

How to run Al programs in Graham

Isaac Ye, HPTC @ York University

lsaac@sharcnet.ca

AI / Deep Learning

Deep learning (DL) is a class of machine learning algorithms in which multiple layers of nonlinear processing units are used for feature extraction and transformation, with each successive layer taking the output from the previous layer as input.

Deep Neural Network (DNN)

"A family of parametric, non-linear and hierarchical representation learning functions, which are massively optimized with stochastic gradient descent to encode domain knowledge, i.e. domain invariances, stationarity." -- Efstratios Gavves

Example of a 3-layer Deep Neural Network (DNN)

http://cs231n.github.io/neural-networks-1/

compute calcul

Neural Network

http://cs231n.github.io/neural-networks-1/

DL: Training / Inference

Training

compute - calcul

https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-deep-learning/

What can we do with Al?

Landscape of Science problems

	High I	Energy Phy	sics	Biolog Envire	ical and onment	Basic Energy Nucle Phys			Fusion Energy	
	Astronomy	Cosmology	Particle Physics	Climate	Genomics	Light Sources	Materials	Heavy Ion Colliders	Plasma Physics	
Classification	X		X	Х	X	X	X	X	X	
Regression	X	X	X	Х	X	X	X	X	×	Analytics
Clustering	X	X	X	Х	X	X	X	X	×	Analytics
Dimensionality Reduction				Х				X		
Surrogate Models	X	X	X	Х			X	X	X	Simulations
Design of Experiments		X		X		Х	X		X	Control

Deep learning at Scale in SC19 Tutorial

DL use cases and growth trends

Why now?

1) Data: large curated datasets

2) GPUs: linear algebra accelerators

https://devblogs.nvidia.com/nvidia-ibm-cloud-support-imagenetlarge-scale-visual-recognition-challenge/

3) Algorithmic advances: optimizers, regularization, normalization ... etc.

compute calcul canada

DL frameworks Caffe Microsoft Cognitive Toolkit **O** PyTorch **Tensor**Flow mxnet julia compute calcul canada

TensorFlow

- The most widely used framework open-sourced by Google ٠
- **Replaced Google's DistBelief framework** •
- Runs on almost all architectures (CPU/GPU/TPU/etc) ٠
- Define-and-Run type for neural networks •
- Version 2.0 has Define-by-Run component(Eager execution)
- https://github.com/tensorflow/tensorflow •

[isaac@cedar1 ~]\$ avail_	wheels "ter	sorflow*'	I	
name	version	build	python	arch
tensorflow_cpu	2.1.0		ср37	generic
tensorflow_cpu	2.1.0		ср36	generic
tensorflow_cpu	2.1.0		cp35	generic
tensorflow_estimator	2.1.0		py2.py3	generic
tensorflow_gpu	2.1.0		ср37	generic
tensorflow_gpu	2.1.0		ср36	generic
tensorflow_gpu	2.1.0		cp35	generic
tensorflow_tensorboard	1.5.1		руЗ	generic
tensorflow_tensorboard	1.5.1		py2	generic
[isaac@cedar1 ~]\$				

canada

PyTorch

- Rapidly growing in research community for deep learning framework developed by Facebook
- A Python adaptation of Torch
- Caffe2 has been merged to PyTorch
- Define-by-Run type for neural networks
- Ease of expression and use
- https://github.com/pytorch/pytorch

[isaac@cedar1 ~]\$	avail_whee	ls "torch_	*"	
name	version	build	python	arch
torch_cluster	1.4.5		ср37	generic
torch_cluster	1.4.5		ср36	generic
torch_cluster	1.4.5		cp35	generic
torch_cpu	1.0.0		ср37	avx2
torch_cpu	1.0.0		ср36	avx2
torch_cpu	1.0.0		cp35	avx2
torch_cpu	1.0.0		cp27	avx2
torch_geometric	1.4.2		руЗ	generic
torch_gpu	1.0.0		ср37	avx2
torch_gpu	1.0.0		ср36	avx2
torch_gpu	1.0.0		ср35	avx2
torch_gpu	1.0.0		cp27	avx2

O PyTorch

Pros	Easy to use (Python support) Intuitive Dynamic graphs Research community prefers	Large community Heterogeneous architecture TF 2.0: Eager execution(Define-by-Run) Tensorboard (visualizing), Keras
Cons	Small community Less additional tools	Verbose Static graphs

TensorFlow

https://www.oreilly.com/content/complex-neural-networks-made-easy-by-chainer/

compute calcul canada

DL frameworks trend

Cumulative GitHub stars by Al library (2015—2019) Source: Github, 2019.

Cumulative GitHub stars by AI library, not including TensorFlow (2015—2019) Source: Github, 2019.

TensorFlow
 scikit-learn
 BVLC/caffe
 keras

CNTK

mxnet
theano
caffe2

- PyTorch

DL framework outline

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. "An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern Architectures", In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

DL and HPC architectures

NVIDIA GPUs are the main driving force for faster training DL models

Accelerator/CP Family Performance Share

compute - calcul

https://top500.org

NVIDIA T4 Turing GPU on Graham

Streaming Multiprocessor 8 Tensor cores

40 SM in T4 8.1 Tflops FP32 65 Tflops FP16

GPU resources in Compute Canada

As of Feb, 2020

	# of nodes	GPU type	Note
Graham	160	P100 Pascal	gres=gpu:1
	7	V100 Volta	CPU/GPU ≤ 3.5 gres=gpu:v100:1
	36	T4 Turing (DL target)	CPU/GPU ≤ 3.5 gres=gpu:t4:2
Cedar	146	P100 Pascal	gres=gpu:1
Beluga	172	V100 Volta	CPU/GPU ≤ 3.5 gres=gpu:v100:1
Niagara	None		

Virtual environment

Allows users to create virtual environments so that one can install Python modules easily

Many versions of same module are possible

canada canada

SHARCNET

Python packages for Tensorflow/PyTorch

[isaac@cedar1 ~]\$ avail	wheels "*t	ensor*"		
name	version	build	python	arch
tensorboard	2.1.0		руЗ	generic
tensorboardX	1.9		ру2.ру3	generic
tensorflow_cpu	2.1.0		cp37	generic
tensorflow_estimator	2.1.0		ру2.ру3	generic
tensorflow_gpu	2.1.0		cp37	generic
tensorflow_tensorboard	1.5.1		руЗ	generic

[isaac@cedar1 ~]\$ avail_ name	wheels "*to version	rch*" build	python	arch
pytorch_pretrained_bert	0.6.1		ру3	generic
pytorch_transformers	1.1.0		ру3	generic
torch	1.4.0		ср37	generic
torch_cluster	1.4.5		ср37	generic
torch_cpu	1.0.0	7 15 105	cp37	avx2
torch_geometric	1.4.2		py3	generic
torch_gpu	1.0.0		cp37	avx2
torch_scatter	2.0.3		cp37	generic
torch_sparse	0.5.1		cp37	generic
torch_spline_conv	1.1.1		cp37	generic
torchaudio	0.2	/e15d2f	ср37	generic
torchnet	0.0.4		ру3	generic
torchtext	0.3.1		ру3	generic
torchvision	0.4.0		ср37	generic

Demo: Running DL interactively

CIFAR-10 dataset

The dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

CIFAR10 - https://www.cs.toronto.edu/~kriz/cifar.html

SBATCH Scripts

#!/bin/bash #SBATCHgres=gpu:1 #SBATCHcpus-per-task=6	- # request GPU "generic resource" # maximum CPU cores per GPU request. 6 on Cedar, 16 on Graham
#SBATCHmem=32000M #SBATCHtime=0-03:00	<pre># maximum ere cores per ere request. o on cedar, ro on oranam. # memory per node # time (DD-HH:MM)</pre>
#SBATCHoutput=%N-%j.out #SBATCHaccount=def-isaac	# %N for node name, %j for jobID
module load cuda cudnn source /home/\$USER/tf/bin/ac cd ~/project/isaac python resnet_cifar.py_	ctivate
#!/hin/hash	

:/pin/pas

cd ~/project/isaac

python cifar10 tutorial.py

compute calcul canada

Tensorboard

ensorBoard scalars gra	PHS DISTRIBUTIONS HISTOGRAMS PROFILE INACTIVE	- C 🌣 📀
Show data download links	Q Filter tags (regular expressions supported)	
Ignore outliers in chart scaling	hala luu	
Fooltin sorting method: default	batch_loss	^
	batch loss	
Smoothing		
shootiling	4.4	
<u> </u>	4	
	3.6	
lorizontal Axis		
STEP RELATIVE WALL		
Runs		
Nrite a regex to filter runs		
Iogs/fit/20200225-073041/metrics	batch sparse categorical accuracy	^
Iogs/fit/20200225-073041/train		
Iogs/fit/20200225-073247/metrics	batch_sparse_categorical_accuracy	
🗹 🔵 logs/fit/20200225-073247/train		
Iogs/fit/20200225-073247/validation	0.22	
Iogs/fit/20200225-214907/metrics	0.18	
logs/fit/20200225-214907/train		
TOGGLE ALL RUNS	0.14	
nome/isaac/project/isaac	0.1	
home/isaac/project/isaac		

compute calcul canada

HOROVOD (Multi-GPU Multi-node)

Open source distributed DL framework for TensorFlow, PyTorch, Keras and etc. Make distributed DL fast and easy to use Ring-allreduce with only a few lines of modification Developed by Uber

Model Parallelism

Data Parallelism

NCCL: NVIDIA Collective Communications Library

HOROVOD : Installation

1. Modules

[isaac@cedar1 ~]\$ m	odule load g	JCC/8.3.0 python c	uda cudn	n scipy-stack/	/2019a c	penmpi/4.0.1							
Lmod is automatical.	ly replacing	g "intel/2016.4" w	ith "gcc	/8.3.0".									
The following have 1 1) gcccore/.5.4.0	been reloade => gcccore/	ed with a version (/.8.3.0 2) ope	change: nmpi/2.1	.1 => openmpi/	4.0.1								
[isaac@cedar1 ~]\$ mo	odule list												
Currently Loaded Mod 1) nixpkgs/16.09 2) imkl/11.3.4.25	dules: (S) 3 8 (math) 4	3) StdEnv/2016.4 4) gcccore/.8.3.0	(<mark>S</mark>) 5) (H) 6)	gcc/8.3.0 python/3.7.4	(t) 7 (t) 8) cudacore/.10) cuda/10.1	.1.243 (H) (t)	9) 10)	cudnn/7.6.5 scipy-stack/2019a	(math) (math)	11) 12)	ucx/1.5.2 openmpi/4.0.	1 (m)

HOROVOD : Installation

2. NCCL2

[isaac@cedar5 ~]\$ tar xf nccl_2.5.6-2+cuda10.2_x86_64.txz [isaac@cedar5 ~]\$ ls abc.test nccl_2.5.6-2+cuda10.2_x86_64 nearline projects tensorflow tf log1 nccl_2.5.6-2+cuda10.2_x86_64.txz project scratch TensorFlow2-tutorial [isaac@cedar5 ~]\$ ls -1 nccl_2.5.6-2+cuda10.2_x86_64 total 9 drwxr-x--- 2 isaac isaac 4096 Nov 17 19:07 include drwxr-x--- 3 isaac isaac 4096 Nov 17 19:09 lib -rw-r----- 1 isaac_isaac 1735 Nov 17 19:07 LICENSE.txt

[isaac@cedar5 ~]\$ export HOROVOD_CUDA_HOME=\$CUDA_HOME [isaac@cedar5 ~]\$ export HOROVOD_NCCL_HOME=/home/isaac/nccl_2.5.6-2+cuda10.2_x86_64 [isaac@cedar5 ~]\$ export HOROVOD_GPU_ALLREDUCE=NCCL [isaac@cedar5 ~]\$ env |grep HOROVOD HOROVOD_CUDA_HOME=/cvmfs/soft.computecanada.ca/easybuild/software/2017/Core/cudacore/10.1.243 HOROVOD_NCCL_HOME=/home/isaac/nccl_2.5.6-2+cuda10.2_x86_64 HOROVOD_GPU_ALLREDUCE=NCCL

HOROVOD : Installation

3. Install horovod

[isaac@cedar1 isaac]\$ source ~/tf/bin/activate

(tf) [isaac@cedar1 isaac]\$ pip install --no-cache-dir horovod

Ignoring pip: markers 'python_version < "3"' don't match your environment

Looking in links: /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/avx2, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/generic Collecting horovod

Downloading https://files.pythonhosted.org/packages/e8/1b/51c36afc6dab9afad1caed2a11366d1e238e42f3c51177d06779356f8f1a/horovod-0.19.0.tar.gz (2.9MB)

| 2.9MB 9.7MB/s

Requirement already satisfied: cloudpickle in /home/isaac/tf/lib/python3.7/site-packages (from horovod) (1.3.0) Requirement already satisfied: psutil in /home/isaac/tf/lib/python3.7/site-packages (from horovod) (5.6.5) Requirement already satisfied: pyyaml in /home/isaac/tf/lib/python3.7/site-packages (from horovod) (5.1.2) Requirement already satisfied: six in /home/isaac/tf/lib/python3.7/site-packages (from horovod) (1.14.0) Requirement already satisfied: cffi>=1.4.0 in /home/isaac/tf/lib/python3.7/site-packages (from horovod) (1.13.2) Requirement already satisfied: pycparser in /home/isaac/tf/lib/python3.7/site-packages (from cffi>=1.4.0->horovod) (2.19) Building wheels for collected packages: horovod

Building wheel for horovod (setup.py) ... done

Stored in directory: /tmp/pip-ephem-wheel-cache-cpmgcf_d/wheels/2a/09/5f/bf4132f534447b5b4b110921ef88d93cb14df3e8e9c1905c2c
Successfully built horovod
Installing collected packages: horovod
Successfully installed horovod-0.19.0
(tf) [isaac@cedar1 isaac]\$

HOROVOD : SBATCH

#!/bin/bash	
#SBATCHgres=gpu:1	# request GPU "generic resource"
#SBATCHcpus-per-task=12	# maximum CPU cores per GPU request: 6 on Cedar, 16 on Graham.
#SBATCHmem=12000M	# memory per node
#SBATCHtime=0-01:00	<pre># time (DD-HH:MM)</pre>
#SBATCHoutput=%N-%j.out #SBATCHaccount=def-isaac	# %N for node name, %j for jobID
module load gcc/8.3.0 pythom	n cuda cudnn scipy-stack/2019a openmpi/4.0.1
source /home/\$USER/tf/bin/ac	ctivate
cd /home/isaac/project/isaac	c/benchmarks
NCCL DEBUG=INFO	
<pre>srun python /home/isaac/proj<td><pre>ject/isaac/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py\</pre></td></pre>	<pre>ject/isaac/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py\</pre>
model resnet50\	
batch_size 32\	
variable_update ho	provod\

Thanks!

