
Compute Ontario Colloquium

Parallel Programming: MPI I/O Basics

Jemmy Hu

SHARCNET HPC Consultant

Oct. 23, 2024

I/O Basics

• I/O (input/output, read/write) is needed in all
programs but is often overlooked

• Mapping problem: how to convert internal
structures and domains to files which are a
streams of bytes

• Transport problem: how to get the data
efficiently from hundreds of nodes on the
supercomputer to physical disks

• File system: size, location

• File handle: open, read, write, view, close,
etc..

• Speed/performance: size, scalability

Parallel I/O

• At the program level:

- Concurrent reads or writes from multiple processes to a common file

• At the system level:

- A parallel file system and hardware that support such concurrent access

• Deal with very large datasets while running massively parallel applications on

supercomputers

• Good I/O is non-trivial, the challenges are

– performance, scalability, reliability – Ease of use of output (number of files, format)
– amount of data saved is increased, latency to access to disks is not negligible
– data portability

• One cannot achieve all of the above - Solutions to managing IO in parallel applications must take into

account different aspects of the application and implementation, one needs to decide what is most

important

IO Layers

• High-level

- application: to read or write data from disk

• Intermediate-level

- high-level libraries

HDF5, NETCDF

- libraries or system tools for I/O

• Low-level

- parallel filesystem enables the actual parallel I/O

- Lustre, GPFS, PVFS

Ways to organize I/O

• Should be considered in the context of the entire application
workflow, not just one program

• Several natural choices

- One file per program

• May match workflow, other tools

- One file per process

• Avoids performance and correctness bugs in the File
system

- One file per node/row/rack/…

Managing IO: Basic serial I/O (Single writer)

• One process performs I/O.

- Data Aggregation or Duplication

- Limited by single I/O process.

• Easy to program

• Pattern does not scale.

- Time increases linearly with amount of data.

- Time increases with number of processes.

• Care has to be taken when doing the “all to

one”- kind of communication at scale

• Can be used for a dedicated IO Server (not

easy to program) for small amount of data

Managing IO: distributed IO (One file per process)

• All processes perform I/O to individual files.

- Limited by file system.

• Easy to program

• Pattern does not scale at large process counts.

- Number of files creates bottleneck with metadata

operations.

- Number of simultaneous disk accesses creates

contention for file system resources.

Managing IO: Shared File (Independent writers)

• All processes write to specific blocks of the file, but

synchronization is necessary to prevent write

conflicts.

• Coordination usually occurs at the parallel file

system level.

• Although communication between processes is

not required, multiple processes may compete for

certain regions of the file, leading to lock contention,

hence lower performance.

• High-level I/O libraries such as parallel HDF5,

pNetCDF, and ADIOS2 are commonly used with this

approach and help to encapsulate data within the

file, but the complexity of managing file regions is

not visible to the programmer.

Managing IO: Shared File (Collective writers)

• Improve performance in the single file approach

• Data aggregation can be done by

introducing aggregators

• Chosen processes that collect data from others

and write it to specific sections of the file. However,

this method may be complex to implement.

• Using a high-level library can make the process of

data aggregation and file management much easier,

as it typically handles these tasks behind the scenes

and allows for a single logical view of the file while

also providing control over the aggregation strategy.

MPI I/O was introduced in MPI-2

• A set of extensions to the MPI library that enable parallel high-performance I/O operations

• Provides a parallel file access interface that allows multiple processes to write and read to

the same file simultaneously

• Defines parallel operations for reading and writing files:

- I/O to only one file and/or to many files

- Contiguous and non-contiguous I/O

- Individual and collective I/O

- Asynchronous I/O

• Portable programming interface

• Efficient data transfer between processes, Potentially good performance

- Enables high-performance I/O operations on large datasets

- Used as the backbone of many parallel I/O libraries such as parallel NetCDF and

parallel HDF5

MPI I/O

Basic Concepts in MPI I/O

• File handle

–data structure which is used for accessing the file

• File pointer

–positioning the file where to read or write

–can be individual for all processes or shared between the processes

–accessed through file handle

Basic Concepts in MPI I/O

• File view

–part of a parallel file which is visible to process

–enables efficient non-contiguous access to file

• Collective and independent I/O

–collective = MPI coordinates the reads and writes of processes

–independent = no coordination by MPI

Basic Concepts in MPI I/O

• Displacements

– The displacement of a position within a file is the number of bytes from the beginning of the file

• Elementary Datatype

– An etype is an MPI datatype (predefined or a derived datatype)

– The etype is used to set file views and for file access operations (reads and writes)

• Offset

An offset is a position in the file given in terms of multiples of etypes

– It is a multiple of etypes from the beginning of the current view

• On file open the view begins at the start of the file

• On file open the etype is a byte

Basic MPI-IO Operations

• MPI-IO provides basic IO operations:

– open, seek, read, write, close (etc.)

• open/close are collective operations on the same file

– many modalities to access the file (composable: |,+)

• read/write are similar to send/recv of data to/from a buffer

– each MPI process has its own local pointer to the file (individual file pointer) for
seek, read, write operations

– offset variable is a particular kind of variable and it is given in elementary unit
(etype) of access to file (default in byte)

– it is possible to know the exit status of each subroutine/function

Opening a file

• A collective call for all processes in a communicator to open a file

• comm: communicator that performs parallel I/O, typically use
MPI_COMM_WORLD

• amode: file access mode, MPI_MODE_RDONLY, MPI_MODE_WRONLY,
MPI_MODE_CREATE, MPI_MODE_RDWR, …

• Info: Hints to implementation for optimal performance (No hints:
MPI_INFO_NULL)

• fh: parallel file handle

A number of access modes are supported for MPI files

The amode argument to MPI_File_open defines the access mode for the file

Multiple access modes can be combined by

Using addition or the IOR function in Fortran

i.e. MPI_MODE_CREATE+MPI_MODE_EXCL+MPI_MODE_WRONLY

Using the or (|) operator in C

i.e. MPI_MODE_CREATE|MPI_MODE_EXCL|MPI_MODE_WRONLY

File Access Modes (amode)

Closing a file

• Collective operation, the same communicator use to open the file

• Call this function when the file access is finished to free the file
handle.

File seek

File pointer

• Position in the file where to read or write

• Can be individual for all processes or shared between the processes

• Each process moves its local file pointer (individual file pointer) with

MPI_File_seek(fh, disp, whence)

fh: file handle, data structure which is used for accessing the file

disp: Displacement in bytes (with default file view)

whence: MPI_SEEK_SET: the pointer is set to offset

MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

MPI_SEEK_END: the pointer is set to the end of the file plus offset

File reading

• Read file at individual file pointer

MPI_File_read (fhandle, buf, count, datatype, status)

buf: Buffer in memory where to read the data

count: number of elements to read

datatype: datatype of elements to read

status: similar to status in MPI_Recv, amount of data read can be determined by
MPI_Get_count

– Updates position of file pointer after reading

– Not thread safe

#include “mpi.h”

int main(int argc, char **argv) {
int rank, nprocs;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_File fh;
MPI_Status status;
MPI_File_open(MPI_COMM_WORLD, “../datafile”, MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_Offset filesize;
MPI_File_get_size(fh, &filesize);
MPI_Offset bufsize = filesize/nprocs;
int nints = bufsize/sizeof(int);
int *buf = (int*) malloc(nints);

MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);
MPI_Finalize();

}

Parallel read: example in C

File offset determined by
MPI_File_seek

File writing

• Similar to reading

– File opened with MPI_MODE_WRONLY or MPI_MODE_CREATE

• Write file at individual file pointer

MPI_File_write (fhandle, buf, count, datatype, status)

– Updates position of file pointer after writing

– Not thread safe

Multiple processes write to a binary file ‘test’.
First process writes integers 1-100 to the
beginning of the file, etc.

program output
use mpi
implicit none
integer :: err, i, myid, file, intsize
integer :: status(mpi_status_size)
integer, parameter :: count=100 integer, dimension(count) :: buf
integer(kind=mpi_offset_kind) :: disp
call mpi_init(err)
call mpi_comm_rank(mpi_comm_world, myid, err)
do i = 1, count
buf(i) = myid * count + i

end do

File offset determined
by MPI_File_seek

end program output

Parallel write: example in Fortran

File reading, explicit offset

• The location to read or write can be determined also explicitly with

MPI_File_read_at (fhandle, disp, buf, count, datatype, status)

disp: displacement in bytes (with the default file view) from the beginning of file

–Thread-safe

–The file pointer is neither referred or incremented

File writing, explicit offset

• Determine location within the write statement (explicit offset)

MPI_File_write_at (fhandle, disp, buf, count, datatype, status)

– Thread-safe

– The file pointer is neither used or incremented

Multiple processes write to a binary file ‘test’.
First process writes integers 1-100 to the
beginning of the file, etc.

program output
use mpi
implicit none
integer :: err, i, myid, file, intsize
integer :: status(mpi_status_size)
integer, parameter :: count=100 integer, dimension(count) :: buf
integer(kind=mpi_offset_kind) :: disp
call mpi_init(err)
call mpi_comm_rank(mpi_comm_world, myid, err)
do i = 1, count
buf(i) = myid * count + i

end do

call mpi_file_open(mpi_comm_world, 'test', mpi_mode_wronly + mpi_mode_create, &
mpi_info_null, file, err)
call mpi_type_size(mpi_integer, intsize,err)
disp = myid * count * intsize

call mpi_file_write_at(file, disp, buf, count, mpi_integer, status, err)
call mpi_file_close(file, err)
call mpi_finalize(err)

Parallel write: explicit offset

end program output

File offset determined explicitly

...

call mpi_file_open(mpi_comm_world, 'test’, &

mpi_mode_rdonly, mpi_info_null, file, err)

intsize= sizeof(count)

disp=myid * count * Intsize

call mpi_file_read_at(file, disp, buf, count, mpi_integer, status, err)

call mpi_file_close(file, err)

call mpi_finalize(err)

End program output

File offset
determined
explicitly

Parallel read with explicit offset: example in Fortran

Note: The first part is the same as in the example write code shown on last slide.
Same number of processes for reading and writing is assumed in this example.

Collective operations

• I/O can be performed collectively by all processes in a communicator

– MPI_File_read_all

– MPI_File_write_all

– MPI_File_read_at_all

– MPI_File_write_at_all

• Same parameters as in independent I/O functions

– MPI_File_read

– MPI_File_write

– MPI_File_read_at

– MPI_File_write_at

Collective operations

• All processes in communicator that opened file must call function

• Performance potentially better than for individual functions

– Even if each processor reads a non-contiguous segment, in total the read is contiguous

Non-blocking IO

• Independent, nonblocking IO

This is just like non blocking communication.

Same parameters as in blocking IO functions (MPI_File_read etc)

– MPI_File_iread

– MPI_File_iwrite

– MPI_File_iread_at

– MPI_File_iwrite_at

– MPI_File_iread_shared

– MPI_File_iwrite_shared

• Collective, nonblocking IO

int MPI_File_open(MPI_Commcomm, char *filename, int amode, MPI_Infoinfo, MPI_File*fh)
int MPI_File_close(MPI_File*fh)
int MPI_File_seek(MPI_Filefh, MPI_Offsetoffset, int whence)
int MPI_File_read(MPI_Filefh, void *buf, int count, MPI_Datatypedatatype,
MPI_Status*status)
int MPI_File_read_at(MPI_Filefh, MPI_Offsetoffset, void *buf, int count,
MPI_Datatypedatatype, MPI_Status*status)
int MPI_File_write(MPI_Filefh, void *buf, int count, MPI_Datatypedatatype,
MPI_Status*status)
int MPI_File_write_at(MPI_Filefh, MPI_Offsetoffset, void *buf, int count,
MPI_Datatypedatatype, MPI_Status*status)

int MPI_File_set_view(MPI_Filefh, MPI_Offsetdisp, MPI_Datatypeetype, MPI_Datatypefiletype,
char *datarep, MPI_Infoinfo)
int MPI_File_read_all(MPI_Filefh, void *buf, int count, MPI_Datatypedatatype,
MPI_Status*status)
int MPI_File_read_at_all(MPI_Filefh, MPI_Offsetoffset, void *buf, int count,
MPI_Datatypedatatype, MPI_Status*status)
int MPI_File_write_all(MPI_Filefh, void *buf, int count, MPI_Datatypedatatype,
MPI_Status*status)
int MPI_File_write_at_all(MPI_Filefh, MPI_Offsetoffset, void *buf, int count,
MPI_Datatypedatatype, MPI_Status*status)

C interfaces to MPI I/O routines

Fortran interfaces for MPI I/O routines

mpi_file_open(comm, filename, amode, info, fh, ierr)integer :: comm, amode, info, fh,
ierrcharacter* :: filename
mpi_file_close(fh, ierr)
mpi_file_seek(fh, offset, whence)
integer :: fh, offset, whence
mpi_file_read(fh, buf, count, datatype, status)integer :: fh, buf, count, datatype,
status(mpi_status_size)
mpi_file_read_at(fh, offset, buf, count, datatype, status)integer :: fh, offset, buf, count,
datatypeinteger, dimension(mpi_status_size) :: status
mpi_file_write(fh, buf, count, datatype, status)
mpi_file_write_at(fh, offset, buf, count, datatype, status)

mpi_file_set_view(fh, disp, etype, filetype, datarep, info)integer :: fh, disp, etype,
filetype, infocharacter* :: datarep
mpi_file_read_all(fh, buf, count, datatype, status)
mpi_file_read_at_all(fh, offset, buf, count, datatype, status)
mpi_file_write_all(fh, buf, count, datatype, status)
mpi_file_write_at_all(fh, offset, buf, count, datatype, status)

References

• https://www.nhr.kit.edu/userdocs/horeka/parallel_IO/

• https://hpc-
forge.cineca.it/files/CoursesDev/public/2017/Parallel_IO_and_management_of_large_scientific_dat
a/Roma/MPI-IO_2017.pdf

• https://janth.home.xs4all.nl/MPIcourse/PDF/08_MPI_IO.pdf

• https://events.prace-ri.eu/event/176/contributions/59/attachments/170/326/Advanced_MPI_II.pdf

• https://www.cscs.ch/fileadmin/user_upload/contents_publications/tutorials/fast_parallel_IO/MPI-
IO_NS.pdf

https://www.nhr.kit.edu/userdocs/horeka/parallel_IO/
https://hpc-forge.cineca.it/files/CoursesDev/public/2017/Parallel_IO_and_management_of_large_scientific_data/Roma/MPI-IO_2017.pdf
https://janth.home.xs4all.nl/MPIcourse/PDF/08_MPI_IO.pdf
https://events.prace-ri.eu/event/176/contributions/59/attachments/170/326/Advanced_MPI_II.pdf
https://www.cscs.ch/fileadmin/user_upload/contents_publications/tutorials/fast_parallel_IO/MPI-IO_NS.pdf

