer develop locally

Pip conveniently includes a mechanism for this via the “-e” flag when installing

For example, enter the “teaching_examples” directory followed by “pip install -e .” to locally install the 

package

Edits to the package are then made available to the installed environment

24



Takeaways

● Don’t reinvent the wheel when sharing code
● Use Cookiecutter to automate project boilerplate construction
● Change the defaults - it will make your life easier!
● Further reading for Travis testing and Read the Docs will be helpful

Thanks for your attention!

Questions?

Tyler Collins
tk11br@sharcnet.ca
@andesha

25

https://github.com/cookiecutter/cookiecutter
https://www.travis-ci.com/
https://readthedocs.org/
mailto:tk11br@sharcnet.ca
https://github.com/Andesha

